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Treatment with the antihypertensive agent reserpine depletes monoamine levels, resulting in depression. In the present study, we
evaluated the antidepressant effects ofGyejibokryeong-hwan (GBH), a traditional Korean medicine, in a mouse model of reserpine-
induced depression. Mice were treated with reserpine (0.5 mg⋅kg−1, i.p.) or phosphate-buffered saline (PBS, i.p., normal) once daily
for 10 days. GBH (50, 100, 300, and 500 mg⋅kg−1), PBS (normal, control), fluoxetine (FXT, 20 mg⋅kg−1), or amitriptyline (AMT, 30
mg⋅kg−1) was administered orally 1 h prior to reserpine treatment. Mouse behavior was examined in the forced swim test (FST), tail
suspension test (TST), and open-field test (OFT) following completion of the treatment protocol. Administration of GBH reduced
immobility time in the FST and TST and significantly increased the total distance traveled in the OFT. Plasma serotonin levels
were significantly lower in control mice than in normal mice, although these decreases were significantly attenuated to a similar
extent by treatment with GBH, FXT, or AMT. Reserpine-induced increases in plasma corticosterone were also attenuated by GBH
treatment. Moreover, GBH attenuated reserpine-induced increases in interleukin- (IL-) 1𝛽, IL-6, and tumor necrosis factor- (TNF-)
𝛼 mRNA expression in the hippocampus. In addition, GBH mice exhibited increased levels of brain-derived neurotrophic factor
(BDNF) and a higher ratio of phosphorylated cAMP response element-binding protein (p-CREB) to CREB (p-CREB/CREB) in the
hippocampus. Our results indicated that GBH can ameliorate depressive-like behaviors, affect the concentration of mood-related
hormones, and help to regulate immune/endocrine dysfunction in mice with reserpine-induced depression, likely via activation of
the BDNF-CREB pathway. Taken together, these findings indicate that GBH may be effective in treating patients with depression.

1. Introduction

Depression is a mood disorder characterized by feelings of
unpleasantness, helplessness, sadness, and despair [1]. Such
feelings are often accompanied by symptoms such as sleep
disturbance, loss of appetite, and decreased concentration,
which can substantially impact the patient’s quality of life
and social functioning. Depression is also a main risk factor
for suicide, representing a significant public health concern
[2]. World Health Organization (WHO) data have revealed
that depression is the fourth greatest contributor to disability-
adjusted life years, a parameter representing the number of

years lost due to accidents, illness, disability, and premature
death. Moreover, researchers have projected that depression
will become the second greatest contributor by 2020 [3].
Depression can be divided into several types, includingmajor
depressive disorder (MDD), dysthymic disorder, psychotic
depression, postpartum depression, seasonal affective dis-
order (SAD), and bipolar disorder. However, MDD and
dysthymic disorder are themost common types of depression
[4].

Although various pathological causes of depression have
been identified, the monoamine hypothesis is the most well
described and accepted [5]. In the 1960s, a neurochemical
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model of depression was proposed based on reports that
monoamine depletion induced by reserpine, a treatment for
hypertension, caused adverse effects in patients, leading to
depression [6]. These data suggest that depression is asso-
ciated with monoaminergic dysfunction in the central ner-
vous system. Many antidepressant therapies targeting mono-
amines, such as tricyclic antidepressants (TCAs), selective
serotonin reuptake inhibitors (SSRIs), noradrenaline reup-
take inhibitors (NRIs), serotonin and noradrenaline reup-
take inhibitors (SNRIs), and monoamine oxidase inhibitors
(MAOIs), have been developed based on this theory [7].
However, these antidepressants are often associated with
anticholinergic or neurological side effects such as dizziness,
sedation, sexual dysfunction, insomnia, and anxiety. There-
fore, much research has focused on identifying natural and
alternative therapies for depressionwith fewer side effects [8].

Gyejibokryeong-hwan (GBH) is a traditional Korean
medicine described in the Donguibogam, a traditional text-
book of Korean medicine [9]. GBH is comprised of herbs
including Ramulus Cinnamomi cassia, Scierotium Poriae
cocos, Radix Albus paeoniae Lactiflorae, Cortex Radicis
moutan, and Semen Pruni persicae [10]. GBH has been used
extensively to treat blood stasis and climacteric syndrome
throughout Asia [11, 12] and has been approved by both the
Korean Ministry of Food and Drug Safety (MFDS) and the
USFood andDrugAdministration (FDA). Additional studies
have investigated the safety and efficacy of GBH in various
populations [13, 14].

Ramulus Cinnamomi cassia exhibits anti-inflammatory
effects in murine BV2 microglia cells [15], while Cortex
Radicis moutan reduces oxidative stress in rat pheochromo-
cytoma PC12 cells [16]. Moreover, amygdalin, a component
of Semen Pruni Persicae, induces neurotrophic effects via the
activation of the ERK1/2 pathway in PC12 cells [17]. However,
to the best of our knowledge, no studies have investigated the
therapeutic potential of GBH for depression. In the present
study, we aimed to assess the antidepressant effect of GBH in
animalmodels of depression, in whichmonoamine depletion
was induced using reserpine.

2. Materials and Methods

2.1. Preparation of GBH. GBH was purchased from Han-
poong Pharm and Foods Co., Ltd. (Jeonju, Korea). A voucher
specimen of the herb sample was deposited in the Herbarium
of Hanpoong Pharm and Foods Co., Ltd. The component
herbs of GBH (ratio of five herbs = 1:1:1:1:1; total weight = 1.7
kg) were extracted in water after boiling for 3 h. The GBH
extract was then filtered and vacuum-concentrated, resulting
in a yield of 29.53%. The extract was stored at −80∘C and
dissolved in phosphate-buffered saline (PBS) before use.

2.2. High-Performance Liquid Chromatography (HPLC) Anal-
ysis of GBH. The GBH extract was analyzed using a Shi-
madzu Prominence LC–20A system (Kyoto, Japan), which
consisted of a solvent delivery unit, an online degasser,
a column oven, a sample autoinjector, and a photodiode
array (PDA) detector. The data were acquired and processed
using LCsolution software (Version 1.24, SP1, Kyoto, Japan).

Amygdalin (PubChem CID: 656516, purity 99.0%), gallic
acid (PubChem CID: 370, purity 99.0%), and coumarin
(PubChem CID: 323, purity 99.0%) were purchased from
Merck KGaA (Darmstadt, Germany). Albiflorin (PubChem
CID: 51346141, purity 99.8%), paeoniflorin (PubChem CID:
442534, purity 98.8%), cinnamic acid (PubChem CID:
444539, purity 99.0%), and paeonol (PubChem CID: 11092,
purity 99.9%) were obtained fromWako (Osaka, Japan). The
eightmarker componentswere separated on aWaters SunFire
C
18

column (250 × 4.6 mm, 5 𝜇m, Milford, MA, USA) and
maintained at 40∘C.Themobile phases consisted of water (A)
and acetonitrile (J. T. Baker, Phillipsburg, NJ, USA) (B), both
containing 1.0% (v/v) acetic acid (Merck KGaA, Darmstadt,
Germany). The gradient elution of the mobile phase was as
follows: 10–60% B for 0–30 min, 60–100% B for 30–40 min,
100% B for 40–45 min, and 100–10% B for 45–50 min. The
flow-rate and injection volume were 1.0 ml/min and 10 𝜇l,
respectively.

2.3. Animal Experiments. Seven-week-old male C57BL/6
mice were purchased from Daehan Biolink Co. (Chungbuk,
Korea). Animal experiments were performed in accordance
with the National Institutes of Health (NIH) Guide for the
Care and Use of Laboratory Animals and approved by the
Korean Institute of Oriental Medicine Institutional Animal
Care and Use Committee (written approval number: 17-
081). The mice were acclimated for 1 week, following which
depression was induced by administering reserpine (0.5
mg⋅kg−1 in PBS; i.p.; Sigma-Aldrich, St Louis, MO, USA)
once per day for 10 days. Normal mice were injected with
PBS alone. The reserpine-treated mice were divided into
seven groups (n = 6 per group) and orally treated with PBS
(Control), GBH (50, 100, 300, and 500 mg⋅kg−1), the SSRI
fluoxetine (FXT; 20 mg⋅kg−1; Sigma-Aldrich), or the TCA
amitriptyline (AMT; 30 mg⋅kg−1; Sigma-Aldrich). Normal
mice were treated with oral doses of PBS. The experimental
schematic, including reserpine induction and administration
schedules, is presented in Figure 2(a).

2.4. Alterations in BodyWeight and Food Intake. Body weight
was measured on days 1, 5, and 10. Food intake was estimated
as the difference between the amount of food remaining in
the feeder on day 5 or 10 and the amount of food provided on
day 1 [18].

2.5. Behavioral Tests. The forced swim test (FST) is used
to evaluate learned helplessness in rodents and has often
been used to examine the effect of antidepressants in animal
models of depression. Mice were allowed to swim for 15 min
(session 1) on the day prior to the FST [19]. On test day,
individual mice were introduced into a cylinder (height: 45
cm; diameter: 20 cm) containing tap water (25 ± 2∘C; depth:
25 cm) from which they could not escape and had to swim
to stay afloat. Total immobility time was measured during
the last 4 min of a 6 min trial using video tracking software
(SMART 3.0; Panlab S.I., Barcelona, Spain).

The tail suspension test (TST) is a useful behavioral tool
for examining the effects of antidepressant drugs [20]. Mice
were acoustically and visually isolated, following which they
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Table 1: The sequences of the real-time PCR primers

Gene Sequence

mouse IL-1𝛽 forward, 5- GCTGAAAGCTCTCCACCTCA -3
reverse, 5- AGGCCACAGGTATTTTGTCG -3

mouse IL-6 forward, 5- GAGGATACCACTCCCAACAGACC -3
reverse, 5- AAGTGCATCATCGTTGTTCATACA -3

mouse TNF-𝛼 forward, 5- AGACCCTCACACTCAGATCATCTTC -3
reverse, 5- CCACTTGGTGGTTTGCTACGA -3

mouse GAPDH forward, 5- AAGGTGGTGAAGCAGGCAT -3
reverse, 5- GGTCCAGGGTTTCTTACTCCT -3

were suspended 50 cm above the floor using adhesive tape
placed approximately 1 cm from the tip of the tail. Immobility
time was recorded during the last 4 min of a 6 min session
using the same video tracking software used in the FST.

The open-field test (OFT) can be used to measure anxiety
and locomotor behavior in rodents [21]. In the present
study, the open-field arena (30 × 30 cm) was constructed
from acrylic sheets, and mice were placed individually in
the center of the field. Their behavior was recorded for 10
min. Recordings were analyzed using video tracking soft-
ware (EthoVision XT 9.0, Noldus Information Technology,
Wageningen, Netherlands), as described by Deussing [22].

Mice underwent behavioral testing in the following order,
with a 6 h interval between each experiment: OFT, TST, FST.

2.6. Enzyme-Linked Immunosorbent Assay (ELISA). Mouse
blood was collected into heparin coated tubes under anes-
thesia with tiletamine/zolazepam (25 mg⋅kg−1, Zoletil 50;
Virbac, Cedex, France). For plasma collection, the samples
were centrifuged at 3,000 rpm for 10 min at 4∘C, following
which the supernatant was carefully transferred to a new
tube. Plasma samples were stored at −80∘C before use. The
concentrations of plasma serotonin (Abcam, Cambridge,
UK) and corticosterone (Cayman chemical company, Ann
Arbor, MI, USA) were determined using ELISA kits, in
accordance with the manufacturer’s protocols.

2.7. Real-Time Polymerase Chain Reaction (PCR). Total RNA
was isolated using Trizol reagent (Invitrogen), while cDNA
synthesis was performed using the PrimeScript� RT reagent
kit (TaKaRa, Shiga, Japan). Interleukin- (IL-) 1𝛽, IL-6, tumor
necrosis factor- (TNF-) 𝛼, and glyceraldehyde-3 phosphate
dehydrogenase (GAPDH) mRNA was quantified using a
QuantStudio� 6 Flex real-time polymerase chain reaction
(real-time PCR) system (Applied Biosystems, CA, USA) with
Power SYBR� Green PCR Master Mix (Applied Biosystems)
[23]. The sequences of the real-time PCR primers are pre-
sented in Table 1.

2.8. Western Blotting. The hippocampus was homogenized
in 300 𝜇l lysis buffer (Pro-Prep�; Intron Biotechnology,
Korea) containing 1 mM PMSF and 1 𝜇g⋅ml−1 of protease
inhibitor mix. Equal amounts (20 𝜇g) of protein were sepa-
rated using 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred to polyvinyli-
dene fluoride (PVDF) membranes (Amersham Biosciences,

Piscataway, NJ, USA). The membranes were then blocked in
5% skim milk in Tris-buffered saline with 0.1% TWEEN� 20
(TBS/T) for 1 h. The membranes were probed overnight with
antibodies for brain-derived neurotrophic factor (BDNF;
Abcam, Cambridge, UK), phosphorylated cAMP response
element-binding protein (p-CREB), and CREB (Cell Sig-
naling Technology, Inc., Danvers, MA, USA) at 4∘C. Next,
blots were incubated in horseradish peroxidase- (HRP-)
conjugated secondary antibody for 1 h at 25∘C, and HRP
was detected using a chemiluminescent detection reagent
(Amersham Biosciences). 𝛽-Actin (Sigma-Aldrich) was used
as a loading control [24].

2.9. Immunofluorescence. The brain was frozen at –20∘C, and
sections were cut to a thickness of 20 𝜇m using a Cryostat
Microtome (CM 3050 S, Leica Microsystems, Wetzlar, Ger-
many). We performed double immunofluorescence staining
by incubating tissue sections with antibodies for BDNF
(Novus Biologicals, Inc., Littleton, CO), p-CREB, and CREB
(Cell Signaling Technology, Inc.) overnight at 4∘C. Subse-
quently, FITC-conjugated secondary antibody was added for
2 h, and nuclear stainingwas performed usingDAPI. Sections
were observed using an Eclipse Ti-E inverted fluorescent
microscope (Nikon Instruments Inc., Mississauga, Canada).

2.10. Statistical Analysis. All data are expressed as the mean
± standard deviation (SD). One-way analysis of variance
(ANOVA) was performed using GraphPad Prism version 7
(GraphPad Software Inc., San Diego, CA, USA) to assess
between-group differences. Comparisons among multiple
groups were performed using one-way ANOVAs, followed by
post hocTukey tests.The level of statistical significancewas set
at p < 0.05.

3. Results

3.1. HPLC Analysis of GBH. The composition of GBH was
verified using HPLC. This analysis provided chemical infor-
mation regarding GBH, guaranteeing the reproducibility of
our experiments using other batches of GBH. Analyses were
performed in accordance with chemical standards described
by Kim et al. [14]. Quantitative and qualitative analyses
of the eight marker compounds (gallic acid, amygdalin,
albiflorin, paeoniflorin, benzoic acid, coumarin, cinnamic
acid, and paeonol) in GBH were conducted using the opti-
mized HPLC–photodiode array (PDA) method. Each GBH
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(a)

Marker 
compound

Retention 
time (min)

Amount 
(mg/g)

Sources

Gallic acid 4.01 5.61 Radix Albus paeoniae Lactiflorae
Amygdalin 9.69 49.04 Semen Pruni persicae
Albiflorin 11.64 5.06 Radix Albus paeoniae Lactiflorae

Paeoniflorin 12.44 17.7
Radix Albus paeoniae Lactiflorae,

Cortex Radicis moutan
Benzoic acid 18.02 31.96 Radix Albus paeoniae Lactiflorae

Coumarin 20.11 0.21 Ramulus Cinnamomi cassia
Cinnamic acid 22.77 0.21 Ramulus Cinnamomi cassia

Paeonol 27.27 0.02
Radix Albus paeoniae Lactiflorae,

Cortex Radicis moutan

(b)

Figure 1: Three-dimensional chromatogram of Gyejibokryeong-hwan (GBH) sample based on HPLC–PDA analysis. HLPC: high-
performance liquid chromatography; PDA: photodiode array.

component was identified by comparing the retention time
and UV spectra with the respective reference standards. The
retention times and amounts of the eight marker compounds
in GBH are shown in Figure 1.

3.2. Effect of GBH on Body Weight and Food Intake. No
significant differences in mean body weight were observed
among the groups on day 1. After 5 and 10 days of reserpine
injection, body weight was significantly lower in control mice
than in normal mice; however, oral GBH administration
ameliorated this effect after 10 days of treatment (GBH 100:
25.54 ± 0.71 g, p < 0.01; GBH 300: 25.35 ± 0.82 g, p < 0.05;
and GBH 500: 26.16 ± 0.85 g, p < 0.001; Figure 2(b)). Ten days
of FXT administration (20 mg⋅kg−1) significantly increased
body weight (FXT: 25.53 ± 1.0 g, p < 0.01; Figure 2(b));

however, there was no difference in body weight following
AMT administration (30 mg⋅kg−1), relative to that observed
in control mice.

Food intake was significantly lower in control mice than
in normal mice on day 10 (18.5 ± 3.97 g, p < 0.001);
however, administration of GBH, FXT, or AMT significantly
ameliorated this effect (GBH 50: 30.49 ± 1.83 g; GBH 100:
31.02 ± 1.76 g; GBH 300: 30.83 ± 2.14 g; GBH 500: 31.4 ±
1.01 g; FXT: 29.71 ± 2.33 g; AMT: 30.9 ± 0.13 g; all p < 0.001;
Figure 2(c)). These results suggest that GBH counteracted
decreases in body weight and food intake in mice with
reserpine-induced depression.

3.3. Effect of GBH on Depressive-Like Behavior. Wemeasured
immobilization time in the FST (F[7, 40] = 6.09, p < 0.001;
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Figure 2: Effect of Gyejibokryeong-hwan (GBH) on development of reserpine-induced depression in mice. Mice underwent oral treatment
with vehicle (PBS), GBH (50, 100, 300, or 500 mg⋅kg−1), fluoxetine (FXT, 20 mg⋅kg−1), or amitriptyline (AMT, 30 mg⋅kg−1) once per day for
10 days. (a) Schematic showing reserpine treatment, oral administration schedule, and behavioral testing timeline. (b) Body weight and (c)
food intake were measured on days 1, 5, and 10. Data are presented as the mean ± standard deviation (SD) (n = 6, one-way ANOVA; #p <
0.05, ###p < 0.001 versus normal; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 versus control).

Figure 3(a)) 1 day after the completion of treatment (day 11;
Figure 2(a)). As expected, immobilization time was signifi-
cantly higher in control mice than in normal mice (control:
175.68 ± 10.87 s, p < 0.001). Moreover, immobilization time
was significantly lower in GBH mice than in control mice
(GBH 100: 140.57 ± 13.06 s, p < 0.01; GBH 300: 138.19 ± 15.3 s,
p < 0.01; GBH 500: 133.88 ± 9.72 s, p < 0.001; Figure 3(a)).
Furthermore, treatment with FXT and AMT significantly
decreased immobilization time (FXT: 144.55 ± 18.36 s, p <
0.05; AMT: 134.26 ± 20.63 s, p < 0.001).

Mice treated with GBH exhibited significant decreases in
immobilization time during the TST (F[7, 40] = 5.754, p
< 0.001; Figure 3(b)) (GBH 100: 164.53 ± 34.28 s, p < 0.01;
GBH 300: 210.4 ± 81.54 s, p < 0.05) when compared with
control mice (control: 360.0 ± 106.2 s, p < 0.01 versus normal;
Figure 3(b)).

Distance traveled in the OFT (F[7, 40] = 36.41, p < 0.001;
Figure 3(c)) was significantly greater in mice treated with
GBH (GBH 100: 2325.64 ± 102.26 cm, p < 0.001; GBH 300:
2150.78 ± 158.16 cm, p < 0.01; GBH 500: 2401.32 ± 301.27

cm, p < 0.001) than in control mice (control: 1637.27 ± 121.65
cm, p < 0.001 versus normal). In addition, FXT and AMT
treatment significantly increased the distance traveled (FXT:
2147.08 ± 89.7 cm, p < 0.05; AMT: 2528.21 ± 280.07 cm, p
< 0.001; Figure 3(c)). These results suggest that GBH can
ameliorate depressive-like behaviors in mice with reserpine-
induced depression.

3.4. Effect of GBH on Mood-Related Hormones in Reserpine-
Treated Mice. The concentration of plasma serotonin, a
key regulator of emotions and mood disorders [25], was
significantly decreased in control mice following reserpine
administration (control: 37.91 ± 2.73 ng/ml, p < 0.001 versus
normal). However, treatment with GBH, FXT, and AMT
attenuated these decreases (GBH 100: 68.84 ± 14.2 ng/ml, p <
0.05; GBH 300: 75.82 ± 16.15 ng/ml, p < 0.01; GBH 500: 145.52
± 20.96 ng/ml, p < 0.001; FXT: 72.3 ± 15.65 ng/ml, p < 0.05;
AMT: 81.19 ± 11.97 ng/ml, p < 0.001; Figure 4(a)). Moreover,
treatment with GBH, FXT, and AMT significantly attenuated
the reserpine-induced increase in serum levels of the stress
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Figure 3: Effect of Gyejibokryeong-hwan (GBH) on reserpine-induced depressive-like behaviors in mice. (a) Immobility time in the forced
swim test (FST) and (b) tail suspension test (TST); (c) total distance traveled in the open-field test (OFT). All behavioral tests were conducted
on day 11. Data are presented as the mean ± standard deviation (SD) (n = 6, one-way ANOVA; ##p < 0.01, ###p < 0.001 versus normal; ∗p <
0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 versus control).
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Figure 4: Effect ofGyejibokryeong-hwan (GBH) on the concentration of plasma serotonin and corticosterone inmice with reserpine-induced
depression.The concentrations of plasma (a) serotonin and (b) corticosterone were determined via ELISA. Data are presented as the mean ±
standard deviation (SD) (n = 6, one-way ANOVA; ###p < 0.001 versus normal; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 versus control).
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Figure 5: Effect of Gyejibokryeong-hwan (GBH) on IL-1𝛽, IL-6, and TNF-𝛼 mRNA expression in mice with reserpine-induced depression.
The expression of (a) IL-1𝛽, (b) IL-6, and (c) TNF-𝛼mRNA was determined via quantitative real-time PCR. Data represent mean ± standard
deviation (SD) (n = 6, one-way ANOVA; ##p < 0.01 versus normal; ∗p < 0.05, ∗∗p < 0.01 versus control). IL-1𝛽: interleukin 1 beta; IL-6:
interleukin 6; TNF-𝛼: tumor necrosis factor alpha; PCR: polymerase chain reaction.

hormone corticosterone (GBH 100: 1013.04 ± 303.21 pg/ml, p
< 0.01; GBH 300: 1155.06± 324.15 pg/ml, p< 0.05; FXT: 652.59
± 160.33 pg/ml, p < 0.001; AMT: 947.41 ± 377.8 pg/ml, p <
0.01) [26], relative to levels observed in control mice (control:
1722.91 ± 181.69 pg/ml, p < 0.001 versus normal; Figure 4(b)).
These data suggest that GBH can affect the concentration
of mood-related hormones in mice with reserpine-induced
depression. Dopamine and norepinephrinewere not detected
in the plasma (data not shown).

3.5. Effect of GBH on Proinflammatory Cytokines in Reserpine-
Induced Depression. Chronic stress and the release of proin-
flammatory cytokines such as IL-1𝛽, IL-6, and TNF-𝛼 lead to
chronic neuroinflammation, which contributes to depression
[27, 28]. IL-1𝛽, IL-6, and TNF-𝛼 mRNA expression was
significantly increased in the hippocampus of control mice,
although this effect was ameliorated by treatment with GBH,
FXT, and AMT (Figure 5). These data indicate that GBH
may help to regulate immune and endocrine dysfunction
associated with depression.

3.6. Effect of GBH on BDNF and p-CREB Expression in the
Brain. In order to determine the molecular mechanisms
underlying the antidepressant effects of GBH, we examined
BDNF and p-CREB expression in the brain via Western
blot analysis. Hippocampal BDNF levels were significantly
lower in control mice than in normal mice, indicative of
neuronal dysfunction in the brain [29]; however, mice in
the GBH 100 group exhibited significantly increased levels of
BDNF (Figure 6(a)). The BDNF-CREB pathway is associated
with MDD [30]. We observed a significant reduction in
hippocampal p-CREB in control mice, which was prevented
in a dose-dependent manner in mice treated with GBH.
Moreover, FXT and AMT treatment significantly increased
p-CREB expression (Figure 6(b)). These results suggest that
GBH can affect hippocampal neuronal activity in mice with
reserpine-induced depression.

To confirm the effect of GBH treatment in our model
of reserpine-induced depression, we examined BDNF and
p-CREB expression in the hippocampus via immunofluo-
rescence analysis. BDNF levels were significantly decreased
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Figure 6: Effect of Gyejibokryeong-hwan (GBH) on hippocampal levels of BDNF and p-CREB/CREB, as measured via Western blotting,
in mice with reserpine-induced depression. Isolated hippocampal lysates were analyzed via Western blotting using (a) BDNF and (b) p-
CREB/CREB antibodies. 𝛽-Actin was used as the loading control. Data are representative of three independent experiments and are presented
as the mean ± standard deviation (SD) (one-way ANOVA; ###p < 0.001 versus normal; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 versus control).
BDNF: brain-derived neurotrophic factor; CREB: cAMP response element-binding protein; p-CREB: phosphorylated CREB.

in the dentate gyrus of control mice, although this decrease
was attenuated by treatment with GBH, FXT, and AMT (Fig-
ure 7(a)). Similar results were observed when we examined
changes in p-CREB expression (Figure 7(b)). These results
suggest that GBH recovers reserpine-induced depressive-like
behaviors via activation of the BDNF-CREB pathway.

4. Discussion

In the present study, we examined the antidepressant effect of
GBH in mice with reserpine-induced depression. Our results
indicated that GBH can ameliorate depressive-like behaviors,
affect the concentration of mood-related hormones, and help
to regulate immune/endocrine dysfunction in mice with
reserpine-induced depression, likely via activation of the
BDNF-CREB pathway.

As there are various causes of depression, the patho-
physiology of the disorder remains to be fully elucidated.
Several hypotheses have been proposed regarding the basis of
depression, including hypothalamic-pituitary-adrenal (HPA)
axis hyperactivity [31]; disturbances in monoamine, gluta-
mate, and gamma-aminobutyric acid (GABA) transmission;
neurotrophic factor dysfunction; neuroinflammation [32];
and glial pathology [33, 34].

Monoamines are transported into presynaptic vesicles
via the vesicular monoamine transporter (VMAT), which
is blocked by reserpine [35]. Mice with reserpine-induced
depression due to monoamine depletion exhibit anxiety-
and depressive-like behaviors, such as increased immobility

time and decreased locomotor activity in behavioral tests,
relative to findings observed in controlmice [36]. In addition,
previous studies have reported that mice treated with reser-
pine exhibit increased levels of plasma corticosterone [37]
and proinflammatory cytokines in the brain [38].

Before initiating our study, we optimized our mouse
model of reserpine-induced depression. Our findings indi-
cated that higher concentrations of reserpine administered
for 3 consecutive days were lethal in some mice prior to
the 10-day GBH treatment period. Furthermore, some mice
recovered from reserpine-induced depression 10 days after
drug treatment, while treatment at lower doses for 3 days was
not sufficient for inducing depression. In the present study,
wemodified the animal systems used in previous studies [36]
by reducing the concentration of reserpine to 0.5 mg⋅kg−1.
In addition, the reserpine treatment time was extended to 10
days, and GBH was administered simultaneously.

Our results indicated that GBH successfully ameliorated
depressive-like behaviors in reserpine-treated mice, as indi-
cated by significant reductions in immobility time in the
FST and TST. Furthermore, our findings demonstrated that
such decreases were not due to increases in spontaneous
locomotor activity (Supplementary Material 1). However,
GBHdid increase the distance traveled in theOFT, indicating
that GBH can suppress anxiety-related behavior in mice with
reserpine-induced depression.

Reserpine blocks amine storage processes, which leads
to increased hippocampal excitability and blood corticoid
levels. Previous studies have demonstrated that reserpine
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Figure 7: Effect of Gyejibokryeong-hwan (GBH) on hippocampal BDNF and p-CREB, as measured using immunofluorescence, in mice with
reserpine-induced depression. Frozen hippocampal sections were analyzed based on immunofluorescence using (a) BDNF (green) and (b)
p-CREB (green) antibodies. DAPI (blue) was used to visualize nuclei. Data are representative of three independent experiments and are
presented as the mean ± standard deviation (SD) (one-way ANOVA; #p < 0.05, ###p < 0.001 versus normal; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <
0.001 versus control). BDNF: brain-derived neurotrophic factor; p-CREB: phosphorylated cAMP response element-binding protein.

alters the secretion of 5-hydroxytryptamine (5-HT) in the
brain [37]. In the present study, we observed that GBH treat-
ment significantly increased plasma serotonin levels while
significantly decreasing corticosterone levels in reserpine-
treated mice, relative to levels observed in control mice.
Although plasma serotonin levels may represent release
from both the central nervous system and platelets, GBH

is known to suppress blood aggregation—a process that
activates serotonin release [39, 40]. Thus, it is unlikely that
platelets represented the major source of serotonin release in
our study. Although the recovery of plasma serotonin levels
was significantly greater in theGBH-treated group than in the
control group, the relative serotonin level in the GBH-treated
groupwas still significantly lower than that in the naive group.
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The balance of extracellular catecholamines is a key mod-
ulator of inflammatory mediator production [38, 41]; there-
fore, we assessed the expression of proinflammatory cytokine
mRNA in the hippocampus. Our findings indicated that
GBH treatment attenuated reserpine-induced increases in the
expression of IL-1𝛽, IL-6, and TNF-𝛼mRNA in control mice.

An overproduction of proinflammatory cytokines can
impair neuronal structure and function, leading to deficits in
neuroplasticity [42]. BDNF and CREB are involved in neu-
ronal differentiation, survival, and synaptic plasticity—which
are associated with learning and memory—and in many
nervous systemdisorders, including depression [30].Western
blot and immunofluorescence analyses revealed that BDNF
and p-CREB expression in the hippocampus was greater in
GBH-treated mice than in control mice. Because treatment
with GBH at 300 and 500 mg⋅kg−1 resulted in gradual
decreases in BDNF levels, our findings suggest that the opti-
mal concentration of GBH for improving BDNF expression is
100 mg⋅kg−1. Such results may have been associated with the
pharmacokinetic properties of GBH, which is comprised of
extracts from five types of plants. Indeed, such properties are
often unpredictable inmulticompound herbalmedicines. For
example, an unidentified chemical compound in GBH may
exert adverse effects on BDNF levels beyond a certain thresh-
old, decreasing the efficacy of GBH treatment. Our data sug-
gest that GBH not only exerts regulatory effects on neuroin-
flammation but also influences BDNF expression in the brain.

Recently developed antidepressants include modulators
of neuroinflammation, oxidative stress, the hypothalamic-
pituitary-adrenal (HPA) axis, glutamate, opioids, the cholin-
ergic system, and neuropeptides (e.g., substance P, neuropep-
tide Y, and galanin). In addition, many studies have sought
to treat depression without side effects [43, 44]. Natural
medicines with anti-inflammatory and antioxidant proper-
ties are attractive targets because they have been effective in
treating neurodegenerative and autoimmune diseases, as well
as cancer. Moreover, they are associated with significantly
fewer side effects (e.g., St. John’s wort [Hypericum perfora-
tum]) [45, 46]. Toxicity studies have demonstrated that GBH
is safe at dosages up to 500 mg⋅kg⋅day−2, regardless of gender.
Furthermore, standardization results have been reported in
accordance with Ministry of Food and Drug Safety (MFDS)
guidelines [47].

5. Conclusions

Taken together, our results indicate that GBH treatment can
induce an antidepressant-like effect in mice with reserpine-
induced depression. GBH is composed of several herbs;
therefore, our results suggest that a multitarget approach can
be effective in treating depression with fewer side effects.
Further studies are required to determine the active com-
pound(s) in GBH, as well as the molecular mechanisms
underlying its regulatory effects on neuroinflammation and
HPA axis hyperactivity.
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We performed behavior test and ELISA in which normal
mice were treated with GBH at dosages of 100, 300, and
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500 mg/kg for 10 days. The GBH did not show a significant
effect in these experiments. Supplementary Material 1: effect
of Gyejibokryeong-hwan (GBH) on depressive-like behaviors
and the concentration of plasma serotonin and corticosterone
inmice. (a) Immobility time in the forced swim test (FST) and
(b) tail suspension test (TST); (c) total distance traveled in the
open-field test (OFT). All behavioral tests were conducted on
day 11.The concentration of plasma (d) serotonin and (e) cor-
ticosterone was determined by ELISA. Data represent mean
± SD (n = 6, one-way ANOVA). (Supplementary Materials)
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