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Accurate and large-scale prediction of protein–protein interactions directly from amino-acid
sequences is one of the great challenges in computational biology. Here we present a new Bayesian
network method that predicts interaction partners using only multiple alignments of amino-acid
sequences of interacting protein domains, without tunable parameters, and without the need for
any training examples. We first apply the method to bacterial two-component systems and
comprehensively reconstruct two-component signaling networks across all sequenced bacteria.
Comparisons of our predictions with known interactions show that our method infers interaction
partners genome-wide with high accuracy. To demonstrate the general applicability of our method
we show that it also accurately predicts interaction partners in a recent dataset of polyketide
synthases. Analysis of the predicted genome-wide two-component signaling networks shows that
cognates (interacting kinase/regulator pairs, which lie adjacent on the genome) and orphans
(which lie isolated) form two relatively independent components of the signaling network in each
genome. In addition, while most genes are predicted to have only a small number of interaction
partners, we find that 10% of orphans form a separate class of ‘hub’ nodes that distribute and
integrate signals to and from up to tens of different interaction partners.
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Introduction

A method that comprehensively and accurately predicts
protein–protein interactions using only the amino-acid se-
quences of proteins would essentially allow the reconstruction
of genome-wide interaction networks directly from genome
sequences. Automated prediction of protein–protein interac-
tions from their amino-acid sequences is therefore one
of the great outstanding challenges in computational biology.
Numerous approaches have already been proposed, which,
apart from the amino-acid sequences themselves, use addi-
tional information as coexpression patterns, phylogenetic
distributions of orthologous groups, co-evolution patterns,
the order of genes in the genome, gene fusion and fission
events, and synthetic lethality of gene knockouts (see Valencia
and Pazos, 2002; Bork et al, 2004; Shoemaker and Panchenko,
2007 for reviews). There are, however, serious shortcomings to
the currently existing methods. For instance, many of the

approaches cannot infer direct physical interactions, but
indicate only general functional ‘relationships’, which may
often be indirect and are difficult to validate. Some methods,
such as those that rely on phylogenetic tree comparison,
cannot be easily scaled up to large data sets. In addition,
accuracy in genome-wide predictions is a general problem.
Because true interactions are only a small fraction of
the large number of possible interactions genome-wide, even
relatively low false-positive rates lead to high numbers
of false positives compared to the number of true predictions
(see for example, Jansen et al, 2003). Furthermore, since
high-throughput experimental methods for mapping protein–
protein interactions are notoriously noisy, it is difficult to
assess the reliability of computational predictions. This is
especially a problem for transient protein–protein interactions
such as those that take place during signaling. Yet these
interactions are often most interesting because of their
regulatory role.
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Here we present a novel probabilistic method for inferring
interaction partners in families of homologous proteins, using
only alignments of amino-acid sequences. Of the existing
methods for protein–protein interaction prediction, our
method is most similar in spirit to the correlated mutations
method of Pazos and Valencia (2002). In their approach, the
assumption is made that, for interacting protein pairs, pairs of
residues involved in the interaction will show correlated
mutations. In particular, it is assumed that replacement of one
of the interacting residues with a chemically highly dissimilar
amino acid typically requires the other residue to also change
substantially. For a given pair of proteins, orthologs from
related genomes are collected and an ad hoc scoring scheme is
used to identify pairs of positions that show significant
correlation of their mutations across the orthologous pairs.

The similarity of this approach with ours is that we likewise
assume that, for interacting protein pairs, there will be pairs of
residues which show co-variation. However, whereas the
method of Pazos and co-workers only considers one pair of
proteins together with their orthologs at a time, we consider
multiple alignments of entire families of proteins (or protein
domains) that are known to interact, which includes all
paralogs and orthologs at once. In addition, we use a rigorous
Bayesian network framework to explicitly model the entire
joint probability of all amino-acid sequences in the multiple
alignments. In this model, the identity of each residue is
probabilistically dependent on the identity of one other
residue, which may either lie within the same protein or lie
within the interacting partner. Our model also sums over all
ways the residue dependencies can be chosen.

We demonstrate the power of our method by first applying it
to bacterial two-component systems (TCSs) proteins, which
are responsible for most signal transduction in bacteria.
Whereas much knowledge has been gained in recent years
regarding the structure of transcriptional regulatory networks

and metabolic networks, very little is known about the global
structure of signaling networks in bacteria. Here we provide
the first genome-wide reconstruction of two-component
signaling networks across all sequenced bacterial genomes.
By comparing our predictions with large sets of known
interactions, we demonstrate the high accuracy of our
predictions. We further demonstrate the generality of the
method by applying it to a recent data set of about 100
polyketide synthases (PKSs) (Thattai et al, 2007). This
application also illustrates that our method can predict
interaction partners with high accuracy even for relatively
small datasets. Finally, our genome-wide predictions of two-
component signaling networks across all sequenced bacteria
allow us to make an initial investigation of the structural
properties of these networks across bacteria.

Results

General model

Our method in general operates on sets of multiple alignments
of homologous proteins (or protein domains) for which it is
known that members of one multiple alignment can interact
with members of another multiple alignment. To explain the
model, we first describe it for the simplest possible case. In this
situation, illustrated in Figure 1, there are two (large) families
of proteins or protein domains, typically with multiple
paralogous members per genome, for which it is known that
in each genome each member of the first family interacts with
one member of the second family. The set of all possible
‘solutions’ for this problem corresponds to all possible ways in
which we can assign, for each genome, each member of the
first family to one member of the second family. In Figure 1, the
alignments of the two families are shown side by side, with
sequences grouped per genome from top to bottom. An

Figure 1 Illustration of the model used to assign a probability P(D|a) to the joint multiple sequence alignment D of two protein families given an assignment a of
interaction partners between them. Sequences from the same genome have the same color and horizontally aligned sequences are assumed to interact. The
probabilities of pairs of alignment columns (ij) depend on the number of times nij

ab that amino acids (ab) occur in the corresponding columns. A dependence tree T and
the corresponding factorization of the probability P(D|a, T) of the entire alignment given the assignment and dependence tree is illustrated at the bottom of the figure.
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assignment of interaction partners a corresponds to a vertical
ordering of the sequences within each genome such that the
sequences on the same horizontal ‘row’ are assumed to
interact. In this way, an assignment a implies a common
multiple alignment of all sequences of both families.

We now calculate the probability P(D|a) of observing the
entire joint multiple alignment D of the sequences of both
families in assignment a. We assume that, for each alignment
position i, the probability to observe amino acid a at that
position depends on the amino acid b that occurs at one other
position j¼p(i) (the ‘parent’ of i). A dependence tree T (see
Figure 1) specifies the parent position p(i) for each position i in
the joint multiple alignment. The conditional probabilities
pij(a|b) are unknown parameters that are integrated out of the
problem. As shown in Materials and methods, we can derive
an explicit expression for the probability P(Di|Dj) of the entire
alignment column i, given alignment column j in terms of the
counts nij

ab; the number of times that the pair of amino acids
(ab) is observed at the alignment columns (ij). The probability
P(D|a, T) of the data, given dependence tree T, is then the
product of conditional probabilities P(Di|Dp(i)) (see Figure 1)
over all positions. The unknown dependence tree T is a so-
called ‘nuisance parameter’ and probability theory specifies
(Jaynes, 2003) that to obtain P(D|a), we should sum P(D|a, T)
over all possible dependence trees. Using an uniform prior
over trees, this amounts to averaging P(D|a, T) over all
dependence trees (Meilá and Jaakkola, 2006). In cases where
this summation is computationally intractable, we can also
approximate P(D|a) by finding the dependence tree T* that
maximizes P(D|a, T*) (see Materials and methods).

We sample the posterior distribution P(a|D) over all possible
assignments a using Markov chain Monte-Carlo sampling and
keep track of the fraction f(m, m0) of sampled assignments in
which proteins m and m0 are interaction partners. In the limit
of long sampling, the frequencies f(m0, m) give the posterior
probabilities P(m, m0|D), that m and m0 interact. As explained
in Materials and methods, this approach can be extended in
several ways, including allowing more than two paralogous
families and allowing for unequal numbers of members in the
different families. These extensions are used for our predic-
tions of two-component interactions below.

Application to TCSs

Bacterial TCSs are responsible for most of the signal transduc-
tion underlying complex bacterial behaviors (Grebe and Stock,
1999; Stock et al, 2000; Ausmees and Jacobs-Wagner, 2003).
Although a lot is known about the TCS signaling for specific
subsystems in a few model organisms, the interaction partners
for the vast majority of TCS genes have not been determined
experimentally. Comprehensive predictions of TCS-signaling
interactions would thus provide important insights into how
different bacteria respond to their environments, which
regulons are under the control of which external signals, and
which specific subsystems are connected by signaling path-
ways, with potentially important applications. For example, as
TCS signaling is essential for host–pathogen interaction,
insights into these interactions may have important applica-
tions related to human health. In addition, very little is
currently known about the global structure of TCS-signaling

networks across bacteria. With about 400 fully sequenced
genomes available, comprehensive prediction of TCS-signal-
ing networks across all bacteria would thus also provide a
significant data set for studying the global structure of
signaling networks in bacteria.

In its simplest form, a TCS consists of two proteins, a
histidine kinase and a response regulator (Stock et al, 2000).
The histidine kinase is in many cases a membrane-bound
protein containing an extracellular sensor domain, which
responds to environmental cues, and a cytoplasmic kinase
domain. The kinase domain autophosphorylates upon the
activation of the sensor, interacts very specifically with
the response regulator, and transfers the phosphate to the
regulator’s receiver domain. Phosphorylation typically leads
to the activation of the regulator, which often acts as a
transcription factor.

For several reasons TCSs are particularly attractive for
computational modeling. First, both histidine kinase and
receiver domains exhibit significant sequence similarity and
they can be easily detected in fully sequenced genomes using
hidden Markov models (Bateman et al, 2004). Second, because
TCSs are very abundant in the prokaryotic kingdom, with
dozens of interacting pairs in some genomes and thousands of
examples across all genomes, they provide enough data to
detect subtle dependencies between the residues of interacting
kinase/receiver domains. Finally, a significant fraction of all
TCSs form so-called cognate pairs in which a single kinase/
regulator pair lies within one operon in the genome. It is
generally assumed that such cognate pairs are interacting
kinase/regulator pairs, which is supported experimentally for
a substantial number of pairs, and there are, to our knowledge,
no examples that contradict this assumption. Therefore, the
cognate pairs provide a very large data set of known
interacting pairs that can be used to test the accuracy of the
computational predictions. Additionally, they can be used as a
‘training set’ for predicting interactions between all other
kinases and regulators, that is, between ‘orphan’ kinases and
regulators which do not occur within an operon with their
interaction partner.

We gathered an exhaustive collection of TCS proteins from
399 sequenced bacteria and multiply aligned all kinase and
receiver domains. Whereas all receiver domains can be aligned
in a single alignment, kinases show different domain
architectures and we produced seven separate multiple
alignments for the seven most abundant kinase domain
architectures (see Materials and methods). We also divided
the kinases and regulators into cognate pairs and orphans.

Determining interacting residues

The HisKA class is by far the largest class of kinases, with 3388
cognate HisKA/regulator pairs, corresponding to 72% of all
cognate pairs, and we first investigated the evidence for
dependencies between the amino-acid positions of the kinase
and the receiver domains of this class. For each pair of
positions (ij), where i lies in the kinase and j in the receiver, we
quantified the ‘dependence’ by the likelihood ratio Rij between
a model that assumes the amino acids at these positions are
drawn from some joint probability distribution and a model
that assumes they are drawn from independent distributions
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(see Materials and methods). This measure Rij for dependence
between positions i and j is closely related to the mutual
information of the observed distribution of amino acids in
positions i and j, which in turn is related to the statistical
coupling between positions introduced in (Lockless and
Ranganathan, 1999). As shown in the top left panel of Figure 2,
almost 15% of all pairs of positions have a positive log(Rij),
which corresponds to over 1000 pairs. However, because our
data set contains many examples of orthologous cognate pairs,
we expect to see ‘spurious’ correlations that are just the result
of the evolutionary relationships between orthologous pairs.
To investigate whether the high observed log(Rij) values can be
explained by phylogeny alone, we performed the following
randomization. We collected sets of orthologous cognate pairs
into orthologous groups and identified pairs of orthologous
groups that occur in the same genomes. We then swapped
kinase/regulator assignments between such pairs of ortho-

logous groups. Thus, each kinase is now assigned to a wrong
receiver domain, but the phylogenetic relations of all these
‘false pairs’ are exactly the same as the phylogenetic relation-
ships of the true cognate pairs. If all correlations were due to
phylogeny, the distribution of observed Rij values for the false
pairs should be the same as that of the true pairs. As the top left
panel of Figure 2 shows, the observed Rij values for true pairs
are much larger than can be explained by phylogeny. For
example, only about 7% of false pairs show positive log(Rij)
and there are no false pairs with log(Rij) larger than 235.

If the pairs of positions with large Rij values reflect
physicochemical constraints, we may expect that they are in
close physical contact during the interaction of kinase and
receiver. Although no structure of a HisKA kinase/regulator
pair is currently available, the structure of the sporulation
histidine phosphotransferase Spo0B with the response regu-
lator Spo0F (Zapf et al, 2000) has been determined. Spo0B

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sensitivity

0.2

0.4

0.6

0.8

1

P
os

iti
ve

 p
re

di
ct

iv
e 

va
lu

e

Performance HisKA predictions

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sensitivity

0.2

0.4

0.6

0.8

1

P
os

iti
ve

 p
re

di
ct

iv
e 

va
lu

e

Performance H3 predictions

100 200 300 400 500 600

0.02

0.04

0.06

0.08

0.1

0.12

0.14

10 20 30 40 50
Distance d (Å)

0

0.2

0.4

0.6

0.8

1
HisKA distance distributionHisKA log(R ) distribution

Fr
ac

. p
ai

rs
>

lo
g(

R
)

Fr
ac

. p
ai

rs
<

d

log(R )

Figure 2 Analysis of cognate pairs for the HisKA and H3 kinase classes. Top left panel: The red line shows the tail of the reverse cumulative distribution of log(Rij)
(dependency) values for pairs of positions in cognate HisKA kinase/receiver pairs. The blue line shows the tail of the log(Rij) distribution after randomizing kinase/
receiver assignments in such a way that all phylogenetic relationships are maintained. Top right panel: The cumulative distribution of estimated (see the text) distances
between the amino acids in the co-crystal for the 50 pairs with highest R values (red line) versus all other pairs (green line). Bottom left panel: Sensitivities and positive
predictive values of the predictions for cognate HisKA kinases and regulators. The red curves show the performance of the model in which P(D|a, T) is averaged over all
dependence trees, the blue curve shows the performance of the model P(D|a, T*) that uses only the best dependence tree, and the green line shows the performance of
random predictions. All pairs of curves show estimated PPV±one standard error. Bottom right panel: Performance results as in the bottom left panel for cognate H3
kinases and regulators.
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differs significantly in sequence from HisKA kinases, but
can nonetheless be reasonably aligned to the HisKA Pfam
profile. We used the Spo0B/Spo0F structure together with the
Spo0B/HisKA alignment to estimate the physical distances
between all pairs of positions in HisKA kinase/receiver pairs.
The top right panel of Figure 2 shows that the pairs of positions
with highest Rij are significantly closer physically than other
pairs (rank-sum test P-value 3�10�11). In addition, Figure 3
shows the pairs of amino acids with the highest Rij values on
the Spo0B/Spo0F complex (black lines). It is striking that
many of the positions that are predicted to depend on each
other are indeed in close physical contact in the a-helices of the
kinase and receiver domains (near the top right of the figure).
Other interactions are predicted to occur between residues in
an a-helix of the kinase domain and residues in loops of the
receiver domain. A few of the predicted interactions are more
puzzling: they involve residues not in close proximity, but the
Rij values are too high to be explained by phylogenetic
dependencies. Some of these may be due to structural
differences between the Spo0B/Spo0F complex and the
HisKA/receiver complex, due to alignment errors, or indirect
dependencies. In summary, the control for phylogenetic
signal, the distances between pairs with high Rij, and their
location on a related structure all support that our Rij scores
capture meaningful functional dependencies between indivi-
dual pairs of positions in kinase and receiver.

Predicting cognate interactions

We next investigated how accurately the model can recon-
struct known cognate pairs of HisKA kinases and their
regulators. We collected the multiple alignments of all HisKA
kinase domains and receiver domains from cognate pairs and
sampled the space of all possible assignments, that is, all ways
in which each kinase from each genome can be assigned to one
regulator from the same genome. We sorted all predicted pairs
by their posterior probability and measured, as a function of a
cut-off in posterior probability, the fraction of all true cognate

pairs that are among the predictions (sensitivity) and the
fraction of all predictions that correspond to true cognate pairs
(positive predictive value). These results are shown in the
bottom left panel of Figure 2, both when approximating P(D|a)
using the tree with highest probability, that is, P(D|a)¼maxT

P(D|a, T) (blue curves), and when averaging over all
dependence trees P(D|a)¼

P
T P(D|a, T) (red curves). In the

first approach, the dependence tree structure is calculated
from the correctly paired cognate pairs before sampling,
whereas in the second approach, no training set is used at all.
In both approaches, the cognate pairs are reconstructed with
high accuracy, but averaging over dependence trees performs
clearly the best. This is not surprising since, as mentioned
above, averaging over dependence trees is the correct way of
treating the nuisance parameter T. Using only the best tree may
amount to overfitting.

At 60% sensitivity, more than 95% (red curves) of the
predictions correspond to true pairs. At a sensitivity of 75%,
the fraction of predictions that are true pairs is still higher than
80% (red curves). This high accuracy is very striking,
particularly considering that the algorithm is not given a
single example of a true interacting pair, but infers all the
cognate pairs in all genomes in parallel by searching for
assignments that maximize the amount of dependency
observed between the kinase and receiver sequences. We also
predicted interaction partners for all cognate kinases and
regulators of the H3 class, which is the second most abundant
class (Figure 2, bottom right panel). In contrast to the HisKA
class, for the H3 class there is a significant number of genomes
with only a small number of H3 cognate pairs for which even
random predictions would yield a reasonable fraction of
correct predictions (green curves). However, it is still clear that
our model reconstructs the cognate pairs with high accuracy,
that is, at a sensitivity of 80%, more than 95% of the
predictions (red curves) correspond to true pairs. In the
Supplementary information, we show analogous curves for
the other (smaller) classes of kinases which all show high
accuracy of predictions, illustrating that the model can attain
high accuracy on relatively small datasets. On the other hand,
since for these smaller kinase classes there are often only a few
cognate pairs per genome, the prediction problem is of course
significantly easier. In summary, the results on cognate pairs
suggest that, at least for cognate kinases and regulators, our
algorithm can infer interaction partners ab initio with high
accuracy.

Predicting orphan interactions

We are of course most interested in reconstructing those parts
of bacterial two-component signaling networks that are
currently not known, that is, to predict interaction partners
for the thousands of orphan kinases and regulators. The
prediction of orphan interactions is more difficult for two
reasons. First, although for cognate pairs the assumption that
each kinase and each regulator interacts mainly with one
partner is probably not unreasonable, for orphan kinases and
regulators this is less likely to hold. Many genomes contain
unequal numbers of kinases and regulators, suggesting that at
least some must interact with multiple partners. Second, a
given bacterium typically contains orphan kinases from

Figure 3 Complex of the histidine phosphotransferase Spo0B (yellow) with the
response regulator Spo0F (green) (Zapf et al, 2000). Only one half of the Spo0B
dimer is shown. The site of autophosphorylation in Spo0B and the
phosphorylation site in Spo0F are shown in blue. Out of the 20 HisKA/receiver
pairs of residues with highest log(Rij), 17 are shown as black lines (three cannot
be displayed because the residues fall in gaps of the alignment with Spo0B).
Amino acids marked in red are part of at least one of these 17 pairs.
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multiple classes, and we thus also have to infer which kinase
class each of the orphan regulators belongs to.

To predict orphan interactions, we extended our model in
several ways. First, we treat the multiple classes of kinases in
parallel. Second, to account for unequal numbers of orphan
kinases and orphan regulators, for a given assignment some
kinases and/or regulators may remain without an interaction
partner and these are scored separately (see Materials and
methods). Finally, we add all the cognate pairs to the
alignments of each class, with interaction partners correctly
assigned, and keep these cognate pairs fixed. In this way the
‘frozen’ cognate pairs act as a training set for the orphan
assignments. The algorithm again uses Markov chain Monte-
Carlo to sample over all ways of assigning orphan receivers to
classes, and all ways of assigning orphan interaction partners
in each class. Due to numerical difficulties in the extension of
our model to multiple classes (see Materials and methods), we
are unable to calculate the sum over all dependence trees with
enough accuracy. Therefore, we use the cognate pairs to
determine the best dependence tree and approximate P(D|a)
with maxT P(D|a, T).

To benchmark the performance of this extended model we
first used it to predict interacting partners for all cognate
kinases and receivers, running on all seven classes in parallel.
Since each cognate regulator is now allowed to switch
dynamically between all seven classes of kinases, the search
space of the extended model is much larger compared with the

case in which each class is treated separately, and we expect
this to negatively affect the performance. As shown in the
Supplementary information, our predictions nonetheless
remain quite accurate. Note also that for small classes, such
as the HWE class, there is often only one kinase per genome
and correct prediction amounts to identifying the regulator
that belongs to the HWE class, which the extended model
accomplishes with high accuracy.

Using our extended model, we then predicted orphan
interaction partners genome-wide in all 399 bacteria. Cur-
rently very few orphan interactions have been measured
experimentally. By far the most extensive knowledge is
available for the interaction partners of HisKA orphan kinases
in Caulobacter crescentus (Wu et al, 1999; Ohta and Newton,
2003; Skerker et al, 2005; Biondi et al, 2006). Table I compares
our orphan interaction predictions in Caulobacter with those in
the literature.

Strikingly, for 10 of the 11 kinases with known interaction
partners, the top computational prediction corresponds to a
known interaction. In fact, of the 22 predictions in the table,
which includes all 16 known interactions for these kinases,
only five are at odds with current experimental data. Since
there are 29 different orphan regulators in Caulobacter, that is,
there are 29 interaction candidates for every kinase, this con-
stitutes highly significant evidence that our method accurately
predicts orphan interaction partners (P-value of 7.5�10�18;
see Supplementary information). In the Supplementary

Table I Comparison of our predictions for orphan HisKA kinases and orphan receivers with experimentally determined interactions in Caulobacter crescentus

Kinase Regulator Posterior s.e. Experimental evidence

CC0248 CC0247 1.0000 0.0000 Putative cognate pair

CC0289 CC0294 0.9948 0.0015 In vitro phosphorylation (Skerker et al, 2005)

CC2755 CC2757 0.8507 0.0585 Putative cognate pair

CC2765 CC2766 1.0000 0.0000 In vitro phosphorylation (Skerker et al, 2005)

CC2932 CC2931 0.9445 0.0059 Putative cognate pair

CenK CenR 0.9168 0.0545 In vitro phosphorylation (Skerker et al, 2005)

CckN DivK 0.3063 0.0357 Yeast two-hybrid screen (Ohta and Newton, 2003)

ChpT CC3477 0.6074 0.0844 False positive, in vitro phosphorylation (Biondi et al, 2006)
ChpT CtrA 0.1965 0.0627 In vitro phosphorylation (Biondi et al, 2006)
ChpT CC2757 0.1281 0.0555 False positive, in vitro phosphorylation (Biondi et al, 2006)
ChpT CenR 0.0670 0.0450 False positive, in vitro phosphorylation (Biondi et al, 2006)
ChpT CpdR 0.0009 0.0008 In vitro phosphorylation (Biondi et al, 2006)

DivJ CtrA 0.4609 0.0451 In vitro phosphorylation (Wu et al, 1999)
DivJ PleD 0.3854 0.0323 In vitro phosphorylation (Skerker et al, 2005)
DivJ DivK 0.0409 0.0078 In vitro phosphorylation (Skerker et al, 2005)

DivL DivK 0.5374 0.0582 Yeast two-hybrid screen (Ohta and Newton, 2003)
DivL CC3477 0.1340 0.0514 Not known
DivL CtrA 0.1298 0.0233 In vitro phosphorylation (Wu et al, 1999)

PleC DivK 0.0805 0.0145 In vitro phosphorylation (Skerker et al, 2005)
PleC CtrA 0.0020 0.0005 False positive, in vitro phosphorylation (Skerker et al, 2005)
PleC CC3477 0.0013 0.0007 False positive, in vitro phosphorylation (Skerker et al, 2005)
PleC PleD 0.0009 0.0002 In vitro phosphorylation (Skerker et al, 2005)

For all orphan HisKA kinases (first column) with at least one known interaction, we show all predicted interaction partners (second column) ordered by posterior
probability (third column) up to and including all the known interaction partners. The posterior probability has been averaged over 20 simulation runs, and its standard
error is shown in the fourth column. Predictions supported by experimental data are shown in green, predictions not supported by the experimental data (false
positives) in red, and predictions supported only by yeast two-hybrid data are shown in blue. Putative cognate pair means that, although we classified the kinase and
regulator as orphans, they are less than two genes apart on the genome and are orthologous to cognate pairs in closely related genomes. These pairs are very likely to
interact and are thus also considered as known interaction partners and colored in green.
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information we also compare our orphan predictions with
the few experimentally determined orphan interactions in
Helicobacter pylori, Bacillus subtilis, and Ehrlichia chaffeensis.

Prediction of interactions between PKSs

PKSs are a family of bacterial proteins with extraordinary
biosynthetic capabilities. Depending on very specific protein–
protein interactions, they form multi-protein chains in which
the order of the PKS proteins determines the order of
monomers of the synthesized polyketide product. PKSs are
of particular interest as, through genetic engineering of new
PKS chains, they can potentially be used to achieve combina-
torial biochemistry in the laboratory (Weissman and Leadlay,
2005).

The specificity of PKS interaction is believed to be
determined by a small number of residues in the head
(N-terminal) and tail (C-terminal). Here we focus on a data
set of 149 interacting head–tail pairs published very recently
(Thattai et al, 2007). Analysis of this data set has shown
(Thattai et al, 2007) that both head and tail sequences can be
phylogenetically clustered into three groups (H1 through H3
and T1 though T3), and that interacting pairs only occur
between proteins from corresponding groups. Group member-
ship can thus be used to predict which head and tail pairs are
likely to interact.

We apply our method without any modification (i.e., as
described in the General model section) to the above-
mentioned data set. That is, we consider heads and tails as
the protein families 1 and 2 (see Figure 1) and sample over all
possible ways of assigning every head to exactly one tail within
the same genome. This implies that heads of PKSs within one
pathway are allowed to interact with tails of PKSs of a different
pathway as long as they belong to the same genome, which is a
harder and probably more biologically relevant problem than
the one considered in (Thattai et al, 2007). The results are
shown in the left panel of Figure 4. The red curve shows the
performance of our model in which the probability of the data
is averaged over all possible dependence trees, the blue curve

shows the performance of a classification model that only
takes into account the phylogenetic group information of the
sequences (see Supplementary information), and the green
curve shows the performance of random predictions. Note that
although our model does not take into account any prior
information about the phylogenetic grouping of heads and
tails, it clearly outperforms the classification model used in
(Thattai et al, 2007).

Thattai et al (2007) have shown that within the largest group
of interacting head–tail pairs (the H1–T1 group containing 90
pairs), there are a number of amino-acid residue pairs that lie
close in the NMR structure of an interacting head–tail pair and
that show significant evidence of co-evolution. However,
attempts by Thattai et al (2007) to use these pairs of positions
to predict interactions within the H1–T1 subclass yielded
results that were only slightly better than random. In contrast,
as shown in the right panel of Figure 4, our model shows
excellent prediction accuracy on the H1–T1 subclass. This
demonstrates that at least for some protein families our model
obtains accurate predictions on data sets with less than 100
sequences.

The structure of two-component signaling
networks across bacteria

Our genome-wide predictions of TCS-signaling interactions
allow us, for the first time, to investigate and compare the
structure of TCS-signaling networks across bacteria. However,
in our cognate predictions above, we assumed each cognate to
interact with only one other cognate, and the orphan
predictions also assumed that orphans interact only with each
other. As explained in the Materials and methods, to ensure
that the network predictions are as comprehensive and
unbiased as possible, we used a static scoring scheme that
treats cognates and orphans equally (allowing for interactions
between orphans and cognates) and allows an arbitrary
number of interaction partners per protein.

Before investigating the predicted interactions we first
investigated how the number of TCS genes of different types
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Figure 4 Performance of predicted head–tail interactions for PKSs. Left panel: Sensitivities and positive predictive values of the predictions for all PKSs in the data set
of Thattai et al (2007). The performance of our model in which P(D|a, T) is averaged over all dependence trees is shown in red. The blue curve shows the performance
if only the class information of heads and tails is used (see Materials and methods) and the green line shows the performance of random predictions. All pairs of curves
show estimated PPV±one standard error. Right panel: Same as the left panel, but predictions restricted to the H1–T1 subclass.
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varies across genomes. As was shown by van Nimwegen
(2003), the total number of TCS genes varies significantly
between bacteria and scales approximately as the square of the
number of genes in the genome, that is, whenever the total
number of genes doubles, the total number of TCS genes
roughly quadruples. Figure 5 shows the total number of
cognates and orphans across genomes (left panel) and the
number of orphan kinases and orphan receivers (right panel).
There is a remarkably large variation in the relative number of
orphans and cognates, that is, there are examples of genomes
with tens of cognate pairs without any orphans, and vice versa
genomes that have tens of orphans and no cognates. In
addition, there appears to be little correlation between the
number of cognates and the number of orphans. We also find
no discernible correlation between the number of orphan
kinases and the number of cognate regulators, or the number
of orphan regulators and cognate kinases (data not shown). In
contrast, as noted before (Alm et al, 2006), there is a clear
correlation between the number of orphan kinases and the
number of orphan regulators in a genome (right panel of
Figure 5). These statistics provide a first suggestion that
orphan kinases and orphan regulators might predominantly
interact with each other rather than with cognates.

To investigate this further, we analyzed how the total
number of predicted interactions depends on the number of
TCS genes of different kinds. We distinguish four types of
interactions: cognate–cognate interactions between cognate
kinases and cognate receivers, orphan–orphan interactions
between orphan kinases and orphan receivers, cognate–or-
phan interactions between cognate kinases and orphan
receivers, and orphan–cognate interactions between orphan
kinases and cognate receivers. For a genome with C cognate
pairs, K orphan kinases, and R orphan receivers, there are,
respectively T¼C2 cognate–cognate, T¼KR orphan–orphan,
T¼CR cognate–orphan, and T¼KC orphan–cognate interac-
tions possible. For each genome, we determined the fractions
fcc, foo, fco, and foc of all possible interactions in each class that
are predicted to occur. For each category, we sorted the
genomes by the total number of interactions Tof that category,
and by calculating running averages of the fractions (see
Materials and methods) we determined the dependence of the
fractions fcc, foo, fco, and foc on the total number of possible

interactions T (Figure 6). If each possible interaction had a
constant probability of being predicted, then the observed
fraction of interactions would be independent of the total
number of possible interactions T. In contrast, it is show in
Figure 6 that all fractions decrease as a function of the total
number of possible interactions T. To a reasonable approxima-
tion, all four fractions fall as a power-law of the total number of
possible interactions T, with exponents �0.4 for cognate–
cognate and orphan–orphan interactions, and �0.55 for
cognate–orphan and orphan–cognate interactions.

To investigate the consequences of this scaling for TCS
network structure as a function of genome-size, let us first
focus on cognate–cognate interactions. For a genome with
N cognate pairs, there are T¼N2 possible interactions, of which
a fraction T�0.4 exists. The total number of cognate–cognate
edges thus scales as T0.6¼N1.2. That is, as the number of
cognate pairs increases, the total number of interactions
between cognates grows just a bit faster than linear. This

1 2 5 10 20 50 100
Number of cognates

1

2

5

10

20

50

100
N

um
be

r 
of

 o
rp

ha
ns

1 2 5 10 20 50
Number of orphan kinases

1

2

5

10

20

50

N
um

be
r 

of
 o

rp
ha

n 
re

ce
iv

er
s

Figure 5 Total numbers of cognates, orphan kinases, and orphan regulators across 399 sequenced bacterial genomes. Left panel: The total number of cognates
(horizontal axis) versus the total number of orphans (vertical axis). Right panel: The number of orphan kinases (horizontal axis) versus the number of orphan regulators
(vertical axis). Each dot in each panel corresponds to a genome. All axes are shown on logarithmic scale. To be able to show genomes with zero genes in one or more of
the categories, 1 was added to each count, that is, one on the axis corresponds to a count of zero.
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Figure 6 The fractions of interactions between cognates (red), between orphan
kinases and orphan regulators (light blue), between cognate kinases and orphan
regulators (green), and between orphan kinases and cognate regulators (purple)
that are predicted to exist (vertical axis), as a function of the total number of
possible interactions (horizontal axis). Both axes are shown on logarithmic
scales. The values on the vertical axis were obtained by ordering genomes by the
total number of interactions of each type, and taking running averages over 25
consecutive genomes. The widths of the curves correspond to two standard
errors. The straight lines are power-law fits to the raw data and are given by
fcc¼0.63T�0.4, foo¼0.50T�0.38, fco¼0.41T�0.55, and foc¼0.39T�0.55.
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implies that, although the total amount of cross talk between
cognates is small, the amount of cross talk grows with the
number of cognate pairs. In particular, the average number of
interaction partners per cognate gene grows as N0.2. To give an
idea of the order of magnitude, for a genome with four cognate
pairs the power-law fit predicts a total of 3.5 interactions, that
is, essentially one interaction per gene. For a genome with 40
cognate pairs, a total of 56 cognate–cognate interactions are
predicted, which amounts to 16 cross talks on top of the 40
cognate interactions. For orphan–orphan interactions, the
numbers are very similar.

The power-law fits show that the fractions of cognate–or-
phan and orphan–cognate interactions decrease even faster
with T. Consider for simplicity genomes with N cognate pairs,
N orphan kinases, and N receivers. The total number of
cognate–orphan and orphan–cognate interactions grows as
N0.9 in such genomes. Since this is slower than linear, it in
particular implies that the average number of cognate–orphan
and orphan–cognate interactions per gene decreases as N�0.1.
Apart from decreasing more rapidly with N, it is also shown in
Figure 6 that cognate–orphan and orphan–cognate inter-
actions are much less frequent than cognate–cognate and
orphan–orphan interactions.

In summary, all our observations support the idea that
orphans and cognates form two relatively separate TCS-
signaling networks, that is, cognate–orphan and orphan–
cognate interactions are relatively rare, and whereas the number
of orphan–orphan and cognate–cognate cross-talks per gene
increases with increasing network size, the number of cognate–
orphan and orphan–cognate interactions per gene decreases
with network size. As we saw above (Figure 5), this idea is also
supported by the correlation in the number of orphan kinases
and orphan receivers, and the absence of correlations between
the numbers of cognates and numbers of orphans.

To provide additional evidence that orphans and cognates
form relatively separate TCS-signaling networks, we mapped
orthology relations of cognates and orphans across the 399
sequenced genomes (see Materials and methods; Supplemen-
tary information). We find that, whenever both genes of a
cognate pair have orthologs in another genome, the two
orthologs are also a cognate pair in this genome 99.1% of the
time. In 0.6% of the cases, the orthologs of the cognate pair
are both orphans, and in the remaining 0.3% of the cases

one ortholog is a cognate and the other an orphan. In cases
where only the kinase of the cognate pair has an ortholog,
the orthologous kinase is a cognate 79% of the time. Similarly,
if only the receiver of the cognate pair has an ortholog, then
this orthologous receiver is a cognate 78% of the time. Finally,
orthologs of orphan kinases are orphans 86% of the time, and
orthologs of orphan receivers are orphans 80% of the time.
Thus, although both cognate and orphan TCS genes undoubt-
edly share a common phylogenetic ancestry, our results
intriguingly suggest that on shorter evolutionary time scales
orphans and cognates evolve relatively separately from each
other, and support our finding that the orphans and cognates
form two relatively separate interaction networks.

To shed some light on the difference between orphans and
cognates, we determined the connectivity, that is, the number
of predicted interaction partners, for each TCS protein, and
calculated the distribution of connectivities separately for all
orphans and all cognates. Figure 7 shows the reverse
cumulative distribution of kinases (left panel) and regulators
(right panel). The figure shows striking differences between
the connectivity distributions of cognates (red) and orphans
(blue). First, for both kinases and regulators, the reverse
cumulative distribution initially falls rapidly and roughly
exponentially. In this regime, which includes roughly 90% of
all genes, the connectivity distributions of cognates and
orphans are very similar, although there are slightly more
cognates with at least one predicted interaction partner than
orphans. However, for the remaining 10% of genes the
connectivity distributions of cognates and orphans are very
different. In particular, there is a much larger number of
orphans with high connectivity. For all four curves, but
especially clearly for the orphans, there are two regimes in the
distribution: one corresponding to relatively low-connectivity
genes, which includes about 90% of all genes, and a second
regime of high-connectivity genes, which covers the remaining
10%. It thus appears that, to a rough approximation, there are
two types of TCS genes. Most kinases and regulators interact
with only a few (less than five) partners, but about 10%
interact with a large number of partners. The kinases in this
class thus distribute a signal to a large number of downstream
regulators, and the regulators in this class integrate a large
number of input signals. Most of these ‘hub’ kinases and
regulators are orphans.
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Figure 7 Reverse cumulative connectivity distributions of kinases (left panel) and receivers (right panel). The fraction of genes with at least a given number
of interaction partners (connectivity) is shown as a function of the connectivity. Cognates are shown in red and orphans in blue. The vertical axis is shown on a
logarithmic scale.

Bayesian inference of protein–protein interactions
L Burger and E van Nimwegen

& 2008 EMBO and Nature Publishing Group Molecular Systems Biology 2008 9



Discussion

We have presented a novel general Bayesian network model
for predicting interactions between families of interacting
protein domains directly from amino-acid sequences. Our
method incorporates several important methodological
advances. First, the model does not require any training sets,
but predicts interactions ab initio by sampling the space of all
possible interaction assignments. For each interaction assign-
ment the probability of the data is derived from first principles,
that is, without any tunable parameters, and sums over all
possible ways in which a tree of dependencies can be assigned
to pairs of residues both within and between the interacting
proteins (Meilá and Jaakkola, 2006). The latter is an important
feature of the model. One might think that dependencies
between residues within one protein are immaterial for the
interaction with the other protein, and that equal or even better
performance could be obtained by simply summing the
dependencies of only those pairs of residues that go between
the two interacting proteins. This is however not the case as
the following example illustrates. Imagine two residues r and r0

in the first protein that both show clear dependence on a single
residue q in the other protein, but that show even larger
dependence on each other. Obviously, in this case it would be
wrong to assume that the observed dependencies of q with
both r and r0 are evidence that both r and r0 interact directly
with q. Rather, q presumably interacts only with one of the
these residues (say r) and the apparent dependency with r0 is a
result of the strong dependency of r and r0 with each other. In
contrast, if r and r0 were to show no dependency, then the
observed dependency of q with both r and r0 would provide
evidence that both residues interact with q. That is, the
‘meaning’ of the dependency between any pair of residues
depends subtly on the dependency that these residues have
with all other residues and summing over dependence trees is
the probabilistically correct way of taking all dependencies
into account. Other important features are that we assign
interaction partners for all proteins from all genomes in
parallel, thereby maximizing the algorithm’s ability to detect
subtle sequence dependencies, and the use of Markov chain
Monte-Carlo sampling to automatically obtain a measure of
the reliability of each prediction.

Here we have applied our method to two bacterial protein
families, TCS-signaling proteins and PKSs, which provide quite
different challenges. In the case of the TCSs, we have
thousands of examples, allowing the detection of subtle
statistical signals. However, since the kinases naturally divide
into subfamilies and receivers do not, receivers need to be both
classified and matched to their interaction partners at the same
time. In the case of the PKSs, we are dealing with only on the
order of 100 homologous proteins, which makes the detection
of dependencies between amino-acid residues much more
difficult and requires careful statistical modeling. The fact that
our algorithm successfully predicts interaction partners for
both data sets demonstrates the generality of the method.

Our predictions of two-component interactions provide the
first reconstruction of genome-wide signaling networks across
all currently sequenced bacteria and our results suggest that
these predictions have high accuracy (Figure 2; Table I). All
predictions for each genome are available at the SwissRegulon

web site (http://www.swissregulon.unibas.ch/cgi-bin/TCS.pl).
Our predictions allow us to perform a first analysis of the
structure of TCS-signaling networks across bacteria. First, we
find that the average connectivity per gene increases slowly
but significantly with the number of nodes in the network.
Intriguingly, we find that cognates and orphans form two
relatively independent groups, with cognates interacting
predominantly with cognates and orphans predominantly
with orphans. The latter observation is supported by an
analysis of orthology relations, which showed that, at least on
shorter evolutionary time scales, cognates and orphans evolve
relatively independently of each other. Another significant
finding is that, whereas 90% of TCS genes have a relatively
small number of interaction partners, 10% of the orphans form
a distinct class of ‘hub’ nodes in the signaling networks, which
have large numbers of interaction partners.

The finding that cognate and orphan TCSs form two
relatively independent groups is further supported by a recent
study by Alm et al (2006). They showed that kinases that have
been horizontally transferred are more likely to be found in an
operon with a response regulator than kinases that have been
created by lineage specific expansion. This may partly explain
the preferential cognate–cognate interaction as cognate
kinases tend to be transferred with their interaction partners.
However, it does not explain why ‘new’ orphan kinases that
have been created by duplication, evolve interaction specifi-
city towards orphan regulators and rarely interfere with
cognate systems. One may argue that cognate pairs form
simple linear stimulus–response pathways that form a func-
tional unit and are expressed (and transferred between
genomes) as such. In contrast, TCS signaling in complex
behaviors involving multiple in- and outputs would typically
necessitate independent expression of the different compo-
nents, especially if the processes involve temporal regulation
of the interactions. This is in agreement with experimental
evidence in Caulobacter, where orphans with generally multi-
ple interactions control cell-cycle progression (Skerker and
Laub, 2004), and in B. subtilis, where they are involved in
sporulation (Fabret et al, 1999). In addition, our predictions
suggest that indeed orphans are more likely than cognates to
have high connectivity. However, it is clear that much more
investigation is necessary to understand the reasons behind
these global differences in interaction propensity between
orphans and cognates.

There are many other examples to which our method can
now be applied, that is, whenever there are two or more
protein families or protein domains that interact we can apply
the method to multiple alignments of these protein families/
domains. Some examples to which the method can be applied
in an essentially unaltered way are ABC ‘half transporters’
(Higgins, 1992) or certain subfamilies of cytokines and their
receptors (Kaczmarski and Mufti, 1991). Our results for the
family of PKSs suggest that accurate predictions can also be
obtained for fairly small protein families with on the order of
100 homologous sequences. However, the minimal number of
sequences needed for reliable predictions is very difficult to
estimate as it depends on many different factors. One of them
is the entropy of the amino-acid distribution at different
positions in the alignments, which has a strong influence on
the strength of the co-evolutionary signal. For example, if only
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charged amino acids appear at two particular residues and
positively charged amino acids preferably pair with negatively
charged amino acids and vice versa, then only a very small
number of sequences is needed to detect a dependency (the
size of the alphabet is effectively reduced). In general it is
probably safe to say that for any successful application, at least
a few dozen examples are needed, and that a thousand
examples should always be sufficient. In any case, as new
sequences are becoming available at an ever-increasing pace
we expect many protein families to become amenable to our
analysis in the coming years.

Finally, the concept of dependence tree models may have
very general applications. For example, hidden Markov
models of protein domains and protein families score multiple
alignments by assuming each alignment column is drawn from
a weight matrix column that represents the propensities for
different amino acids to occur at that position (Bateman et al,
2004). Our Bayesian network model provides a generalization
of such scoring models to take into account dependencies
between all pairs of positions in the alignment. Our method
can thus be very generally applied to multiple alignments of
protein sequences, for example, to infer interactions between
residues, to discover subfamilies, and generally to improve
multiple alignments of protein domains and families.

Materials and methods
We extracted the sequences of an exhaustive collection of TCS proteins
from 399 sequenced bacterial genomes in NCBI (ftp.ncbi.nlm.nih.gov/
genomes/Bacteria) using histidine kinase and response regulator
profiles from the Pfam database (Bateman et al, 2004). Whereas there
is only one Pfam profile for the receiver domains of response
regulators, there are seven different kinds of kinase domains and
kinases show a variety of domain combinations. The large majority of
kinases falls into one of the eight domain architectures shown in
Table II. Multiple alignments of all eight kinase classes and the entire
set of receiver domains were produced using the program hmmalign
(http://hmmer.janelia.org/). For the long hybrid class, we aligned
only the Hpt domain, as the interaction is believed to take place mainly
between this domain and the cognate receiver domain (Stock et al,
2000). The ATP-binding domain (HATPase_c) was not aligned, as it
does not seem to be important for the kinase–receiver interaction
(Ohta and Newton, 2003).

We defined operons as maximal sets of contiguous genes on the
same strand of the DNA, with all intergenic regions between
consecutive genes less than 50 bp in length. Whenever an operon
contained only one kinase and one regulator, this pair was considered
a cognate pair. Kinases (regulators) that did not sit in an operon with
any regulators (kinases) were considered orphan kinases (regulators).
We made separate alignments for the eight sets of receiver domains
from cognate regulators that interact with each of the eight kinase

domain architectures. As shown in the Supplementary information, in
accordance with previous results (Grebe and Stock, 1999; Koretke et al,
2000), we observe that receiver domains that interact with different
types of kinases show distinct amino-acid compositions, which can be
used to predict what kind of kinase each receiver will interact with.
Those results also indicated that Hpt and long hybrid receivers are very
similar, and for the remainder of the analysis we fused these two
classes into a single class.

Bayesian network model

We discuss first the simplest model setting: There are two families of
proteins (or protein domains) X and Y that interact and we have
multiply aligned all members of families X and Y from all sequenced
genomes. We assume each member x of family X has precisely one
interaction partner y of family Y in the same genome. An assignment a
of interacting pairs can be thought of as specifying a joint multiple
alignment D of the two families in which interacting members are
aligned horizontally (Figure 1).

We calculate the probability P(D|a) of the entire joint alignment
given the assignment a and our model assumptions. Let Di denote the
alignment column at position i in the joint alignment, that is, i runs
from 1 to L¼LXþ LY, with LX and LY representing the lengths of the
family X and Yalignments. We first calculate the probability P(Di|o) of
the data Di in column i given a weight matrix (WM) column o:

PðDijoÞ ¼
Y
a

oni
a

a ð1Þ

where oa is the probability of seeing amino acid a at this position and
ni
a is the number of times amino acid a occurs in column i. Since we do

not know the WM, we integrate over all possible WMs. Using a
Dirichlet prior PðoÞ /

Q
a o

l�1
a ; we have

PðDiÞ ¼
Z

P
a

oa¼1

PðDijoÞPðoÞdo

¼ Gð21lÞ
Gðn þ 21lÞ

Y
a

Gðni
a þ lÞ

GðlÞ ;

ð2Þ

where n is the total number of amino acids in column i and l is the
pseudocount of the Dirichlet prior. Note that we treat gap symbols in
the alignment simply as a twenty-first amino acid so that our alphabet
size is 21.

Similarly, the probability P(Dij|o) of a pair of columns given a
weight matrix for the pair of columns is

PðDijjoÞ ¼
Y
a;b

ðoabÞ
n

ij
ab ; ð3Þ

where oab is the joint probability to see a at position i and b at position
j, and nij

ab is the number of times the pair of amino acids (ab) occurs (on
the same row) in columns (ij) of the alignment. Using again a Dirichlet
prior PðoÞ /

Q
ab o

l 0�1
ab and integrating out the unknown weight

matrix o, we have

Table II Pfam domain combinations of the most abundant kinase architectures and the number of times they occur in all 399 genomes

Name Architecture No. of cognates No. of orphans

HisKA HisKA, HATPase_c 3388 2158
H3 HisKA_3, HATPase_c 636 183
His_kinase His_kinase, HATPase_c 245 23
Long hybrid HisKA, HATPase_c, RR, (RR), Hpt 132 286
Short hybrid HisKA, HATPase_c, RR, (RR) 126 985
Chemotaxis Hpt, HATPase_c 89 77
Hpt Hpt 37 192
HWE HWE or HisKA_2, HATPase_c 34 162

RR stands for the receiver domain profile Response_reg. Both the short and long hybrid architecture can contain one or two receiver domains.
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PðDijÞ ¼
Z

P
ab

oab¼1

PðDijjoÞPðoÞdo

¼ ð212l0Þ
ðn þ 212l0Þ

Y
ab

ðnij
ab þ l0Þ
ðl0Þ :

ð4Þ

The conditional probability of column i given column j is given by
P(Di|Dj)¼P(Dij)/P(Dj). As shown in the Supplementary information,
consistency requires that l¼21l0, and we use the Jeffreys’ or
information geometry prior l0¼1/2 (i.e. uniform in the determinant
of the Fisher information matrix). As a measure of dependence
between two columns i and j, we use the ratio of likelihoods of the joint
and independent models for the columns

Rij ¼
PðDijÞ

PðDiÞPðDjÞ
ð5Þ

For large counts nij
ab the logarithm of Rij is approximately proportional

to the mutual information of the amino-acid distributions in columns i
and j. For small counts, the ratio Rij takes into account finite-size
corrections. It also takes into account that the dependent model has
more free parameters than the independent models. As a result, values
of Rij41 can be interpreted as indicating positive evidence of
dependence between positions i and j.

Let T denote a spanning tree in which each node is one of the
positions i in the joint alignment. We (arbitrarily) pick one node r to be
the root of the tree and direct all edges in the tree toward the root. In
this directed ‘dependence tree’ Teach node i (except for the root) will
have a single outgoing edge pointing to its ‘parent’ p(i) (see Figure 1).
Given an assignment a and dependence tree T, we calculate the
probability P(D|a, T) of the joint alignment by letting each column i
depend on the parent column p(i). That is, we have

PðDja; TÞ ¼ PðDrÞ
Y
i6¼r

PðDijDpðiÞ; a; TÞ; ð6Þ

with r the root node and the product is over all nodes except for the
root. Using (5) we can rewrite this as

PðDja; TÞ ¼
Y

i

PðDiÞ
" # Y

i 6¼r

RipðiÞ

" #
; ð7Þ

where the first product is over all positions (including the root) and the
second product is over all edges in the tree T. Note that only the second
product depends on the assignment a and tree T, and that (7) is
independent of the choice of the root and orientation of the edges in the
tree. Note also that the position p(i) that position i depends on may lie
either within the same protein or in the other protein.

To calculate the probability of the alignment independent of a
particular dependence tree, we sum over all |T| possible spanning trees
of the L positions:

PðDjaÞ ¼ 1

jTj
X

T

PðDja; TÞ: ð8Þ

As shown by Meilá and Jaakkola (2006), this sum can be calculated
efficiently as a matrix determinant. Let M denote the Laplacian of the
matrix R

Mij ¼ dij

X
k

Rik � Rij ð9Þ

from which one row and column have been removed. We then simply
have

PðDjaÞ ¼ PiPðDiÞ
jTj detðMÞ: ð10Þ

Given a uniform prior, P(a)¼constant, over assignments, the posterior
probability becomes proportional to the determinant, that is,
P(a|D)pdet(M).

Generalization: orphan predictions

The general model just presented can easily be generalized in various
ways. Here we discuss the generalizations that we use to predict

orphan interactions. Since genomes have typically different numbers
of orphan kinases and orphan regulators, we have to relax the
assumption that each protein has precisely one interaction partner.
Although there are other possibilities, in our implementation we only
consider assignments in which each protein is connected to at most
one other protein at a time. For each genome we assign a number of
interactions that is equal to the minimum of the number of orphan
kinases and the number of orphan regulators. This typically leaves
some proteins without an interaction partner. In addition, since there
are seven kinase classes, with a separate multiple alignment for each, a
full orphan assignment consists of seven joint alignments in parallel.

The probability P(D|a) of the data given an orphan assignment is the
product of the probabilities for each of the seven joint alignments of
interacting pairs, the seven alignments of unassigned kinases, and
seven alignments of the receiver domains of unassigned regulators.
That is, we also divide unassigned receivers into seven classes. Let us
focus on a single kinase class. We let J denote the joint alignment of the
interacting pairs, with Jk the kinases in the joint alignment and Jr the
receivers in the joint alignment. In addition, let K denote the alignment
of unassigned kinases and R the alignment of unassigned receivers for
this class. We now assume that we can factorize the joint probability of
this data as follows

PðJ; K; RÞ ¼ PðKjJkÞPðRjJrÞPðJÞ: ð11Þ
In particular, we will assume that the kinases in K were drawn from the
same distribution as the kinases in J, and that the receivers in R were
drawn from the same distribution as the receivers in J. We again write
the conditional probabilities of unassigned kinases and receivers in
terms of dependence trees Tk and Tr for the kinase and receiver
positions. We then have

PðKjJk; TkÞ ¼ PðK; JkjTkÞ
PðJkjTkÞ ð12Þ

and

PðRjJr ; TrÞ ¼ PðR; Jr jTrÞ
PðJr jTrÞ : ð13Þ

Note, however, that in both these expressions the numerator and
denominator are entirely equivalent to expression (7). That is, these
conditional probabilities can be calculated, using equations (2), (4),
(5) and (7), in terms of the counts of the number of times different
combinations of amino acids occurs in pairs of positions in the kinases
K, the kinases Jk, the receivers R, and the receivers Jr.

We would in principle calculate the probabilities P(K|J k) and P(R|Jr )
by summing over all possible spanning trees T k and Tr, which involves
calculating determinants precisely as in equation (10). However, as
described in the Supplementary information, numerical stability
issues with the calculation of these determinants (see Cerquides and
de Màntaras, 2003) force us to use an approximation when we run
multiple kinases/receiver classes in parallel. Instead of calculating
determinants, we thus approximate P(K|J k)EP(K|J k, Tk) using the
dependence tree T k that maximizes the joint probability P(J k|T k) of all
cognate kinases in the class, and approximate P(R|J r )EP(R|Jr, Tr) by
using the dependence tree Tr that maximizes the probability P(J r|Tr)
of all cognate receivers in the class. Similarly, for the joint probability
P(J) we also approximate P(J)EP(J|T*), where T* is the dependence
tree that maximizes the probability of cognate kinase/receiver pairs in
the class.

Finally, it is trivial to incorporate ‘training’ examples of known
interacting proteins in our Bayesian network model. We simply add the
known interacting pairs to the alignments and keep these pairs fixed,
that is, they are not sampled over. In our case, we added all cognate
pairs for each of the seven classes to the corresponding joint
alignments J. In this way the ‘frozen’ cognate pairs in the alignment
act as ‘seeds’ that are used in sampling orphan assignments.

Gibbs sampling

To calculate the posterior probabilities P(x, y|D) that members x and y
interact, we sample the distribution P(a|D) using a Markov chain
Monte-Carlo method known as Gibbs sampling. We let rg denote the
maximum of the number of orphan kinases and the number of orphan
regulators in genome g. We first sample a genome g with probability
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PðgÞ / rg

2

� 	
: If the sampled genome has more kinases than

regulators, we pick two kinases (k1, k2) at random and sample over
the current assignment and the assignment with the interaction
partners of these kinases exchanged. Note that if one kinase is
currently unassigned, the exchange would cause the other kinase to
become unassigned. If both kinases are unassigned the move will leave
the current assignment unchanged. If the sampled genome has more
regulators than kinases we pick a pair of regulators (r1, r2) at random
and again sample over the current interaction assignment and the
assignment with the interaction partners swapped. If one or both of
the regulators are unassigned, we also sample over the kinase class
that each unassigned regulator is assigned to. That is, if both regulators
are assigned we sample over two assignments, if one is unassigned we
sample over 2�7¼14 assignments, and if both are unassigned over
7�7¼49 assignments. For the cognate predictions of Figure 2, the
move-set simplifies since each protein is guaranteed to be assigned to
precisely one interaction partner.

For each kinase/receiver pair (x, y) we then determine the fraction
f(x, y) of sampled assignments that have x and y assigned as interaction
partners. Note that, since we cannot assume that each orphan has only
one interaction partner, these fractions cannot be directly interpreted
as posterior probabilities of interaction. That is, if a certain kinase
interacts 1/4 of the time with each of four different receivers this might
simply indicate that this orphan kinase can interact with all four
receivers. The results in Figure 2 were obtained by performing
5 independent sampling runs in each case, and averaging the observed
frequencies f(x, y) from each of the runs.

Phylogenetic permutation test

To assess whether the high correlations seen between amino-acid pairs
of kinases and receivers in the HisKA class could be explained by
phylogeny alone, we constructed a null model that conserves all
evolutionary relationships, but associates kinases with non-cognate
regulators. We first map orthology relations between all cognate
kinase/regulator pairs. Two cognate pairs are considered orthologs
when they are best reciprocal hits and align over more than 80% of
their lengths with at least 80% amino-acid identity. Next we filter out
orthologous cliques, sets of orthologous cognate pairs that are all
orthologous to each other. The result is a collection of n orthologs
groups of cognate pairs. We define the overlap of a pair of orthologous
groups as the number of genomes in which the representatives of both
groups exist and produce a list of all pairs of orthologous groups sorted
by overlap. Starting from the pair with highest overlap, we then create
multiple alignments of ‘true’ and ‘false’ kinase/regulator pairs by
applying the following rule for each entry in the list: We first check that
both groups of cognate pairs have not yet been used. If not, we extract
the sequences from the genomes in which both cognate pairs occur.
These cognate pair sequences are added directly to the alignment of
‘true’ pairs. The same kinase and receiver domain sequences are added
also to the alignment of ‘false’ pairs, but now with, in each genome of
the group, the kinase of the first cognate pair assigned to the regulator
of the second pair and vice versa. In this way the alignments of ‘true’
and ‘false’ pairs will consist of the same set of proteins with the precise
same phylogenetic relationships between interacting pairs. We then
determine Rij for all pairs of positions from both ‘true’ and ‘false’
alignments.

Network structure analysis

Owing to the different overall number of TCS genes in the different
kinase classes, both the sensitivity and specificity of the predictions
will likely vary from class to class. As different genomes have different
numbers of TCSs in different classes, combining predictions from all
classes might introduce biases in our TCS network analysis. We
therefore focus on the by far most common class of HisKA kinases and
their receivers for the TCS network prediction and comparison. We first
extracted all HisKA kinases from all genomes and all regulators that
interact with HisKA kinases. For the latter, we took all regulators in
cognate pairs with HisKA kinases as well as all orphan regulators that

were classified as HisKA receivers during most of the Monte-Carlo
sampling for the orphan predictions.

Whereas the Monte-Carlo sampling is most suited for predicting the
most likely interaction partners of each kinase and regulator, it is not
well suited for an unbiased inference of the entire signaling network in
each genome, since the total number of interactions is fixed in each
genome to at most one per protein per time point during the sampling.
In addition, in the Monte-Carlo sampling only orphan interactions
were sampled and cognate interactions were kept fixed. Therefore, to
predict genome-wide TCS-signaling interactions allowing for an
arbitrary number of connections, and treating cognates and orphans
in the same way, we use the following procedure.

During the Monte-Carlo sampling runs that were used to predict
orphan interaction partners, we also kept track of the numbers nij

ab of
interacting HisKA kinase/receiver pairs that have the combination of
amino acids (ab) at positions (ij). By averaging these over the sampling
runs, we obtain the average counts hnij

abi that summarize the amino-
acid composition at all pairs of position in predicted interacting HisKA
pairs. Using the average counts hnij

abi we determined the position
dependency statistics Rij and determined three dependence trees T*,
T k, and Tr that each maximize the sum of log (Rij) along their edges.
Whereas T* takes into account all kinase and receiver positions, Tk

only takes into account kinase positions, and Tr only the receiver
positions, respectively. Finally we estimated the joint probabilities for
amino-acid combination (ab) to occur at positions (ij) as

pij
ab ¼

hnij
abi þ lP

ab
ðhnij

abi þ lÞ
: ð14Þ

The marginal probabilities pi
a for amino acid a to occur at position i are

given by summing the joint probabilities, for example, pi
a ¼

P
b pij

ab:
Using these joint and marginal probabilities, we can then calculate,

for any kinase-receiver pair with sequences Sk and Sr, respectively, the
log ratio of the probabilities of their sequences (Sk, Sr) under the
dependent model, that describes the probability distribution of all
kinase and receiver positions in terms of the optimal tree T*, and two
independent models, that describe the dependencies of the kinase and
receiver positions separately, using the optimal trees Tk and Tr,
respectively. This ratio X(Sk, Sr) is given by the expression

XðSk; SrÞ ¼ FðSk; Sr jT�Þ � FðSkjTkÞ � FðSr jTrÞ ð15Þ

with

FðSjTÞ ¼
X
ðijÞ2T

log½pij
SiSj

� � log½pi
Si
� � log½pj

Sj
� ð16Þ

where Si is the amino acid that occurs at position i in the sequence S,
and the sum is over all edges in the tree T. For each genome, we
calculate the log ratio X(S) for all kinase-receiver pairs, including both
orphans and cognates, and predict an interaction to occur between any
pair for which X(S)X1. At the chosen (conservative) cut-off of 1, about
half of all the predictions between cognate kinases and cognate
receivers correspond to cognate pairs (see Supplementary informa-
tion). To calculate the connectivity distribution, we counted the
number of predicted interaction partners for each TCS gene and
obtained reverse cumulative distributions separately for cognate
kinases, cognate receivers, orphan kinases, and orphan receivers.

To determine the orthology relationships between cognates and
orphans, we first extracted the sequences of all kinase domains
belonging to HisKA kinases, as well as the sequences of all receiver
domains of HisKA response regulators. For each kinase or receiver
domain, we then identified orthologous domains in the 398 other
genomes. A domain d̃ is considered an ortholog of domain d̃ when:

(1) d and d̃ are each other’s reciprocal best match.
(2) d and d̃ align over 80% of their lengths.
(3) d and d̃ are at least 60% identical at the amino-acid level.

Under these relatively stringent constraints, we typically find
orthologous domains in between 4 and 10 other genomes. We then
counted how often the orthologs of cognate pairs are themselves
cognates pairs, how often only one of the members of a cognate pair
has an ortholog, how often this single ortholog is itself part of a cognate
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pair, and how often it is an orphan, and so on. These ortholog statistics
are shown in the Supplementary information.

For each genome, we determined the number of cognate pairs C,
the number of orphan kinases K, and the number of orphan receivers
R and determined:

(1) The fraction fcc of all Tcc¼C2 possible interactions between cognate
kinases and cognate receivers that are predicted.

(2) The fraction fco of all Tco¼CR possible interactions between
cognate kinases and orphan receivers that are predicted.

(3) The fraction foc of all Toc¼KC possible interactions between
orphan kinases and cognate receivers that are predicted.

(4) The fraction foo of all Too¼KR possible interactions between
orphan kinases and orphan receivers that are predicted.

For each category of interactions, we ordered all genomes with respect
to the total number of possible interactions T. We then calculated
running averages of both the f values and T values over windows of 25
consecutive genomes to determine the average dependence of f on T.
s.e. of the running averages of f were also calculated by determining
the variance var(f) of f across the 25 genomes in each window, and are
given by s:e: ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðfÞ=25

p
:

Finally, for each category we fitted f to a power-law function of Tas
follows. For a genome with T possible interactions, of which n are
predicted to exist, we estimate f as f¼(nþ 1)/(Tþ 2) and logarith-
mically transform (T, f) to a data point (x, y)¼(log(T), log(f)). We then
fit a linear function y¼axþ b to the set of data points (x, y) by finding
the line that minimizes the average distance of the data points to the
line (which is also the first principal component axis).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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