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ABSTRACT: Catalyst development for biorefining applications
involves many challenges. Mathematical modeling can be seen as
an essential tool in assisting to explain catalyst performance. This
paper presents studies on several machine learning (ML) methods
that can model the performance of heterogeneous catalysts with
relevant descriptors. A systematic approach for selecting the most
appropriate ML method is taken with focus on the variable
selection. Regularization algorithms were applied to variable
selection. Several different candidate model structures were
compared in modeling with interpretation of results. The
systematic modeling approach presented aims to highlight the
necessary tools and aspects to unexperienced users of ML.
Literature datasets for the hydrogenation of 5-ethoxymethylfurfural with simple bimetal catalysts, including main metals and
promoters, were studied with the addition of catalyst descriptors found in the literature. Good results were obtained with the best
models for estimating conversion, selectivity, and yield with correlations between 0.90 and 0.98. The best identified model structures
were support vector regression, Gaussian process regression, and decision tree methods. In general, the use of variable selection
procedures was found to improve the performance of models. The modeling methods applied thus seem to exhibit a strong potential
in aiding catalyst development based mainly on the information content of descriptor datasets.

1. INTRODUCTION

Replacing fossil-based fuels and products with bio-based
counterparts produced from renewable resources is of great
interest due to climate change and depleting fossil-based
feedstocks. Fossil-based feedstocks consist of hydrocarbons,
which makes catalysis relatively easy. In contrast, biomass has
overfunctionalized composition, where alcohols, ethers, esters,
and carboxylic acids are present, thus making the conversion of
biomass challenging.1 Additionally, complex reaction mixtures
including poorly characterized components are involved, and a
large number of inorganic species in various concentrations are
present, depending on the source and type of biomass.2 Catalysis
for biorefining applications therefore involves many challenges
due to its complex nature.3−5 It is important to design catalysts
with appropriate structure and electronic properties to favor the
chemistries of interest, it is necessary to ensure that particle
morphology is appropriate to minimize mass transfer
resistances, and it is important to ensure catalyst lifetime and
integration with the reactor environment. Additionally, for
biorefineries to thrive and be able to financially compete with
fossil-based manufacturing and ensure sustainability of the
processes, it is necessary to minimize the use of precious metals
and metals from conflict areas. In contrast to traditional catalysis
development approaches, the methodologies followed in

BioSPRINT,6 an EU funded project, involve judicious design
of catalyst formulations through exploration of wider exper-
imental spaces combining multimetal chemistries to find out
nontrivial synergies and enhanced formulations that will mostly
rely on affordable and sustainable metals. The mathematical
modeling approach presented in this study could help to explain
the complex dependencies between catalyst formulation and
performance. Hence, modeling can be an essential tool in
catalyst development.7,8

Modeling in catalysis can be fundamental, empirical (data-
driven), or a combination thereof.8 The empirical approach aims
to find correlations between the catalyst descriptors, in other
words computational features describing the physicochemical
properties of the catalysts, and figures of merit (FOM), for
example, product selectivity, yield, turnover number and
frequency, cost per kg, or a combination of these.9 It is based
on data without assumptions on reaction mechanisms and
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reactor configurations. Empirical models are based on statistical
analysis and are often combined with stochastic optimization
methods.8,10

According to Madaan et al.8 and Ras et al.,11 catalyst
performance could be predicted using data-driven modeling
with simple descriptors. These models can be less interpretable
but more practical than methods that require high computa-
tional power and use complex algorithms with quantum and
classical mechanics.8 However, Madaan et al.8 point out that
both fundamental and empirical approaches are needed for
finding new catalysts and optimizing the existing ones. The lack
of universal databases for catalytic FOMs and descriptors
hinders the use of data-driven methods in catalysis.4 Empirical
approaches are fast, but these adapt poorly to new factors and
interpretability can be weak.8 In combination of fundamental
and empirical approaches, descriptors based on chemical
principles can also be combined with statistical modeling.8

This approach is preferable for predicting catalyst perform-
ance.8,10 Examples of different modeling approaches are listed in
Madaan et al.’s8 study.
Machine learning (ML) enhances ways to discover catalysts,

generates knowledge about catalysis, and establishes a deeper
understanding of the relationship between material properties
and their catalytic FOMs.3−5 With combined computational
modeling and/or experiments, catalysts can be rapidly screened,
descriptors of catalyst performance can be found, and catalyst
synthesis can be enhanced.7 ML can also be used in formulating
new descriptors used in combination with quantum mechanical
methods and to formulate interatomic potentials.3,7

The use of ML in computational catalysis research and
integration with experimental research programs has been
increasing.3 Goldsmith et al.7 listed several examples, where
integration of ML and high-throughput (HTP) screening for
heterogeneous catalysts was used to predict catalyst FOM for
large catalyst spaces. However, it has been concluded that the
predictions of catalytic FOM are still in their early stages.7

Synthesis conditions and compositions have been used as model
input variables for predictive models, which can be seen, for
example, in Baumes et al.12,13 These ML approaches can guide
the synthesis toward better catalysts, although data from
experiments are often incomplete and can result in poorly
generalized models for large chemical spaces.7 Hence, usually
multiple iterations and experimentations are required for the
successful application of ML in catalyst development.9

The early work in applying ML with focus on homogeneous
catalysis has been reviewed by Maldonado and Rothenberg.9

The same main principles can be applied for heterogeneous
catalysis too. From the ML point of view, the model structures
encountered in the published studies have involved, for example,
genetic algorithms (GAs) and artificial neural networks
(ANNs),14,15 Gaussian process regression (GPR), radial basis
function network (RBFN), support vector regression (SVR),16

orthogonal partial least squares (OPLS),11 and random forest
(ensemble of decision trees).17,18 In comparison, modeling
methods used in this study are linear regression, decision tree
regression, SVR, ensemble tree regression, and GPR. Also,
partial least squares regression (PLSR) and regularization
regression are used to identify reference models.
Despite the fact that several studies can be found where ML is

used in catalysis, only in a few studies, a systematic approach
(involving data preprocessing, variable selection, modeling, and
validation steps) for selecting the ML method is taken. In
addition, the variable selection step has not gained significant
focus in most of the earlier works, although it is an important
step in identifying low-dimensional ML models applicable on
small datasets.
Earlier research has proved that it is possible to describe

catalyst performance well with mathematical models developed
via variable selection. In the study of Procelewska et al.,19

different variable selection methods were tested to find the
relevant descriptors for predicting solid catalyst performance in
the propene oxidation reaction. Also, Goldsmith et al.7 listed
some references, where variable selection was studied; in
particular, the use of the sure independence screening and
sparsifying operator (SISSO)20 algorithm was mentioned. In
both of these studies, data-based variable selection was found to
be a promising method to find important variables from a high-
dimensional feature space, while reducing the dimensionality of
the identified models. In a similar manner, in this study,
regularization algorithms are used as variable selection methods.
Researchers have used regularized algorithms to study catalysis,
such as Lasso.21,22

In this paper, a systematic approach for testing and comparing
different ML approaches with variable selection is taken. The
aim in this study is to identify a model structure that is as
incomplex as possible but still able to model the outputs
accurately. A variable selection procedure is applied to find a
subset of relevant input variables and thus make the model
structure simpler and to avoid overfitting problems often

Figure 1. Systematic modeling approach for this study.
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encountered with small datasets. Different ML modeling
approaches are tested to increase knowledge of the suitability
of these methods to the task. The systematic approach
implemented with readily available and easily approachable
methods also aims to give an insightful example of the utilization
of ML to chemical engineers with limited experience in ML.
The reaction studied in this work is the hydrogenation of 5-

ethoxymethylfurfural (5-EMF), which is an important reaction
related to the conversion of biomass into biofuels.1,23,24 The
desired product is 5-ethoxymethylfurfuryl alcohol, which is a
potential additive for diesel fuel.1 5-EMF can be easily obtained
via acid-catalyzed dehydration of C6 sugars with ethanol as a
solvent.1 According to the best knowledge of the authors, the
studies of Ras et al.1,11,25 are the only openly available studies
that focus specifically on this reaction with the aim of modeling
the catalyst performance. Studies that focus on the synthesis of
5-EMF can be found, for example, in refs 23, 24. This article
focuses onML andmodeling rather than on the chemistry of the
reaction. References to studies where chemistry is more
thoroughly studied can be found, for example, in refs 1, 23, 24.
This article is structured as follows: Section 2 presents the

considered systematic approach, datasets and methods for
modeling, and variable selection. This is followed by the results
and discussion in Section 3, where modeling with and without
variable selection is studied, the models are compared to the
models found in similar studies, model residuals are analyzed,
and the variable importance is analyzed by studying the
correlations and variable occurrences for each response. Finally,
Section 4 concludes the findings of this study.

2. MATERIALS AND METHODS

The systematic model identification approach of this study is
illustrated in Figure 1. First, a catalyst library, in this case from

the literature, was obtained with catalyst compositions. Second,
a dataset for catalyst descriptors was obtained from the
literature. These descriptors included electronic structure,
physical, and atomic properties. Also, reaction conditions,
namely, measured temperatures during experiments were
included. The obtained data were then preprocessed, where
data were standardized, variables with missing values were
removed, and categorical variables were converted into dummy
variables. With the preprocessed data, variable selection was
then performed by regularization algorithms. The obtained
variable subset was then used with the model structures found
with the Regression Learner App (RLA) in MATLAB. With the
obtained FOM predictions, the model performance was finally
evaluated. The identified models could then be implemented to
the catalyst development framework to aid the experimental
designs and catalyst synthesis.

2.1. Datasets. The experimental data as published by Ras et
al.1 was utilized. The dataset consists of conversion and
selectivity as responses, namely, FOMs. Also, their product,
namely, yield, was selected in this study as response. Literature
data were available from multiple experiments, with 48 different
catalyst combinations in three different temperatures (80, 100,
and 120 °C) and with two solvents (diethyl carbonate and 1,4-
dioxane). Eight different main metals (Au, Cu, Ir, Ni, Pd, Pt, Rh,
Ru) and six promoters (Bi, Cr, Fe, Na, Sn, W) had been used as
catalysts. Al2O3 support had been applied in all observations.
According to the original paper by Ras et al.,1 the mainmetal had
a loading of 1 wt% and the promoter loading was 10 mol% in
relation to the main metal. Feedstock composition remained
constant in the studied dataset. In contrast to the approach by
Ras et al.,11 where yield is predicted, also conversion and
selectivity with two solvents were predicted separately in this
study, to evaluate the most important descriptors for them. This
led to six different models having each an individual response

Figure 2. Histograms for each response describing the structures of experimental datasets. The y-axis shows the occurrences of each bin. The x-axis
presents the conversion, selectivity, and yield values.
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variable: conversion with diethyl carbonate solvent (C1),
selectivity with diethyl carbonate solvent (S1), conversion
with 1,4-dioxane solvent (C2), selectivity with 1,4-dioxane
solvent (S2), yield with diethyl carbonate solvent (Y1), and yield
with 1,4-dioxane solvent (Y2).
Slater orbitals (STO)26 were calculated according to the

methodology presented by Ras et al.11 Calculations resulted in
four variables to describe the wave function of the valence
electrons in each metal: rAPEX, R(r)APEX, FWHH, and
SKEW. Ras et al.11 described these variables in the following
way: rAPEX is defined as the “distance of maximum probability
of encountering a valence electron”, R(r)APEX is the “maximum
value of the probability distribution”, FWHH is the “width of the
probability distribution at the half-height”, and SKEW is the
“measure for the asymmetry of the distribution”. Interaction and
quadratic terms for the STOs were calculated and added to the
descriptor data as well. In addition, descriptors based on the
periodic table were added to the dataset.27−30 The database
consisted thus 61 input variables and six response variables at
this stage. The analyzed data are available in the Supporting
Information.
2.2. Preprocessing. Based on the exploratory analysis of the

experimental dataset (see Figure 2), it is notable that with 1,4-
dioxane as a solvent, the dataset is poor for modeling of
conversion (C2) and yield (Y2) since most of the observations
are near zero and selectivity values (S2) are most often either
near 0 or near 100. Also, yield with diethyl carbonate solvent
(Y1) has most of the observed values near zero. This leads to
response variables that remain constant even though there is
variability in input variables. Correlation coefficients were
further calculated between input variables and between input
and output variables. Themain results can be seen in Section 3.5.
Ir/W observations were unavailable for the first solvent, and

because of that, these were removed in the preprocessing stage.
Variables with missing values were also removed leading to 57
variables in total. Categorical variables were converted into
dummy variables so that these were able to be utilized as input
variables with the applied methods. A dummy variable is created
for each category of each categorical variable. For example, there
are eight different main metals. Accordingly, the same number of
dummy variables were determined for categorical variable “main
metal”. Each dummy variable defines each category with binary
values 0 or 1: value 1 means true, and value 0 is false (for
example, if the dummy variable for Au is 1, the main metal used
is Au). Separate variables were obtained for main metals and
promoters. The final dataset consisted of 147 variables after
preprocessing (see Tables S15−S19 for a full list of used
descriptors). Also, continuous variables were standardized so
that each variable was set to mean value of 0 and standard
deviation 1.
2.3. Regularization and Variable Selection. Variable

subset selection can be divided into filters wrappers and
embedded methods.31 In filtering, variables are ranked based on
some criterion, which usually is the correlation coefficient. A
subset of variables is selected independently of the chosen
predictor as a preprocessing step. Wrapper methods select
subset of variables based on their usefulness to a given predictor.
There, a selected model structure is utilized with different
subsets of variables to score them according to resulted
modeling accuracy. Embedded methods resemble wrapper
methods, but in addition to optimizing goodness-of-fit-term,
they also penalize a large number of variables. Variable selection

is performed during the training phase and is usually specific to
the applied model structure.31

Regularization algorithms resemble embedded variable
selection methods. Regularization aims to reduce the overfitting
of the models. In this study, lasso and ridge regression and their
combination, elastic net,32−35 were applied in the variable
selection. With these methods, a regularization term is used in
the model parameter identification step to decrease the
parameter values and to avoid overfitting issues. Generally,
variables with higher predictive power tend to gain larger
coefficient values. Variables with coefficient values equaling to
zero or below a threshold value were removed in the variable
selection step. The methods for this study were limited to these
due to the general use of lasso, ridge, and elastic net
regularization in the field of ML and their ease of applicability.
Variable subsets were also chosen manually based on experts’
knowledge and statistical analysis. With these selected methods,
regularization is then adjusted with a parameter λ. The higher
the λ value is, the more regularization is applied. A suitable value
for λ needs to be determined so that the model is as simple as
possible without significant loss of information in data.
For ridge regression and elastic net, thresholds for coefficient

values were identified to limit the number of variables selected
into the subset. Variables with higher coefficient values, namely,
more relevant than the threshold value were kept in the subset.
Thresholds were adjusted heuristically so that the gained
variable subsets were kept at a reasonable size, therefore
efficiently reducing the model’s complexity. For the lasso
regularization, the variable selection is considered easier because
the algorithm automatically typically sets most of the coefficient
values to zero.34

2.4. Modeling Methods. In this study, decision trees,
ensemble trees, support vector regression (SVR), and Gaussian
process regression (GPR) were used in the modeling. These
methods are introduced, for example, in the works of Witten,
Mitchell, and Williams.36−38 In addition, partial least squares
regression, linear regression, and regularized linear regression
models were identified as reference methods. The implementa-
tion of these methods in this study is described more in detail in
Section 2.7.

2.5. Data Division. The focus of this study was to study the
interpolation capabilities of the models rather than extrap-
olation. The observations (equal to 141) were first split into
training set (2/3 of the data) and test set (1/3 of the data) by
performing a static data split. Stratified sampling was applied to
ensure equal number of observations from each category (main
metal, promoter, and temperature) in the test set. Detailed
information on the data split can be found in the Supporting
Information (see Tables S20−S23). Cross-validation (CV) was
applied to model validation in the training phase. The CV
subsets were used for selecting the relevant input variables and
estimating the performance of the models with unseen data.
Fivefold CV was used in both variable selection and modeling.
The fivefold data split procedure was repeated with random
resampling 94 (equal to the number of observations in the
training set) times to avoid possible chance correlations.

2.6. Model Performance Metrics. The root mean square
error (RMSE) values were calculated for the training data
(denoted by RMSET, root mean square error of training), the
CV data (denoted by RMSECV, rootmean square error of cross-
validation), and the test set (denoted by RMSEP, root mean
square error of prediction) to validate models’ performance in
this study. The prediction uncertainties (PUT = prediction

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.1c03995
Ind. Eng. Chem. Res. 2022, 61, 4752−4762

4755

https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.1c03995/suppl_file/ie1c03995_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.1c03995/suppl_file/ie1c03995_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.1c03995/suppl_file/ie1c03995_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.1c03995/suppl_file/ie1c03995_si_001.pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.1c03995?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


uncertainty of training, PUCV = prediction uncertainty of cross-
validation, and PUP = prediction uncertainty of prediction)
were evaluated by calculating the mean value of error ± two
times its standard deviation, and then indicating the interval,
where approximately 95% of the errors are expected to be within
this range. The Pearson correlation coefficient (RT= correlation
of training, RCV = correlation of cross-validation, and RP =
correlation of prediction, respectively) between measured and
predicted values was also calculated to evaluate model
performance.
A combination of Shapiro−Wilk and Shapiro−Francia tests39

was applied to test if the residuals follow normal distribution. An
α value of 0.01 was set to the significance level. The results can
be found in Section 3.4. The correlation between residuals and
input variables was also calculated for the best models (see
Section 3.4). Ideally, the correlation should be equal to zero.
Thus, the variation in residuals is random.
2.7. Implementation of Computations in Software

Environment. Preprocessing, variable selection, modeling,
model validation, and statistical analysis were performed in this
study with MATLAB. The fitrlinear function was used to
perform variable selection with ridge and lasso regularization. A
vector for different λ values was created, and the λ value that
minimizes the mean square error (MSE) was chosen. The
fitrlinear function with CV trains a model for each fold.
Therefore, the variables chosen were determined for each model
(in this case, 5). After this, variables that occurred at least in half
of the folds (in this case, 3 or more) were chosen into the final
subset. This procedure was executed 20 times, and the variables
that occurred in half of the iterations were chosen in the final
subset. This was done to minimize the amount of randomness
due to CV, while keeping the computation times relatively short.
Variable selection with fitrlinear function and ridge
regression was performed with Stochastic Gradient Descent
solver. With lasso, in contrast, Sparse Reconstruction by
Separable Approximation was used. The least squares learner
was used for both methods. MATLAB algorithms are described
more in detail in the MATLAB documentation.
The lasso function was also used in MATLAB to perform

lasso variable selection and elastic net variable selection. Elastic
net variable selection was performed with an α value of 0.5. For
both methods, variable selection was performed with two
different λ values: a λ value that gives the minimummean square
error value (minMSE) and a λ value that is the largest λ value,
one standard error away from the minMSE λ value (1SE). Thus,
the 1SE λ value will give a smaller variable subset with a slightly
larger MSE value.
The Statistics and Machine Learning Toolbox in MATLAB

was used, which includes the Regression Learner App (RLA). All
model structures found in the RLA were used in the study with
some exceptions; stepwise linear regression was excluded
because variable selection was carried out with embedded
methods. In addition, coarse Gaussian SVR gave poor results,
and the calculation times were long. Hence, the results with this
method were also omitted. Variable subsets had to be restricted
in some cases; the interactions linear model was only used with
variable subsets smaller than 30 due to the increasing number of
interaction terms. With linear, quadratic, and cubic SVRmodels,
the kernel scale value was set to 1 instead of an automatically
chosen value. This was done because with automatically chosen
kernel scale values, the calculation times were longer, and in
some cases, the RMSE values were extremely high. The applied
methods included linear regression, decision trees, SVR,

ensemble trees, and GPR. In addition, PLSR (which is
commonly seen in ML-oriented catalyst model development)
and linear regression models with regularization were identified
as reference model structures. Finally, the modeling was
performed with candidate subsets selected by the variable
selection methods (Section 2.3) and to some extent with
heuristically chosen variables (Table S8, variable subset VII).
The readily available MATLAB functions for the RLA models
include different ways to tackle overfitting (regularization),
which differs for each modeling approach. However, this paper
focuses on the regularization used in the variable selection.More
detailed information about the possibilities with the various
model structures can be found from the MATLAB documenta-
tion and introductory ML studies.36,37

3. RESULTS AND DISCUSSION

This section is structured as follows: Section 3.1 presents the
modeling results with reference models without variable
selection. In Section 3.2, the modeling results with variable
selection are presented. The results are compared to the
reference models. Also, scatter plots of the best models can be
found, where clear outliers are identified. This is followed by
Section 3.3, where typical model performance of similar studies
found in the literature is compared to the results of this study.
Also, the models’ complexity is discussed. In Section 3.4, the
model residuals are analyzed to point out possible problems in
the error criteria. Eventually, the modeling is based on
minimizing one of these. The residual distributions are tested
to see if they follow normal distribution. In addition, the
randomness of the residuals is analyzed by comparing
correlations of residuals to the considered input variables. In
Section 3.5, the descriptors’ importance is analyzed by
calculating the correlation coefficients between input and
output variables and calculating the variable occurrences for
each response with all of the variable selection methods.

3.1.Modeling Resultswithout Variable Selection. First,
reference models were identified without variable selection. In
Tables S1−S6 (see the Supporting Information), the results of
reference models in terms of model performance metrics
(Section 2.6) are given for each response. Results obtained with
the following models are included: PLSR, lasso and elastic net
regression with lasso function, lasso and ridge regression with
fitrlinear function.
In general, for the models in Tables S1−S6, the lasso function

with lasso or elastic net regularization tends to work best, when
considering RMSEP values. Consistently large modeling errors
are obtained for the response S2. This can be explained due to its
challenging data structure as already mentioned in Section 2.1:
The data distribution is uneven and most of the observations are
extreme values (for example, either 100 or 0). For the reference
models, the RP value ranges are 0.77−0.78 for C1, 0.65−0.76 for
S1, 0.85−0.87 for C2, 0.48−0.54 for S2, 0.57−0.73 for Y1, and
0.65−0.69 for Y2.
In Table S7, the best results for each response without variable

selection can be seen (first rows for each response). Compared
to the results in Tables S1−S6, it can be noticed that significantly
better results are obtained with quadratic SVR, fine tree, and
boosted ensemble tree methods identified with the RLA
(RMSEP values improved 4.2% for C1, 9.5% for S1, 8.9% for
C2, 6.6% with S2, 3.0% with Y1, and 4.7% with Y2, compared
with the best reference model). This highlights the applicability
of RLA methods over the basic/regular modeling approaches
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(PLSR, fitlinear, lasso). However, the models are highly
complex without variable selection procedures.
3.2. Modeling with Variable Selection. After identi-

fication of the reference models, modeling was performed with
variable selection. The best results for each response can be seen
in Table S7. The used variable subsets are depicted in Table S8,
and the definitions for all of the used variables can be found in
Tables S15−S19. According to Table S7, the best results in
general were obtained with GPR, cubic SVR, and fine tree
models (best RMSEP value 9.5% for C1, 4.9% for S1, 4.1% for
Y1, 9.1% for C2, 34.1% for S2, and 8.8% for Y2). Four different
kernel functions (squared exponential, matern 5/2, exponential,
and rational quadratic) were used for GPR, which all gave almost
equal results for RMSEP. Only the best one was involved in
Table S7 for each response. In most cases, the fitrlinear
function with ridge regularization worked best in variable
selection. As mentioned in Section 2.3, the size of the variable
subset was adjusted by changing the threshold value for model
parameters. Therefore, smaller subsets were achieved in
comparison to lasso algorithms. The elastic net variable selection
tended to choose dummy variables more often than the other
methods. The performance of the identified models may
improve further with the use of hyperparameter optimization.
In comparison to the reference results in Tables S1−S6, the

use of variable selectionmethods and the models fromRLA here
seem to have a beneficial impact on the results. For the best

models (excluding the best results without variable selection),
the RP value ranges are 0.90−0.90 for C1, 0.97−0.97 for S1,
0.96−0.98 for Y1, 0.95−0.96 for C2, 0.65−0.66 for S2, and
0.84−0.94 for Y2. In general, significant improvement is
obtained using variable selection methods in combination with
the RLA models, which can be noticed by comparing the range
of values of RMSEP, RP, and PUP between the referencemodels
and the best models seen in Table S7. The best RMSEP values
are obtained for the response C1 with the reference models.
Poor results (RMSEP > 30%) were obtained for response S2
with all of the methods. Even though responses C2, Y1, and Y2
had also a challenging data structure, good (RMSEP = 9.1%,
4.1%, and 8.8%, respectively) results were still obtained (see
Table S7). When comparing the results with and without
variable selection, it can be seen that with quadratic SVR, fine
tree and boosted ensemble tree models almost equally good
(RMSEP changed in comparison to the best results in the
following way:−0.1% for C1, +0.4% for S1, +1.0% for Y1,−0.0%
for C2, +0.4% for S2, and +4.3% for Y2) results are obtained
without variable selection except for response Y2. Hence, similar
(or even slightly better) model performance can be obtained
with a simpler model structure using the studied regularization
methods in variable selection. The results obtained show that
variable selection is an important step when building models for
catalyst performance.

Figure 3. Best root mean square error of prediction (RMSEP) (a) and correlation (RP) (b) results for each response: conversion (C1), selectivity
(S1), and yield (Y1) with diethyl carbonate solvent. Conversion (C2), selectivity (S2), and yield (Y2) with 1,4-dioxane solvent. RLA = regression
learner app.

Figure 4. Predictions vs observations with the best models for predicting conversions with diethyl carbonate solvent (C1) (model no. 32) and with 1,4-
dioxane solvent (C2) (model no. 41) with test set. RMSEP = 9.6%, RP = 0.90 for C1 and RMSEP = 9.1%, RP = 0.96 for C2.
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The best modeling results are summarized in Figure 3,
including the best results for each response with reference
models, RLAmodels without and with variable selection, and for
the models with heuristically selected variables (temperature
and Brinell hardness for main metal as inputs, see Section 3.5).
As previously mentioned, the best results for S2 are insufficient
(RMSEP > 34%). It can be noticed that in general, the best result
with reference models (PLSR and regularization algorithms) are
considerably worse than with the other methods. Overall, the
RLA models without variable selection tend to have slightly
worse results in comparison to the results with variable selection.
In the case of response Y2, the results without variable selection
are significantly worse. In general, the results with the
heuristically selected variable models are only slightly worse
than the models with the variable subsets chosen by the variable
selection algorithms. As conclusion, the use of RLA models
tends to improve the results in comparison to the reference
models. The variable selection with regularization tends to
improve the results by reducing the dimensionality of the
models.
Scatter plots for each of the best test set predictions for each

response can be seen in Figures 4−6. The figures support the
conclusions made from the calculated error metrics. Outliers are
marked in the plots except for response S2, whose results were
poor (RMSEP > 30%). The outliers were detected visually.
Later, in residual analysis (see Section 3.4), outliers are detected

mathematically. From the predictions of C1, C2, and Y2 (see
Figures 4 and 6), it can be noticed that Pd/Bi at temperature 100
°C is identified as an outlier. This can be expected since Pd
follows a different reaction pathway according to Ras et al.1

More detailed information about the models can be found in the
Supporting Information.

3.3. Qualitative Comparison to Other Research. Direct
comparison of model performance metrics in data-driven
modeling is challenging, as different datasets or data divisions
are often used, and the modeling performance is inherently tied
to the underlying data. Themodels identified in this study can be
compared to themodels proposed by Ras et al.11 However, there
are some differences between the used experimental datasets
and the descriptor datasets. Modeling results for predicting yield
(product of conversion and selectivity) with the used
experimental dataset can be found in the study of Ras et al.11

with one solvent (diethyl carbonate). In that same study, with
bimetallic catalyst dataset, an R2 value equal to 0.79 (with the
test set) was obtained by modeling the yield of unsaturated
alcohol and diether together. The yield of the unsaturated
alcohol followed by the hydrogenation of the carbonyl group
was also predicted separately (R2 = 0.90 with the test set). In that
study, only data corresponding to 80 °C temperature experi-
ments were used. In addition to the bimetallic catalyst dataset
results, modeling results for combined yield predictions (four
reactions) with monometallic catalyst dataset can be found in

Figure 5. Predictions vs observations with the best models for predicting selectivities with diethyl carbonate solvent (S1) (model no. 36) and with 1,4-
dioxane solvent (S2) (model no. 45) with test set. RMSEP = 4.9%, RP = 0.97 for S1 and RMSEP = 34.1%, RP = 0.65 for S2.

Figure 6. Predictions vs observations with the best models for predicting yields with diethyl carbonate solvent (Y1) (model no. 38) and with 1,4-
dioxane solvent (Y2) (model no. 47) with test set. RMSEP = 4.1%, RP = 0.98 for Y1 and RMSEP = 8.8%, RP = 0.95 for Y2.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.1c03995
Ind. Eng. Chem. Res. 2022, 61, 4752−4762

4758

https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.1c03995/suppl_file/ie1c03995_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c03995?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c03995?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c03995?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c03995?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c03995?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c03995?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c03995?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.1c03995?fig=fig6&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.1c03995?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the paper of Ras et al.11 with an R2 value equal to 0.76 (with test
set). With the same catalyst dataset, the yield of the diether was
predicted with training set (R2 = 0.80 without removing outliers
and R2 = 0.91 after removing two outliers). It seems that similar
results were obtained when comparing the best RP values in this
study for responses C1, S1, C2, Y1, and Y2 (see Table S7) and
the results for Ras et al.’s11 models.
The number of variables differs from the studied subsets.

When evaluating the complexity of the models, it should be
noted that the presence of continuous variables makes themodel
more complex than the presence of binary valued dummy
variables. Thus, the number of variables in the studied subset
cannot be solely considered. The number of input variables in
the models seen in Table S7 (excluding the models, where all of
the variables in the studied dataset were used) varies between 2
and 13. The models with only two input variables (subset XVII)
performed well in comparison to more complex model
structures. However, some of the studied models may be highly
complex. The complexity could be further reduced by increasing
the value of λ in the regularization part and/or by lowering the
coefficient threshold value with ridge and elastic net
regularization, with potential small accuracy loss in the model
performance. In comparison, Ras et al.10 have used stepwise
elimination of redundant variables to reduce the number of
variables for a case with a monometallic dataset. Other studies in
heterogeneous catalysis have also demonstrated that low-
dimensional models can be achieved via the use of principal
component analysis (PCA) and partial least squares (PLS).8,40

3.4. Residual Analysis. A combination of Shapiro−Wilk
and Shapiro−Francia tests was used39 to test if the residuals of
the best models for test set follow normal distribution. The
Shapiro−Francia test was used with residual vectors where
kurtosis was leptokurtic (kurtosis > 3). In other cases, the
Shapiro−Wilk test was performed. An α value of 0.01 was used.
The test was executed without removing the outliers and after
removing outliers. Observations that differed more than 3 times
the scaled mean absolute deviation (MAD) from the median
were removed (see MATLAB documentation for function
rmoutliers). It was noticed that after removing the outliers,
more normal distributed residuals were identified according to
the test. When performing the test after removing outliers,
normal distributed residuals were found almost for all of the
good models, when considering the calculated error metrics.
Although some exceptions exist, for example, the Quadratic SVR
model for response S1 had good metric values with variable
selection method ridge (fitrlinear) but failed to produce
normally distributed residuals according to the test. An example
of the normal probability plot of Fine Tree model’s residuals for
the test set for response S1 with ridge (fitrlinear) variable
selection method can be seen in Figure 7. The residuals are
normally distributed according to the Shapiro−Wilk test even
though the data points outside the interquartile range (middle
area between 75th and 25th percentiles) do not strictly follow
the theoretical red line of normal distribution. A histogram for
the same residuals can be seen in Figure 8.
The correlation between residuals and input variables was also

calculated for the best models (models in Table S7).
Correlations of models for response S2 were not analyzed. In
general, low correlations (absolute correlation value < 0.25)
were obtained for most of the variables with the studied
methods. The highest correlations in general were obtained with
the test set in comparison to the correlations with training set
and CV set. The largest absolute correlation value (R = 0.30)

with test set was obtained between the boiling point of the main
metal and yield with diethyl carbonate solvent (Y1). Absolute
correlation values between 0.25 and 0.35 were obtained for a few
variables, when considering the correlations with training, CV,
and test sets. Overall, the correlations were relatively low. In
Section 3.5, the importance of descriptor will be discussed.

3.5. Descriptor Importance Analysis. Correlations
between input variables and responses were calculated. Only
the correlations for variables in the best models are considered
here. Abbreviations M and P are used for main metal and
promoter, respectively. Temperature seems to have the highest
correlation in contrast to response S1 (R =−0.62), and also has a
moderately high correlation value for Y1 (R = −0.51). Several
STO variables with the addition of Brinell hardness and
resistivity (Resistivity_M) for main metal have moderate
correlation (|R| ≥ 0.40) for conversion responses (C1 and
C2). Low correlation values (|R| ≤ 0.25) were obtained for both
Brinell hardness for main metal and temperature in comparison
to responses S1, Y1, and Y2 even though good results (RMSEP =
4.9, 4.2, and 9.3%, respectively) were obtained by only using
these variables in the predictions.
Table S8 in the Supporting Information presents the variable

subsets of some of the best models. It can be observed, for
instance, that variables temperature and Brinell hardness for
main metal are often seen among the selected variables. Next,
the occurrences of variables (descriptors) are discussed in more
detail. The abundance of each variable with different methods
was evaluated with four different regularization methods:

Figure 7.Normal probability plot of Fine Treemodel’s residuals for test
set after removing outliers for response S1 with ridge (fitrlinear)
variable selection.

Figure 8. Histogram of residuals for test set after removing outliers for
Fine Tree model for response S1 with ridge (fitrlinear) variable
selection.
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• elastic net (EN) with lasso function with α value 0.5
and minMSE λ value,

• lasso with lasso function with minMSE λ value (L1),
• lasso with fitrlinear function (L2) and
• ridge with fitrlinear function (RR).

In contrast to the previous data division with separate test
data, here, the whole dataset was used in combination with CV
to evaluate the variable importance. Variable selection
algorithms were executed in multiple iterations to minimize
the effect of the randomness of the CV in the data division. Each
algorithm was executed 20 times, resulting in a total number of
80 iterations. For the elastic net variable selection, the following
threshold values (see Section 2.3) for coefficients were used: 2.3
for conversion C1, 0.9 for selectivity S1, 2.7 for conversion C2,
2.0 for selectivity S2, 0.5 for yield Y1, and 1.0 for yield Y2. For
ridge regression, the following threshold values were used: 1.8
for conversion C1, 1.1 for selectivity S1, 4.5 for conversion C2,
3.0 for selectivity S2, 1.1 for yield Y1, and 2.2 for yield Y2.
In Tables S9−S14 (cf. Supporting Information), occurrences

for the most often selected variables for each response are
represented with four different regularization methods and their
sum. As seen in Table S9, temperature and Brinell hardness (M)
occur in every chosen subset with response C1. Temperature
logically affects the reaction rates, and therefore, the conversion
observed. On the other hand, the correlation with materials
hardness is not directly obvious. However, hardness has been
correlated through first principles with the microstructure and
chemical bonding in the materials such as in refs 41−43. Both
microstructure and bonding determine the ability of catalytic
active sites to interact effectively with reactant molecules
depending on the possibility to establish effective bonds
between the metal sites and the reactants based on geometry
and strength of intermolecular forces leading to effective
activation of those in the course of the reaction. Therefore, it
is interesting to note that hardness can effectively summarize the
effect of fundamental properties of themetallic elements, both in
terms of mechanical behavior and catalytic behavior. Also, a
strong STO interaction term (for RAPEX and FWHH (M)) is
present, once again indicating the importance of the metal
electronic structure in its catalytic behavior. Only one promoter
variable (second lattice angle (P)) is present, which mainly
describes the presence of Bi because the value is constant with
every other promoter. Thus, it suggests that the presence of
promoter Bi effects the outcome significantly.
In contrast to the impact on C1, it can be noticed from Table

S10 that four promoter variables (dummy variable for Fe (P),
dummy variable for group 8 in the periodic table (P), volume
magnetic susceptibility (P), and electrical conductivity (P)) are
present for response S1. This somehow indicates that promoters
are more likely to affect selectivity than conversion.
Slater interaction and quadratic terms are in the absence of

response S1. Temperature, boiling point (M), and bulk modulus
(M) occur in every studied subset. Electron affinity (M) and
density (M) seem to be also important variables in modeling.
This finding suggests that for this reaction, selectivity is affected
by molecular-level electronic interactions with the catalyst more
than by its structure and chemical bonding.
Similar trends were observed from Table S11. It can be

noticed that only one promoter variable is present (speed of
sound (P)) for response C2. One Slater interaction term (for
RAPEX and FWHH (M)) and a quadratic term (for rAPEX
(M)) can be seen in the table. Brinell hardness (M) and electron

affinity (M) seem to be also strong variables in addition to
temperature.
From Table S12, it can be seen that two promoter variables

are chosen (dummy variable for Cr (P) and first ionization
energy (P) for response S2). Slater interaction or quadratic
terms are not seen. Volume magnetic susceptibility (M), Brinell
hardness (M), and electronegativity (M) are the most often
occurring variables after temperature.
As seen in Table S13, temperature and boiling point (M)

occur in every subset with yield Y1. Also, density (M) Brinell
hardness (M), bulk modulus (M), and electron affinity (M)
seem to be strong variables for predicting Y1. In addition, the
presence of main metals Pt, Ir, and Pd has a great impact on the
yield results with diethyl carbonate solvent according to the
chosen subsets. Promoter variables or STO variables cannot be
found from the table of the most influential descriptors.
From Table S14, it can be seen that in addition to

temperature, Brinell hardness occurs in almost every subset.
Also, the interaction term between RAPEX and FWHH (M),
electron affinity (M), first ionization energy (M), and neutron
cross section (M) seem to be strong descriptors for predicting
yield with 1,4-dioxane solvent (Y2). The presence of main
metals Ir and Pd seem to be most influential according to the
chosen variable subsets (as this can be also noticed from high
experimental yield values). Once again, promoter variables
cannot be found from the table.
From the results for the occurrence of variables, the following

conclusions can be made: (1) promoter variables seem to be
more relevant in the prediction of selectivity than conversion.
(2) STO variables and their interactions and quadratic terms
seem to be more relevant for predicting conversion than
selectivity. (3) Temperature was present in every variable subset
with all responses. Also, several descriptors were found
important, including Brinell hardness (M), electron affinity
(M), and Slater interaction term for RAPEX and FWHH (M).
(4) In general, mainmetal variables are muchmore relevant than
promoter variables, which is also the case with the studied
datasets. Analysis of variance (ANOVA) shows that the variation
is clearly due to main metal variables (mean squares > 1300 for
all temperatures for dataset C1) while promoter variables seem
to have less effect on the variation (mean squares < 80). The p-
values from the ANOVA also show that the group means based
on promoter metals do not have a statistically significant
difference (p-values > 0.3). (5) It is also notable that the
fitrlinear function rarely chooses dummy variables in the
variable subset. Therefore, the chosen variable subsets with
fitrlinear function and lasso function differ significantly.
For comparison, the modeling was also performed with the

two most important variables identified based on variable
selection results (Section 3.2), namely, the temperature and
Brinell hardness (M). The results can be seen in Table S7 in the
last rows for each response variable (cf. variable subset VII). The
RMSEP values are only slightly worse or even better for
responses C1, S1, and Y1 than with the variable subsets chosen
by variable selection algorithms. As discussed earlier, the Brinell
hardness was proven to be a strong descriptor. With the studied
dataset, these two variables explain most of the variance in the
response data. It was surprising that with the responses, which
had low correlation (S1, Y1, and Y2) against Brinell hardness
and temperature, good modeling results were still obtained.
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4. CONCLUSIONS
The application of ML in catalyst development has shown great
promise. In this work, a systematic approach for testing different
variable selection algorithms and model structures was
considered for modeling catalyst performance (conversion,
selectivity, and yield). For the studied case of hydrogenation of
5-ethoxymethylfurfural with simple bimetal catalysts, it was
shown that relatively high modeling accuracy can be achieved
(correlation varying between 0.90 and 0.98) through the
utilization of regularization algorithms, RLA models, and
descriptor dataset of STO parameters with the addition of
variables found in the literature.
The importance of systematic variable selection is supported

by the results as it seems to have a beneficial impact on the
models’ performance. It was also shown that fairly good results
can be obtained with only two input variables in this case. Brinell
hardness for main metal was found to have high predictive
power. Promoter variables were considered unimportant with
variable selection algorithms that can be an issue when deriving
optimal catalyst formulations, where both the main metal and
promoter need to be selected.
In general, the best results were obtained with GPR, SVR, and

fine decision tree methods. From the studied variable selection
algorithms, different model structures perform best with
different responses. Even though the modeling results were
good, the variable selection methods were almost purely data-
driven, and the physical interpretation of all of the variables
remains unclear. Also, some of the values in the descriptor
dataset were obtained from compiled lists from multiple
experimental and simulated studies. Therefore, these are likely
to contain a certain amount of inaccuracy (for example,
uncertainties in atomic radius or in the measurement of other
physical properties). The lasso algorithm was introduced with
datasets consisting of highly correlated variables, which can lead
to the algorithm picking one variable and ignoring the remaining
ones, resulting in loss of potentially significant variables (see
Section 2.3). Despite that fact, with test set, good results were
obtained for five responses with correlation ranging between
0.89 and 0.97.
In the future work, model-based optimization is to be studied

with the goal of finding catalysts that give the maximum FOM
values. Also, the model extrapolation capabilities could be
further studied. Moreover, also other relevant descriptors can be
identified and added to the dataset (for example, d-band center
values).
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