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Background: Non-small cell lung cancer (NSCLC) is one of the most prevalent causes
of cancer-related death worldwide. Recently, there are many important medical
advancements on NSCLC, such as therapies based on tyrosine kinase inhibitors and
immune checkpoint inhibitors. Most of these therapies require tumor molecular testing
for selecting patients who would benefit most from them. As invasive biopsy is highly
risky, NSCLC molecular testing based on liquid biopsy has received more and more
attention recently.

Objective: We aimed to introduce liquid biopsy and its potential clinical applications in
NSCLC patients, including cancer diagnosis, treatment plan prioritization, minimal residual
disease detection, and dynamic monitoring on the response to cancer treatment.

Method:We reviewed recent studies on circulating tumor DNA (ctDNA) testing, which is a
minimally invasive approach to identify the presence of tumor-related mutations. In
addition, we evaluated potential clinical applications of ctDNA as blood biomarkers for
advanced NSCLC patients.

Results: Most studies have indicated that ctDNA testing is critical in diagnosing NSCLC,
predicting clinical outcomes, monitoring response to targeted therapies and
immunotherapies, and detecting cancer recurrence. Moreover, the changes of ctDNA
levels are associated with tumor mutation burden and cancer progression.

Conclusion: The ctDNA testing is promising in guiding the therapies on NSCLC patients.

Keywords: non-small cell lung cancer, circulating tumor DNA, molecular testing, liquid biopsy, immunotherapies,
therapeutic response
INTRODUCTION

Liquid biopsy refers most often to the analysis of tumor-derived materials, including circulating
tumor cell (CTC), circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), exosome, and
tumor-educated platelet (TEP) from blood plasma (Figure 1). CTCs are released from tumor tissue;
ctDNA is secreted from apoptotic or necrotic tumor cells; and exosomes are membrane-bound
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vesicles released from tumor cells. Until now, ctDNA is the only
circulating biomarker approved for selecting patients with
targeted therapy, whereas other liquid biopsy sources, such as
CTCs, RNA, exosomes, and TEP, are still at clinical research
phase. Therefore, this review will focus on the interpretation of
ctDNA testing and its potential clinical applications.

As reported by Mandel and Metais for the first time in 1948,
circulating cell-free DNA (cfDNA) refers to double-stranded
DNA fragments in liquid biopsy with lengths close to or lower
than 200 base pair (bp) (1). CfDNA is present at low levels in the
plasma of healthy persons, but at high levels in those of cancer
patients (2, 3). CfDNA of tumor origin is referred to as ctDNA.
Recent studies have confirmed that the fraction of ctDNA in total
cfDNA greatly varied in cancer patients. Patients with early stage
tumors present lower fractions of ctDNA than those in the
advanced stage (4–6). Although the concentration of ctDNA
has been suggested to predict the outcomes of patients with non-
small cell lung cancer (NSCLC), the criterion for appropriate
cutoffs is unavailable in clinical utility (7). However, even in the
same cancer type, substantial variability has been observed
indifferent patients (4, 8, 9). Mutational analysis of ctDNA has
already been proven to be promising in early cancer detection
and cancer recurrence evaluation (10–15).

In the last decade, important advancements have been
achieved in NSCLC (16, 17). For example, small molecule
tyrosine kinase inhibitors (TKIs) were proven to be effective
for patients with advanced lung adenocarcinoma who harbor
somatic mutation of epidermal growth factor receptor (EGFR),
as well as the rearrangement of echinoderm microtubule-
associated protein-like 4 (EML4) with anaplastic lymphoma
(ALK) (18–22). More recently, immune checkpoint inhibitors
(ICI) therapies have shown significant benefit in the treatment of
Frontiers in Oncology | www.frontiersin.org 2
patients with NSCLC (16, 23). Besides programmed cell death 1
(PD-1) and programmed cell death ligand 1 (PD-L1), tumor
mutation burden (TMB) is a promising biomarker in predicting
the outcomes of NSCLC patients with immunotherapy (24–27).
Therefore, the accurate information of a cancer patient’s genetic
status is critical in guiding personalized medication. Although
tissue biopsy remains the gold standard for molecular testing of
cancers, it presents some disadvantages in clinical situations.
First, tumor biopsy is highly risky because of its invasive nature
and is dangerous for extremely serious patients. Second, tumor
biopsy is inappropriate in a few occasions like cancer early
detection and recurrence surveillance, where multiple testing at
different time points is necessary. Finally, tumor biopsy can only
examine one tissue at a time and usually cannot reflect the
mutational landscape of the whole body (28–31).

CtDNA testing provides a powerful and effective alternative
method to tissue biopsy for cancer diagnosis, treatment, and
prognosis. In the past 5 years, a high concordance has been
confirmed between plasma and tissue samples, further
encouraging the exploration of ctDNA in clinical applications
(30, 32–34). Some studies have suggested that ctDNA levels can
be used to monitor the response of patients to local and systemic
therapies (35–37). Additionally, ctDNA testing can effectively
predict responses to targeted therapies in multiple tumor types
(4, 38–41). Despite the important achievements in ctDNA, there
is no systematic review comprehensively introducing recent
development in clinical applications of ctNDA as a biomarker
in NSCLC, to our best knowledge.

In this review, we aim to describe the potential clinical
application of ctDNA testing, from aiding cancer diagnosis to
guiding patients’ treatment and detection of minimal residual
disease, and to monitoring the response to cancer treatment in a
FIGURE 1 | Overview of liquid biopsy. Blood is sampled from patients, which contains ctDNA, CTC, RNA, exosome, and tumor-educated platelets. CtDNA is
extracted from blood plasma and gene variation can be analyzed by next generation sequencing involving a few steps, including DNA extraction, DNA library
preparation, sequencing, sequence alignment, mutation annotation, and so on.
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dynamic way (Figure 2). Finally, a few promising approaches are
highlighted, which may become available in a wide range of
clinical applications in the future.
APPROACHES OF CtDNA TESTING

Since cfDNA is derived from various cells and rapidly cleared in
the circulation system, it usually presents in body fluid in a short
time and with a limited level. Hence, it is critical to optimize
experimental techniques for cfDNA (ctDNA) isolation and
analysis. For cfDNA isolation, the anticoagulant EDTA can
stabilize cfDNA and prevent the contamination with germline
Frontiers in Oncology | www.frontiersin.org 3
DNA released from normal blood cells. However, blood samples
have to be processed by methods like leukocyte fixation within 6
h after collection. Leukocyte fixation allows for easy shipping and
centralized processing, which can stabilize cfDNA and normal
blood cells for two days (42). A recent study reported that
specialized cfDNA collection tube with the stabilization reagent
provides even higher flexibility for sample processing, i.e., up to
14 days without affecting cfDNA detection (43).

The fraction of ctDNA in total cfDNA can vary greatly form
less than 0.1% to more than 90% (4). Several high-sensitivity
approaches are available to analyze ctDNA even at low levels
(Table 1), including peptide nucleic acids (PNA)-based methods
(44), quantitative polymerase chain reaction (qPCR) and droplet
TABLE 1 | A summary of methods for detection of genetic alterations in cfDNA and their performances.

Test Technology Limit of detection Type of variants

Candidate variants analysis qPCR 0.05-0.1% SNVs, indels
PNA-based methods 0.1%
BEAMing 0.001-0.1%
ddPCR 0.001-0.1%

Next-generation sequencing TAm-Seq 0.2-2% SNVs, indels
TEC-Seq <0.01%
CAPP-Seq 0.01% SNVs, indels, CNVs and fusions
Whole Exome sequencing 5-10%
Whole Genome sequencing 1-10%
August 202
FIGURE 2 | Potential clinical applications of ctDNA testing in NSCLC patients. CtDNA testing in early tumors detection are under development, which may identify
patients with cancers at early stage when they are more likely to be curable. CtDNA testing in minimal residual disease detection after surgery can provide the
evidence of tumor relapse, which may offer an opportunity for early intervention for patients according to risk of recurrence. For companion diagnosis, ctDNA testing
is available to identify many somatic alterations, which can provide a guide for treatment decisions for patients with targeted therapies. Analysis of cfDNA has been
used to monitor the response to targeted or immunotherapy, which can provide a molecular basis to guide the subsequent therapy choice.
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digital PCR (ddPCR), beads emulsion amplification and
magnetics (BEAMing) (45). However, those methods are not
adequate to analyze multiple genes through a high-throughput
screening. Several targeted next-generation sequencings (NGS)
have been developed for ctDNA testing, including tagged
amplicon-based sequencing (TAm-Seq) (46), cancer
personalized profiling by deep sequencing (CAPP-Seq) (36),
the targeted error correction sequencing (TEC-Seq) (47).
TAm-Seq includes two steps of amplification. The first step of
amplification is performed to capture the starting molecules
present in the template by all primers, then, the second step of
amplification is followed with a limited couple of primers in the
access array. This approach is only detected in single-nucleotide
variants (SNV), insertion, or deletions (indels) (46). CAPP-Seq is
a capture-based NGS ctDNA detection method, the defined
mutated regions are hybridized by the biotinylated probes.
Several types of somatic mutations could be detected by
CAPP-Seq, including SNV, indels, copy number alterations
(CNAs), and rearrangements (36). TEC-Seq is based on
targeted capture of multiple regions of the genome and deep
sequencing of DNA fragments, which allow sensitive and specific
detection of low abundance sequence alterations (47). Whole-
exome sequencing or whole-genome sequencing with deep depth
can provide a more comprehensive profiling of ctDNA (12, 48).
However, because of the high costs and large volume of blood per
patient, the application of these approaches to patients with
advanced lung cancer is limited.
CtDNA TESTING FOR COMPANION
DIAGNOSIS

Tumor molecular testing has become a fundamental practice to
guide the selection of therapy in cancer medicine. Tissue biopsy
remains the gold standard for patients with lung cancer
diagnosis. However, invasive biopsy can be high risk, and
patients would prefer liquid biopsy. This makes ctDNA testing
an attractive tool, which could replace tissue biopsy in some
specific situations. Although previous studies revealed a low
concordance between the somatic variations detected from
plasma and those detected from tissue samples (49, 50). For
example, Torga and Pienta observed big differences in somatic
mutations called from two different commercial ctDNA testing
assays and those from tissue samples in 40 patients with
metastatic prostate cancer (51). However, these studies may
have bias. For example, tumor samples were collected at
baseline time, whereas plasma samples were collected during
the therapy. In addition, the enrolled patients had received
therapy, which might lead to the alteration of mutation
profiles. As a result, the discordance might be caused at least
in partial by inappropriate experimental designs.

In the past years, a few larger and more carefully enrolled
studies have indicated a relative high concordance between
plasma and tissue samples obtained simultaneously,
encouraging the clinical usage of ctDNA testing (30, 32–34).
Recently, Roche’s Cobas plasma EGFR mutation test v2 was
Frontiers in Oncology | www.frontiersin.org 4
approved as the first ctDNA-testing tool by the Food and Drug
Administration (FDA), which paved the way of liquid biopsy in
clinical applications. Cobas plasma EGFR mutation test v2 can
identify multiple mutations in exons 18, 19, 20, and 21 of EGFR
in NSCLC patients, including exon 19 deletion, and L858R,
G719X, S768I, L861Q, and T790M substitution. Among
those, exon 19 deletion and L858R mutation are related to the
increase of sensitivity to tyrosine kinase inhibitors (52).
However, T790M mutation is often resistant to tyrosine kinase
inhibitors, such as erlotinib, gefitinib, and afatinib, whereas it
responds to osimertinib (29, 53). Hence, the test can guide the
usage of tyrosine kinase inhibitors in treating NSCLC
patients (54).

In addition to checking EGFR mutational status, ctDNA
testing can also be used to detect mutations in other genes,
such as BRAF mutations and ALK rearrangements. It has been
indicated that NSCLC patients harboring BRAF mutations have
clinical benefits from targeted therapies (55). ctDNA testing has
been indicated to be effective in identifying both ALK point
mutations and fusions in lung cancer patients, who will most
likely to respond to crizotinib and other ALK tyrosine kinase
inhibitors (11, 56). To display comprehensive mutation profiles
in patients with NSCLC, large gene panels were developed to
identify oncogenes and tumor suppressor genes via ctDNA
testing (10, 36). A recent prospective study demonstrated
genetic variations in eight genes, including BRAF, EGFR, and
ERBB2 mutations, ALK, RET, and ROS1 rearrangements, MET
amplifications and exon 14 skipping, were recommended
as biomarkers via the Guardant360 test based on eight
70-gene NGS panels in metastatic NSCLC (10). These genetic
variations were detected with a high concordance rate between
ctDNA testing and tissue genotyping, which even reached more
than 98% when only the FDA-approved markers (i.e., ALK,
BRAF, EGFR, and ROS1) were considered (10). Hence, these
approaches can provide a guide for treatment decisions of
patients with NSCLC with lots of targeted therapies available
or in progress.
CtDNA TESTING FOR DETECTING
MINIMAL RESIDUE DISEASE

Currently, there is a clinical challenge to determine which
patients have a minimal residue disease after surgical resection,
which may result in recurrence. However, adjuvant chemo-
radiation therapy is not routinely used for cancer patients
because of its toxic nature. Nowadays, serial computed
tomography (CT) and positron emission tomography
combined CT (PET/CT) imaging are used for surveilling
advanced NSCLC patients after surgery or chemo-radiation
therapy. However, identification of disease recurrence is always
delayed by CT imaging because of the uncertain recurrent
location and small size of tumor. Hence, liquid biopsy might
provide an aid to predict the risk of disease recurrence.

The sensitivity of ctDNA testing relies upon the level of tumor
DNA released into blood and collecting samples at optimal time.
August 2021 | Volume 11 | Article 725938
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Several liquid biopsy approaches have been developed to identify
low level of ctDNA even less than 0.01% of total cfDNA (37, 57).
Indeed, the recent studies have demonstrated that ctDNA testing
has an ability to detect minimal residue disease and tumor
relapse after surgery therapy in several cancer types, including
lung cancer (35, 58, 59). Interestingly, several key studies have
shown that ctDNA testing can detect resistance mutations or
disease progression prior to CT imaging (35, 60, 61).

The recent prospective study of the West Japan Oncology
Group 8114LTR (WJOG8114LTR) evaluated the clinical
significance of monitoring ctDNA in 57 patients with
advanced lung adenocarcinoma harboring EGFR mutations
during afatinib treatment. They indicated that a remarkable
long progress-free survival (PFS) was observed in patients with
undetectable EGFR mutations, whereas a short PFS was observed
in patients with positive EGFR mutations (62). Similarly, another
study has provided an evidence of ctDNA testing monitoring
disease progression of patients with advanced NSCLC during
treatment with erlotinib, and EGFR T790M mutation was
detected by ctDNA testing earlier than clinically evident
disease (60). Hence, ctDNA testing can monitor recurrence
and save time for patients to receive available intervention and
may prevent tumor cells spread and proliferation.
CtDNA TESTING FOR THERAPEUTIC
RESPONSE

For monitoring therapeutic response, a repeat or serial molecular
testing is required after one or more lines of therapy. Patients
would prefer minimally invasive ctDNA testing if it can provide
an effective power to predict the treatment, other than repeat
invasive tumor biopsies because of their high risks. CtDNA was
released into blood can be triggered by tumor cell death. Hence,
dynamic changes of ctDNA concentrations may predict the
response to the treatment. Indeed, previous studies have
indicated that ctDNA levels are associated with disease
situation in patients with NSCLC patients during therapy. The
decreasing ctDNA levels are related with response to therapy,
whereas the increasing ctDNA levels are related with progressive
disease (7, 35–37, 60). A complete response could be expected
from undetectable levels of ctDNA after serial testing. Therefore,
ctDNA testing may provide an aid to guide chemotherapy
decision or dose-based radiation therapy.

Circulating tumor DNA testing has also been confirmed to be
able to detect targetable mutations that are involved in driving
acquired resistance to therapy (12, 38, 39). One of the earliest
studies has illustrated the development of resistance to cancer
therapy using a serial ctDNA testing. In particular, the authors
demonstrated that the emergence of EGFR T790M gatekeeper
mutation was detected by ctDNA testing in patients with NSCLC
after gefitinib treatment. This finding supported the hypothesis
of selective pressure resulted from therapy. Several studies have
made efforts to identify the presence of EGFR T790M by ctDNA
testing in NSCLC patients might benefit from osimertinib, a
third-generation EGFR inhibitor (29, 53). Interestingly, acquired
Frontiers in Oncology | www.frontiersin.org 5
EGFR C797S mutation was identified by ctDNA testing from 15
patients with NSCLC harboring EGFR T790M mutation
undergoing osimertinib treatment, illustrating a novel acquired
resistance mechanism to this EGFR inhibitor (63). Remarkably,
EGFR T790M and other EGFR mutations can be identified by
Roche’s Cobas plasma EGFR mutation test v2 which has been
approved by FDA as an aid to guide decisions of specific EGFR
inhibitors (54). It paves the way to utilize the approach of liquid
biopsy to monitor targeted therapy, whereas it is a limitation to
track other genetic alterations besides of EGFR mutation.
Therefore, a comprehensive ctDNA analysis is required for the
identification of genetic alterations to guide in the response to
targeted therapies.

Indeed, several studies revealed the EGFR-independent
mechanism of primary or acquired resistance to treatments of
EGFR inhibitors, a bypass signaling pathway activated by the
occurrence of gene variations mutation, such as mutations in
BRAF, KRAS, PIK3CA, and amplification of MET (64–70). In
particularly, the last update of the phase III AURA3 trial (no.
NCT02151981) showed that emergence of MET amplification is
detected by ctDNA testing in advanced NSCLC patients with
EGFR T790M mutation during osimertinib treatment, which
indicated that MET amplification is one of resistance
mechanisms to this treatment. To overcome resistance, several
case reports observed the therapeutic efficacy of MET inhibitor
combined with EGFR inhibitor in patients with lung cancer
appearing MET amplification detected by ctDNA testing after
resistance to EGFR inhibitor (71–73). Moreover, a key clinical
trial investigated the combination of capmatinib with gefitinib
applied in patients with NSCLC, acquiring MET amplification
after failure of EGFR inhibitor therapy (74).

In addition to EGFR mutations, ctDNA testing was also used
for monitoring response or resistance to ALK inhibitors therapy
in patients with lung cancer via identification of appearance of
ALK variations, including ALK point mutations and
rearrangements (11, 56). For example, the recent study
identified novel ALK point mutations by ctDNA testing at the
progression line after advanced ALK-positive NSCLC patients
resistant to crizotinib treatment, revealed the resistance
mechanisms on disease progression (56).
CtDNA TESTING FOR IMMUNOTHERAPY

Besides small molecule tyrosine kinase inhibitors therapy,
immune checkpoint inhibitor (ICI) therapies have shown
significant benefit in the treatment of different tumor types
including NSCLC (16). However, only a subtype of NSCLC
patients could benefit from ICI immunotherapies. In addition
to PD-1 and PD-L1 biomarkers, tumor mutational burden
(TMB) is a promising biomarker to predict clinical outcomes
of NSCLC patients to ICI immunotherapies (24–26), and was
approved by the FDA in 2020. Tissue biopsy remains the gold
standard for molecular testing, whereas it is a clinical challenge
to obtain adequate tumor tissue from advanced NSCLC patients
by invasion biopsy. Thus, it needs to explore minimally invasive
August 2021 | Volume 11 | Article 725938
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approach to aid in distinguishing patients who can benefit from
ICI immunotherapies.

Nowadays, the concordance of blood TMB (bTMB) with
tissue TMB (tTMB) has been confirmed by the whole-exon
sequencing (WES) (75, 76). However, it is a challenge to apply
WES approach in clinical routine, mainly because of the high
gDNA inputs and high costs. Therefore, the feasibility of blood
TMB analyzed by targeted NGS panels needs to be assessed. In a
preliminary study, the authors used targeted NGS panels to
assess the concordance of blood TMB (bTMB) with tissue
TMB (tTMB) in the enrolled 97 patients, whereas the obtained
correlation was unsatisfying due to the low concordance between
bTMB and tTMB (77). A possible reason is the lack of standard
method for TMB assessment in this study. For example, the
Foundation-One panel was used for tissue TMB analysis, while
the Guardant360 was used for blood TMB analysis. The different
sequencing panels resulted in different coverage of genomic
regions. Moreover, the mutation types used for TMB
calculation were different in the studies. Furthermore, the
cutoff of TMB values were varied to classify these patients.
Therefore, the standard sequencing panels used for comparing
bTMB and tTMB should be considered carefully in
future studies.

Remarkably, the very recent studies evaluated the
concordance of bTMB with tTMB in advanced NSCLC
patients and revealed that bTMB estimated by ctDNA testing
is feasible to predict the clinical outcomes of ICI immunotherapy
(78, 79). For example, Wang et al. optimized gene panel size and
established 150 genes panel to estimate the bTMB value with
response to ICI immunotherapies. The authors showed a high
bTMB value of ≥ 6, which is related to long progression-free
survival, suggesting that bTMBmay be a promising biomarker to
predict clinical benefit for advanced NSCLC patients to anti-
PD-1 and anti-PD-L1 therapies (78). These studies provided the
strong evidences to support bTMB determined by the targeted
NGS panels. However, it still improves the sensitivity of ctDNA
testing and develops a robust targeted NGS panels, and more
clinical trials are required to confirm the abilities of bTMBas, a
biomarker in liquid biopsy in the prediction of the clinical benefit
of NSCLC patients from ICI immunotherapies.

Typically, a very recent study showed a set of neoantigens
genes detected by personalized ctDNA testing, which can
monitor the clinical response to ICI immunotherapies for
advanced NSCLC patients (80). It is known that mutated
neoantigens are the key targets of tumor-specific T-cells
undergoing ICI immunotherapies. Therefore, the study focused
on neoantigens-coding mutations detected by ctDNA testing
during ICI immunotherapies. The authors showed the
Frontiers in Oncology | www.frontiersin.org 6
neoantigen-related mutations detected in nine of ten patients
after ICI immunotherapies, but undetectable only in one patient,
and suggested that activation of tumor-specific T cells might
contribute to the response to ICI immunotherapies (80).
However, it needs to validate the feasibility of personalized
ctDNA testing with a large cohort in future studies to
maximize the clinical outcomes of NSCLC patients in
ICI immunotherapies.
CONCLUSIONS

In conclusion, ctDNA testing is going to become a powerful
approach applied in the clinical management of NSCLC patients
at diagnosis, dynamic monitoring drug treatment or disease
progression. However, it is still a great challenge because of the
very low level of ctDNA released in the blood. In this regard,
several ultra-sensitive and specific approaches were developed to
detect somatic alterations by NGS-based ctDNA testing (36, 47,
81). In addition, several studies have shown tumor-derived DNA
detected in other body fluids (82–84). Indeed, tumor-derived
DNA from pleural effusion in patients with lung cancer was
detected with high levels, suggesting that pleural effusion testing
is an alternative and feasible method for mutations identification
(82). However, more clinical trials are required for verifying
these findings and for providing the standard operation
procedure. Moreover, ctDNA testing has attracted great
attention in early tumor detection of several common cancer
types (57, 85–87), although it is still a long way to apply ctDNA
testing in the clinical routine.
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