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Cardiovascular conditions remain the leading cause of mortality andmorbidity worldwide,

with genotype being a significant influence on disease risk. Cardiac imaging-genetics

aims to identify and characterize the genetic variants that influence functional,

physiological, and anatomical phenotypes derived from cardiovascular imaging.

High-throughput DNA sequencing and genotyping have greatly accelerated genetic

discovery, making variant interpretation one of the key challenges in contemporary

clinical genetics. Heterogeneous, low-fidelity phenotyping and difficulties integrating

and then analyzing large-scale genetic, imaging and clinical datasets using traditional

statistical approaches have impeded process. Artificial intelligence (AI) methods, such

as deep learning, are particularly suited to tackle the challenges of scalability and

high dimensionality of data and show promise in the field of cardiac imaging-genetics.

Here we review the current state of AI as applied to imaging-genetics research and

discuss outstanding methodological challenges, as the field moves from pilot studies

to mainstream applications, from one dimensional global descriptors to high-resolution

models of whole-organ shape and function, from univariate to multivariate analysis

and from candidate gene to genome-wide approaches. Finally, we consider the future

directions and prospects of AI imaging-genetics for ultimately helping understand the

genetic and environmental underpinnings of cardiovascular health and disease.

Keywords: artificial intelligence, machine learning, deep learning, genetics, genomics, imaging-genetics,

cardiovascular imaging, cardiology

INTRODUCTION

Cardiovascular conditions remain the leading cause of mortality andmorbidity worldwide (1), with
genetic factors playing a significant role in conferring risk for disease (2). High-throughput DNA
sequencing and genotyping technologies, such as whole-genome sequencing and high-resolution
array genotyping, have developed at an extraordinary pace since the first draft of the human
genome was published in 2001 at a cost of $0.5-1 billion (3). Continuous improvements have so
far outpaced Moore’s law, with the sequencing cost per genome currently estimated to be $1,000
(4), enabling cost-effective sequencing of millions of humans. At the same time, technological
advances in physics, engineering, and computing have enabled a step-change improvement in
cardiovascular imaging, facilitating the shift from one dimensional, low-fidelity descriptors of the
cardiovascular system to high-resolution multi-parametric phenotyping. These capabilities are not
limited to research settings but are increasingly available in clinical echocardiography, nuclear
imaging, computerized tomography (CT), and cardiovascular magnetic resonance (CMR) practice.
An unprecedented volume of clinical data is also becoming available, from smartphone-linked
wearable sensors (5) to the numerous variables included in the electronic health records of entire

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2019.00195
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2019.00195&domain=pdf&date_stamp=2020-01-21
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:declan.oregan@imperial.ac.uk
https://doi.org/10.3389/fcvm.2019.00195
https://www.frontiersin.org/articles/10.3389/fcvm.2019.00195/full
http://loop.frontiersin.org/people/819319/overview
http://loop.frontiersin.org/people/841307/overview
http://loop.frontiersin.org/people/819274/overview


de Marvao et al. AI in Cardiac Imaging-Genetics

populations (6). However, the volume, heterogeneity, complexity,
and speed of accumulation of these datasets now make human-
driven analysis impractical. Artificial intelligence (AI) methods
such as machine learning (ML), are particularly suited to tackling
the challenges of “Big Data” and have shown great promise
in addressing complex classification, clustering, and predictive
modeling tasks in cardiovascular research. Cardiac imaging-
genetics refers to the integrated research methods that aim
to identify and characterize the genetic variants that influence
functional, physiological, and anatomical phenotypes derived
from cardiovascular imaging.

In the same way that basic statistical literacy has become a
routine aspect of clinical practice, a basic understanding of AI’s
strengths, applications, and limitations is becoming essential for
practicing researchers and clinicians. Here we introduce common
AI principles, review applications in imaging-genetics research,
and discuss future directions and prospects in this field.

IMAGING-GENETICS: FROM SINGLE GENE
HYPOTHESIS-TESTING TO
GENOME-WIDE HYPOTHESES
GENERATION

Imaging-genetics aims to dissect and characterize the
complex interplay between imaging-derived phenotypes
and environmental and genetic factors. Many principles and
approaches originated from neuroimaging research, where
the first attempts at integrating multi-parametric phenotypes,
obtained from structural and functional brain MRI, with genetic
data were carried out (7). To help manage the computational
and statistical challenges inherent to the use of “Big Data”
squared (high-dimensional imaging × high-dimensional genetic
data), interrogations were limited to pre-defined regions of
interest in the brain and candidate genes or SNPs, based on
a priori assumptions about the biology of disease (8). Similar,
“hypothesis-led” designs underpinned candidate gene and
linkage studies that established causal relationships between
rare genetic variants and rare conditions, such as those
that first identified the role of myosin heavy-chain beta in
hypertrophic cardiomyopathy (HCM) (9) and of titin in dilated
cardiomyopathy (DCM) (10).

The increased affordability of DNA sequencing and
genotyping resulted in genetic information becoming available in
large numbers of subjects. This has contributed to shift the focus
to genetic discovery and the study of common, complex disease
traits. These traits are not characterized by a single gene mutation
leading to a large change on the phenotype but attributable to
the cumulative effects of many loci. Although the effect sizes
of individual loci are relatively modest, composite effects
can significantly alter the probability of developing disease
(11). The “common disease—common variant” hypothesis
underpins genome wide association studies (GWAS), where
subjects are genotyped for hundreds of thousands of common
variants. For example, a study into the genetic determinants of
hypertension in over 1 million subjects, identified 901 loci that
were associated with systolic blood pressure (SBP) and these

explained 5.7% of the variance observed (12). Even though
these single nucleotide polymorphisms (SNPs) explain only a
small proportion of phenotypic variance they provide relevant,
hypothesis-generating biological or therapeutic insights.
The rapid development of complementary high-throughput
technologies, able to characterize the transcriptome, epigenome,
proteome, and metabolome now enables us to search for
molecular evidence of gene causality and to understand the
mechanisms and pathways involved in health and disease
(13). These large biological multi-omics data sets and their
computational analysis are conceptually similar to the more
established study of genomics and examples of such work are
included in this review.

IMAGING-GENETICS: FROM
ONE-DIMENSIONAL PHENOTYPING TO
MULTIPARAMETRIC IMAGING

Several biological and technical reasons have been proposed
to explain the “missing heritability” of complex cardiovascular
traits. However, a common factor limiting many genotype-
phenotype studies was that the ability to characterize phenotypes
rapidly and accurately, significantly lagged behind our
ability to describe the human genotype (14). Phenotyping
was characterized by imprecise quantification, sparsity of
measurements, high intra- and inter- observer variability, low
signal to noise ratios, reliance on geometric assumptions, and
adequate body habitus, poor standardization of measurement
techniques and the tendency to discretize continuous phenotypes
(15). Commonly, the complexity of the cardiovascular system
was distilled into a small number of continuous one-dimensional
variables [e.g. volumetric assessment of the left ventricle (16)] or,
convenient dichotomies, such as responders vs. non-responders
(17), leading to a loss of statistical power (18).

The imaging community responded to calls for more accurate
and precise, high-dimensional phenotyping (19, 20) with the
roll out of developments in echocardiography (e.g., tissue
doppler, speckle-tracking, and 3D imaging), CMR (e.g., tissue
characterization, 4D flow, 3D imaging, diffusion tensor imaging,
spectroscopy, and real-time scanning), CT (e.g., improved spatial
and temporal resolution, radiation dose reduction techniques,
functional assessment of coronary artery flow using FFR-CT, and
coronary plaque characterization), and nuclear cardiology (e.g.,
improvements in radiopharmaceuticals and hardware resulting
in increased accuracy and reduced radiation exposure). In
parallel, computational approaches have become increasingly
integral to the clinical interpretation of thesemuch larger datasets
(21–23) and several have obtained FDA approval (24).

IMAGING-GENETICS: A “BIG DATA”
SQUARED PROBLEM

Leveraging these deeper phenotypes is an attractive proposition
but the joint analysis of high-dimensional imaging and genetic
data poses major computational and theoretical challenges.
An early example of a neuroimaging GWAS investigated the

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 January 2020 | Volume 6 | Article 195

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


de Marvao et al. AI in Cardiac Imaging-Genetics

association between 448,293 SNPs and 31,622 CMR voxels in a
cohort of 740 subjects (25). This study highlighted difficulties
correcting for multiple testing (1.4 × 1010 tests were performed)
and the need for unprecedented computational power (300
parallel cores).

Simultaneously assessing the statistical significance of several
hundred thousand tests vastly increases the number of
anticipated type I errors. If the probability of incorrectly rejecting
the null hypothesis in one test with a pre-set α of 0.05 is 5%,
then under the same conditions, the probability of incorrectly
rejecting the null hypothesis at least once if 100 tests are
performed is 99.4%. Therefore, an adjustment for the number
of tests being carried out is required. The simplest approach
for adjustment for multiple testing is the Bonferroni correction,
where the pre-set α is recalculated as α/m, where m represents
the number of independent tests being performed. However,
this method is overly conservative when m is large, leading
instead to many false negatives. An alternative, extensively-
validated method is the Benjamini–Hochberg Procedure (26).
Using this approach, instead of controlling for the chance of any
false positives, an acceptable maximum fixed percentage of false
discoveries (the expected proportion of rejected hypotheses that
are false positives) is set.

A further consideration in the statistical analysis of high-
dimensional cardiac phenotypes is that a clinically significant
signal will not originate from a single voxel but across
many voxels in extended, anatomically coherent areas. Indeed,
approaches such as threshold-free cluster enhancement (TFCE),
which were developed in neuroimaging (27), have recently
applied in cardiovascular research (28). Using such methods,
both signal size and contiguity with surrounding signal patterns
contribute to inference statistics.

ARTIFICIAL INTELLIGENCE

Artificial intelligence, machine learning, and deep learning are
terms that are interlinked, have some overlap but are often
incorrectly used interchangeably. AI refers to the overarching
field of computer science focused on simulating human cognitive
processes. As a subset of AI, machine learning refers to the
family of algorithms that share a capacity to perform tasks
like classification, regression, or clustering based on patterns
or rules iteratively learnt directly from the data without using
explicit instructions. ML algorithms can be further subdivided
into supervised, unsupervised, and reinforcement learning.

Supervised learning is the most common form of traditional
ML and involves the training of models on pairs of input
and expected outputs (“labeled” data) and then their
deployment to make predictions in previously unseen data.
It includes such approaches as nearest neighbor, support
vector machines, random forests and naïve Bayes classifiers.
Unsupervised learning algorithms are used to address clustering
or dimensionality reduction problems by detecting patterns
and structures within the data without any prior knowledge or
constraints. In other words, the model organizes “unlabeled”
data into groupings that share common, previously undefined

characteristics. Examples including k-means clustering, t-
distributed stochastic neighbor embedding (t-SNE), and
association rule learning algorithms. The use of reinforcement
learning algorithms (e.g., deep Q networks), common in
robotics and gaming applications (29) has now also been trialed
in the navigation of 3D datasets for anatomical landmark
detection (30).

Deep learning (DL) is a specific ML method inspired by
the way that the human brain processes data and draws
conclusions. To achieve this, DL applications use a layered
structure of algorithms, called an artificial neural network that
imitates the biological neural network of the human brain. The
word “deep” in “deep learning” refers to the number of layers
through which the data is transformed. The most common
DL models are convolutional neural networks (CNN), which
are extremely efficient at extracting features and often superior
to traditional ML in larger, more complex datasets such as
medical imaging and genomics (31, 32). However, feature and
process interpretability is more amenable in classical ML as even
simple DL networks can operate as “black-boxes.” While the
computational and time requirements of DL are much higher
during training, subsequent inference is extremely fast and DL
approaches can be used to accelerate supervised, unsupervised,
and reinforcement learning. Indeed, while traditional ML is
carried out using central processing units (CPUs), DL was only
made possible thanks to the development of graphics processing
units (GPUs), which have a massively parallel architecture
consisting of thousands of cores and were designed to handle vast
numbers of tasks simultaneously.

During the training stage of supervised learning algorithms,
the labeled data is divided into training, validation, and testing
subsets to reduce overfitting and estimate how well the models
generalize. No standard methodologies exist to determine
optimum proportions allocated to each set. The training set
usually includes a large proportion of the available data and is
used for the development of the model. The validation set is used
to estimate overall model performance during development and
fine-tune the algorithm’s hyperparameters (e.g., the number of
network layers which could not be learnt). Dividing data into
training and validation subsets can be done randomly at the
onset of the process or by using a cross-validation approach. This
involves dividing the entire dataset into folds of equal size and
then training the algorithms in all the folds except one that is left
out for validation. The process is repeated until all folds have been
used as a validation set and the overall performance of the model
is calculated as the average across all validation sets. Finally, an
independent (ideally external) test set should be used to assess
the model’s generalizability.

Despite ML’s vast potential and significant performance
breakthroughs in fields such as speech recognition, natural
language processing, and computer vision, these approaches are
not without limitations and vulnerabilities. Some of these are
shared with classical statistical approaches (33) while others are
entirely novel (34). A significant potential pitfall of ML models
derives from the presence of unrecognized confounders that
can be present in both the training and testing sets, if they
originated from the same dataset. This could result in overfitting
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of the model to the training data, achieving an artificially inflated
performance with poor generalization to other data sets in
subsequent studies. The gold-standard approach to address this
issue is to obtain a validation dataset acquired by an independent
group under real-world conditions. Another possible cause of
unsatisfactory generalization of an AI system is if the training
data is not an accurate representation of the wider population.
For example, an AI model trained on a healthy cohort may not
generalize well to a general population that includes extreme
disease phenotypes, and a system trained on images from a
specific CMR scanner might not perform well when labeling
images acquired under different technical conditions. Domain
adaptation or transfer learning are fields of AI research that aim
to address these challenges.

AI algorithms can also be oversensitive to changes in the
input data and therefore vulnerable to unintentional or harmful
interference. This was clearly demonstrated in experiments
involving “adversarial examples” or inputs that lead the model
to make a classification error. For example, the introduction of
an imperceptible perturbation in a picture of a benign skin mole
resulted in the misclassification as a malignant mole, with 100%
confidence (35). The general application of AI has also been
hindered by the “black-box” nature of several methodologies.
Indeed, full clinical acceptability is only likely if it is possible to
explore and scrutinize the predictive features and if the outputs
are clinically interpretable.

At a more fundamental level, “Big Data” studies are often
no more than observational research. As in classical statistics,
observational AI studies cannot test causality and should
therefore be considered hypothesis-generating that require
further testing. A recent systematic review and meta-analysis
of 82 studies applying DL methods to medical imaging found
that although the diagnostic performance of DL methods was
often reported as equivalent to human experts, few studies
tested human vs. DL performance on the same sample and then
went on to externally validate their findings (36). Furthermore,
apart from a handful of exceptions (37), the effect of AI
in routine clinical practice has been rarely tested in the
setting of randomized controlled trials. Indeed, it has not been
systematically demonstrated that the roll out of AI into clinical
practice leads to an improvement in the quality of care, increased
efficiency or improved patient outcomes (38). These studies will
be required before this technology can be routinely used to help
guide clinical care.

Table 1 provides an introduction to some of the technical and
methodological aspects that should be considered in AI research.

Nevertheless, the use of machine learning methods in
cardiovascular research has grown exponentially over recent
years, with an ever increasing set of uses and applications.
Traditional supervised ML methods have been applied
successfully to classification tasks in extremely diverse
input data, ranging from discrimination between sequences
underlying Cis-regulatory elements from random genome
sequences (39), separation of human induced pluripotent
stem cell-derived cardiomyocytes of distinct genetic cardiac
diseases (CPVT, LQT, HCM) (40) to numerous applications in
medical imaging analysis. Examples of this include automated

TABLE 1 | Considerations in the use of machine learning in imaging-genetics

research.

Selection of AI

approach based on

clinical question and

data characteristics

Supervised methods suited to classification and

prediction tasks involving “labeled” data: e.g., image

segmentation or survival prediction.

Unsupervised methods useful to identify structures and

patterns in unlabeled data: e.g., association and

clustering.

Reinforcement learning algorithms interact with the

environment by producing actions that get rewarded or

penalized, while identifying the optimal path to address

the problem.

DL can be used to accelarate supervised, unsupervised

or reinforcement learning but is better suited to larger,

more unstructured datasets. Classical ML is more likely

to work better in smaller training datasets.

Algorithm selection Are there “off-the-shelf” algorithms tailored to identical

problems or validated in similar data? Transparency,

understandability and performance are all important

features. Try to avoid “black box” approaches where it is

not possible to scrutinize the features that inform the

classification or explain the outputs in high-stakes

decision-making.

Data pre-processing Several steps are likely to be required in the preparation

of data including anonymization, quality control, data

normalization and standardization, addressing how to

handle missing data points and outliers, imputation of

missing values, etc. Is the training data an accurate

representation of the wider data/population (e.g., all

expected variation present, same technical

characteristics)?

Feature selection A subset of relevant features (variables or predictors) is

selected from high dimensional data allowing for a more

succinct representation of the dataset.

Data allocation Evaluate the available data and plan the proportions of

data being allocated into the training, testing, and

validation datasets. Other approaches include cross

validation, stratified cross validation, leave-one-out, and

bootstrapping.

Hardware

considerations

Based on the volume of data and methodological

approaches are CPU clusters, GPUs, or cloud

computing better suited?

Evaluation of model

performance

Receiver operating characteristic (ROC) curves with

accuracy measured by the area under the ROC curve

(AUC), C-statistics, negative predictive value, positive

predictive values, sensitivity, and specificity,

Hosmer–Lemeshow test for goodness of fit, precision,

recall, f-measure. Imaging segmentation accuracy

(comparison between human expert labels and

automated labels) reported as Dice metric, mean

contour distance, and Hausdorff distance.

If the accuracy is perfect, have too many predictors been

included for the sample size or are there confounding

biases hidden in the data that may result in the model

overfitting the data?

Compare performance against standard statistical

approaches (i.e., multivariate regression).

If several algorithms are tested report on them all and not

just on the best performance.

Publication and

transparency

Make code and anonymized sample of data publicly

available (e.g., GitHub, Docker containers, R packages,

or Code Ocean repositories). Encourage independent

scrutiny of the algorithm.

Generalization and

replication results

Algorithms should be validated by independent

researchers on external cohorts and satisfy the

requirements of medical devices and software regulatory

frameworks.
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quality control during CMR acquisition (41), high-resolution
CMR study of cardiac remodeling in hypertension (42) and
aortic stenosis (43), and echocardiographic differentiation of
restrictive cardiomyopathy from constrictive pericarditis (44).
Unsupervised ML analysis have provided new unbiased insights
into cardiovascular pathologies such as by establishing subsets of
patients likely to benefit from cardiac resynchronization therapy
(45) and by agnostic identification of echocardiography derived
patterns in patients with heart failure with preserved ejection
fraction and controls (46). Traditional ML has also been used
for prediction of outcomes such as hospital readmission due to
heart failure (47), survival in pulmonary hypertension (48), and
population-based cardiovascular risk prediction (49).

More recently, there has been a greater interest in DL
approaches, which have been used with great promise in ever
larger-scale classification tasks. Applications include the analysis
of CMRs (50), echocardiograms (51), and electrocardiograms
(52), identification of the manufacturer of a pacemaker from a
chest radiograph (53), aortic pressure waveform analysis during
coronary angiography (54); automated categorization of HCM
and healthy CMRs (55) and detection of atrial fibrillation using
smartwatches (56). DL has also been successfully used to address
complex survival prediction tasks in pulmonary hypertension
(57) and heart transplantation (58).

The analysis of ever larger and complex genome-scale
biological datasets is also particularly suited to ML approaches.
One of the strengths of these approaches comes from the ability to
discover unknown structures in the data and to derive predictive
models without requiring a priori assumptions about, frequently
poorly understood, underlying biological mechanisms (59). The
field is large, diverse and fast moving with new opportunities
for AI to synthesize data and optimize the prediction of key
functional biological features appearing all the time. Applications
of traditional ML have ranged from the prediction of quantitative
(growth) phenotypes from genetic data (60), to the identification
of proteomic biomarkers of disease (61), to the prediction
of metabolomes from gene expression (62). As in cardiology
research, there has been growing interest in applying DL to the
field of functional genomics. Such approaches have been used to
predict sequence specificities of DNA- and RNA-binding proteins
(31, 63), transcriptional enhancers (64) and splicing patterns
(65) and to identify the functional effects of non-coding variants
(66, 67). A more in depth discussion of the applications of ML
and DL to genomics and other multi-omics data can be found
elsewhere (68–71).

ARTIFICIAL INTELLIGENCE IN
CARDIOVASCULAR IMAGING-GENETICS

Despite the parallel successes of AI in the fields of genetics
and imaging analysis, integrated imaging-genetics research is
still an emerging field. However, several studies have already
demonstrated the usefulness of AI tools in the analysis of
large biological, imaging, and environmental data, in such
tasks as dimensionality reduction and feature selection,
speech recognition, clustering, image segmentation, natural

language processing, variable classification, and outcome
prediction (Figure 1).

To predict which dilated cardiomyopathy patients responded
to immunoglobulin G substitution (IA/IgG) therapy, as assessed
by echocardiography, two supervised ML approaches, a random
forest analysis and a support vector machine algorithm, were
used independently on gene expression data derived from 48
endomyocardial biopsies (72). The overlapping set of 4 genes that
was identified by both ML approaches was superior to clinical
parameters in discriminating between responders and non-
responders to therapy. The prediction performance was further
improved by adding data on the negative inotropic activity
(NIA) of antibodies. A support vector machine classifier, also
proved to be extremely helpful in identifying specific proteomic
signatures that accurately discriminated between patients with
heart failure with reduced ejection fraction (HFrEF) and controls
in the absence (73) or presence of chronic kidney disease
(74). ML pipelines also often use feature selection to more
efficiently process high dimensional phenotypes, distinguishing
the most informative features from those that are redundant.
For example, an information gain method was used to identify
speckle-tracking features able to differentiate athlete’s heart from
HCM. The combination of three different supervised machine
learning algorithms (support-vector machine, random forest,
and neural network) trained on this sparser data was then shown
to be better at distinguishing the two types of remodeling (ML
model sensitivity = 87%; specificity = 82%) than conventional
echocardiographic parameters (best parameter was e’—sensitivity
= 84%; specificity= 74%) (75).

ML approaches have also been successfully used in the
identification of new, useful structures in data. One such
study, using a hypothesis-free unsupervised clustering approach,
revealed four distinct proteomic signatures with differing
clinical risk and survival in patients with pulmonary arterial
hypertension (76). ML has similarly been able to identify new
sub-phenotypes in heart failure with preserved ejection fraction,
classifying subjects into three subgroups associated with distinct
clinical, biomarker, hemodynamic, and structural groups with
markedly different outcomes (77). Okser et al. used a naïve Bayes
classifier in a longitudinal imaging-genetics study of 1,027 young
adults to identify a predictive relationship between genotypic
variation and early signs of atherosclerosis, as assessed by carotid
artery intima-media thickness, which could not be explained by
conventional cardiovascular risk factors (78).

Classification problems, such as pixel-wise classification of
CMR images, are also particularly suited to supervised classical
ML (79, 80) and deep learning approaches (81). These high-
resolution representations of whole-heart shape and function can
encode multiple phenotypes, such as wall thickness or strain, at
each of thousands of points in the model (82). Such high-fidelity
models were used in a study aiming to clarify the physiological
role of titin-truncating variants (TTNtv), known to be a common
cause of DCM but surprisingly also present in ∼1% of the
general population (83). Mass univariate analyses, adjusted for
multiple clinical variables and multiple testing, were carried out
at over 40,000 points of a statistical parametric map of 1,409
healthy volunteers. This identified an association between TTNtv
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FIGURE 1 | Artificial intelligence in big data imaging-genetics research.

positive status and eccentric remodeling, indicating a previously
unproven physiological effect of these variants in subjects without
DCM. A similar phenotyping approach was used by Attard et al.
in 312 patients to elucidate the physiological mechanisms that
underpinned reported association between certain metabolites
and survival in patients with pulmonary hypertension (84).
Univariate regression models including clinical, hemodynamic,
and metabolic data were fitted at each vertices of a 3D cardiac
mesh. These showed coherent associations between 6 metabolites
and right ventricular adaptation to pulmonary hypertension as
well as showing that wall stress was an independent predictor of
all-cause mortality.

ML algorithms have also shown promise in predicting
outcomes, such as imaging surrogates of disease or response to
treatment, from complex sets of clinical and genetic variables. For
example, to predict the presence or absence of coronary plaques
on CT coronary angiography, a gradient boosting classifier was
trained on a proteomic assay and identified two distinct protein
signatures (85). A subset of these was found to outperform
generally available clinical characteristics in the prediction of
patients with high risk plaques (AUC = 0.79 vs. AUC = 0.65),
while a distinct set outperformed clinical variables in predicting
absence of coronary disease (AUC = 0.85 vs. AUC = 0.70).
In another study, a combination of random forest and neural
network methods were used first to identify the most informative
subset of clinical and genomic data and then to predict coronary
artery calcium (86). Interestingly, the model trained on SNP data
only was highly predictive (AUC= 0.85), and better than models
trained on clinical data (AUC = 0.61) and on a combination

of genomic and clinical data (AUC = 0.83). Further validation
experiments in patients with less severe coronary artery calcium
showed poor predictive accuracy suggesting that the models’
predictive value is limited to a range of (high) coronary calcium
or that the models do not generalize well in the broader
population. Schmitz et al. investigated the performance of 15
different supervised machine learning algorithms in predicting
positive cardiac remodeling in patients that underwent cardiac
resynchronization therapy (CRT) from clinical and genomic data
(87). Several of the approaches demonstrated clear overfitting
(accuracy ∼100%), while the algorithm that was identified as the
most useful had a fair performance (accuracy= 83%) in addition
to high transparency (predictive features easily identified).

Novel deep learning methods are also starting to make an
impact in the imaging-genetics field by enabling unprecedented
high-throughput image analysis. For example, DL methods have
been able to achieve fully automated analysis of CMRs with a
performance that is similar to human experts (88) and permitted
the rapid segmentation of 17,000 CMRs that were then used in
a GWAS (89). This identified multiple genetic loci and several
candidate genes associated with LV remodeling, and enabled the
computing of a polygenic risk score (PRS) that was predictive
of heart failure in a validation sample of nearly 230,000 subjects
(odds ratio 1.41, 95% CI 1.26 – 1.58, for the top quintile vs. the
bottom quintile of the LV end-systolic volume).

While the use of AI in cardiovascular imaging-genetics has
great potential, the limitations and challenges of AI in genetics
(90) and imaging (91) are further amplified by combining these
very large data. To date, no methodological approaches have
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been able to include whole-genome and high-resolution whole-
heart phenotypes, without requiring extensive dimensionality
reduction, filtering and/or feature selection, possibly introducing
errors or biases to the input data. Even when this challenge
is dealt with, multiple testing correction will continue to be
problematic, with the potential for false positive findings likely
to only be reliably addressed with replication studies. In AI
imaging-genetics, no single method is universally applicable,
and the choice of whether and how to use ML or DL
approaches will remain task, researcher and population specific,
creating difficulties in the pooling of data and meta-analyses.
It should not be forgotten that conventional analysis remains
valid and has advantages when data are scarce or if the aim
is to assess statistical significance, which is currently difficult
using deep learning methods. Issues related to the lack of
interpretability (“black box”) of some ML algorithms are less
of an issue in imaging analysis, where accuracy of analysis can
be visually verified, but very relevant to integrated imaging-
genetics analysis or risk prediction, where identifying and
explaining the features driving the algorithm’s output can be
virtually impossible. The tendency to over-fit models to training
datasets risks reduction in the performance of the model when
applied to new populations. These problems are likely to be
exacerbated if new test datasets include subjects with differing
genetic or physiological backgrounds, data were acquired using
different technical conditions (e.g., different scanners or different
genotyping batches) or if the quality of data acquired in the
research setting significantly differs from real world data sets.
Finally, issues regarding privacy, ownership, and consent over
vast amounts of genetic and imaging data and legal and ethical
considerations for clinicians using integrated imaging-genetics
algorithms will become an ever more relevant topic of debate.

Although the application of AI to imaging genetics-research
is still new, these promising methods and findings warrant
further extensive validation in independent populations. Fully
integrated, end-to-end, imaging-genetics DL approaches are
theoretically extremely attractive but as yet untested. To
confidently implement AI methods in research and clinical
practice, challenges regarding standardization of data acquisition
and algorithm development and reporting still need to be
overcome. Initiatives such as adapting the Transparent Reporting
of a Multivariable Prediction Model for Individual Prognosis
or Diagnosis (TRIPOD) recommendations (92) to machine
learning research [TRIPOD-ML (93)] are very much welcome.
Ultimately, the additive value of AI-driven decision making may

require robust multi-center studies and randomized controlled

trials (94, 95).

FUTURE PERSPECTIVES

The development of body imaging, the elucidation of inheritance
and genetics and the application of statistics to medicine were
some of the most important medical developments of the
past millennium (96). AI now provides an unrivaled ability
to integrate these three aspects in imaging-genetics studies of
unprecedented scale and complexity. The increasing variety
and capabilities of ML tools at the disposal of researchers
provide a powerful platform to agnostically revisit classical
definitions of disease, to more accurately predict outcomes
and to vastly improve our understanding of the genetic and
environmental underpinnings of cardiovascular health and
pathology. ML approaches will play an increasing role in
every field of cardiovascular research, from genomic discovery
and deep phenotyping, to mechanistic studies and drug
development. Concerted efforts to improve AI study design,
reporting, and collaborative validation will greatly contribute
to deliver on the great promise of AI and ultimately improve
patient care.
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