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Simple Summary: Treatment decisions represent a significant dilemma for patients diagnosed
with prostate cancer. The prediction of early treatment failure would inform appropriate decision
making and allow the clinician and patient to consider appropriate primary treatments and adjuvant
therapies. We have developed and validated a serum biomarker-based model for predicting risk
of biochemical reoccurrence in prostate cancer after radical prostatectomy. This study shows that
the pre-operative biomarker PEDF can improve the accuracy of the clinical factors to predict risk of
biochemical reoccurrence. PEDF has anti-inflammatory effects impacting on cytokine production.
This non-invasive tool can be employed prior to treatment and demonstrates significant benefit over
current clinical practice, impacting on patients’ outcomes and quality of life.

Abstract: This study undertook to predict biochemical recurrence (BCR) in prostate cancer patients
after radical prostatectomy using serum biomarkers and clinical features. Three radical prostatectomy
cohorts were used to build and validate a model of clinical variables and serum biomarkers to predict
BCR. The Cox proportional hazard model with stepwise selection technique was used to develop
the model. Model evaluation was quantified by the AUC, calibration, and decision curve analysis.
Cross-validation techniques were used to prevent overfitting in the Irish training cohort, and the
Austrian and Norwegian independent cohorts were used as validation cohorts. The integration of
serum biomarkers with the clinical variables (AUC = 0.695) improved significantly the predictive
ability of BCR compared to the clinical variables (AUC = 0.604) or biomarkers alone (AUC = 0.573).
This model was well calibrated and demonstrated a significant improvement in the predictive ability
in the Austrian and Norwegian validation cohorts (AUC of 0.724 and 0.606), compared to the clinical
model (AUC of 0.665 and 0.511). This study shows that the pre-operative biomarker PEDF can
improve the accuracy of the clinical factors to predict BCR. This model can be employed prior to

Cancers 2021, 13, 4162. https://doi.org/10.3390/cancers13164162 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-9965-1510
https://orcid.org/0000-0001-5530-4915
https://orcid.org/0000-0001-7732-9443
https://orcid.org/0000-0002-5668-7046
https://doi.org/10.3390/cancers13164162
https://doi.org/10.3390/cancers13164162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13164162
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13164162?type=check_update&version=1


Cancers 2021, 13, 4162 2 of 11

treatment and could improve clinical decision making, impacting on patients’ outcomes and quality
of life.

Keywords: biochemical recurrence; calibration; Cox model; discrimination; model evaluation; pre-
diction models; prostate cancer; cytokine

1. Introduction

Radical prostatectomy (RP) represents a curative intent for localised prostate cancer;
however, 20–30% of patients will fail, developing biochemical recurrence (BCR) [1]. The
pre-treatment prediction of early treatment failure would inform appropriate decision
making and allow the clinician and patient to consider alterative primary treatments and
adjuvant therapies. Current clinical variables to inform outcome are pre-treatment PSA,
biopsy Gleason Score (bxGS) and clinical stage, but additional biomarkers are needed
to improve on their prediction. Commercially available tests for the prediction of BCR
include Oncotype DX, Prolaris and Decipher, but these are dependent on tissue biopsies,
introducing a sampling error [2,3].

Serum or urine biomarkers would overcome this and represent a less invasive ap-
proach to predicting BCR. To date, limited studies have identified serum biomarkers for
predicting BCR. Svatek et al. has identified preoperative biomarkers that improve the
accuracy of standard models associated with BCR after RP [4]. This supports the concept
that panels of blood-based proteins could improve on the prediction of BCR.

Prediction models have been widely used to aid clinical decision making. They mainly
are mathematical equations or algorithms that assign a level of risk using patient variables.
There are a range of time-to-event models that predict the duration of time expected before
an event (e.g., recurrence of a disease) occurs rather than predicting the risk of the event at
a specific time point (e.g., in logistic regression). The Cox proportional hazards model [5] is
the most commonly used regression model for modelling time-to-event data.

In our current study we undertook to investigate the ability of a panel of biomarkers
to predict BCR and build a model integrating the best biomarkers with the current clinical
variables that significantly improved on the current clinical decision-making tools to predict
3- and 5-year BCR. These biomarkers were selected from previous discovery studies carried
out in our laboratory [6] and have evidence for a role in cancer development. Insulin-Like
Growth Factor Binding Protein-3 (IGFBP-3) is a p53 tumour suppressor-regulated protein
and binds to IGF1, facilitating its transport in the circulation. Disruption of IGFBP-3 at
the transcriptional and post-translational levels has been implicated in the pathophysi-
ology of many cancers, including that of the prostate [7]. Apolipoprotein A-II (APOAII)
has been shown to be associated with pancreatic cancer [8]. APOAII is overexpressed in
prostate cancers and may be involved in cell proliferation and apoptosis [9]. CD14 is an
integral part of the innate immune system. CD14-positive tumours were shown to be more
vascularised in certain cancers, such as bladder cancer [10]. It has also been shown to be
released into the circulation and promote tumour-related inflammation. Vitamin D-Binding
Protein (VDBP/Gc-Globulin) binds Vitamin D and has been shown to increase the risk
of prostate cancer [11]. Zinc α2-glycoprotein (ZAG) has been identified by proteomics
in prostate tissue and urine, showing different concentrations in patients with prostate
cancer and benign prostate hyperplasia [12]. Pigment Epithelium-Derived Factor (PEDF)
has been identified as a mediator of inflammation and regulates macrophage activation [13].
It has been shown to stimulate macrophages to release tumour necrosis factor and
interleukin-1 [13] as well as inducing the migration of monocytes and macrophages [14],
contributing to the maintenance of chronic inflammation. Decreased Tumour-Associated
Macrophages is associated with prostate cancer progression [15]. Loss of PEDF could
lead to reduced immunological effects and lead to the progression of the tumour, leading
to BCR.
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The developed model was then internally and externally validated to evaluate its
predictive performance and avoid overfitting [16].

2. Patients and Methods
2.1. Patient Population and Sample Collection

Three radical prostatectomy (RP) cohorts were used (Table 1). The Norwegian cohort
was a selected group of patients consisting of an equal number of organ-confined and non-
organ-confined samples and Gleason 6, 7 and 8. The majority of men in all three cohorts
were Caucasian; no patients received neoadjuvant hormonal therapy or had a prior history
of pelvic radiotherapy, which were the exclusion criteria. The inclusion criteria for this
study included the availability of a preoperative serum sample, PSA, transrectal ultrasound
guided needle biopsy pathology reports and the corresponding radical prostatectomy
pathology report. BCR was defined as two consecutive PSA values >0.4 ng/mL, which
correlate best with clinical progression, metastasis and need for adjuvant therapy [17].

Table 1. Clinical characteristics of the patients by cohorts, and the univariate p-value for each clinical variable a.

Features Irish Austrian Norwegian p-Value b

Sample size (n = 577) 271 128 178

Pre-op

PSA
<0.001Mean (SD) 8.36 (4.74) 5.77 (4.73) 11.3 (7.25)

DRE
<0.001Normal 198 (73%) 107 (84%) 165 (93%)

Abnormal 73 (27%) 21 (16%) 13 (7%)

Biopsy Gleason Score

<0.001
6 132 (49%) 73 (55%) 56 (31%)
7 98 (36%) 47 (35%) 76 (43%)

8 and above 42 (15%) 13 (10%) 46 (26%)

Post-op

Gleason Score

<0.001
6 92 (34%) 37 (29%) 60 (34%)
7 135 (51%) 79 (62%) 59 (33%)

8 or above 40 (15%) 12 (9%) 59 (33%)

Stage
0.13Organ-confined 155 (57%) 78 (61%) 89 (50%)

Non-organ-confined 116 (43%) 50 (39%) 89 (50%)

Time to biochemical recurrence
<0.001<3 years 15.0% 29.3% 28.7%

<5 years 18.5% 37.8% 75.5%
a Statistics presented: mean (SD) or n (%). b Statistical tests performed: Kruskal–Wallis test; chi-square test of independence; log-rank test.

Blood samples were collected within three months prior to their RP and serum was
isolated and stored at −80 ◦C until analysis. All samples were transported to the Conway
Institute for analysis using established standard operating procedures. See ethical approval
and consent details below.

2.2. Biomarker Measurements

A multiplex antibody-based electrochemiluminescence assay was developed (Meso
Scale Discovery (MSD), Gaitherberg, MD, USA). Custom-made plates were generated. Five
serum-based biomarkers were assessed on a 5-plex, 96-well 7-Spot MSD microplate plate:
APOAII (Apolipoprotein AII, Abcam; ab20903, Cambridge, UK), CD14 (Cluster Differen-
tiation 14; RnD System DY383, Abingdon, UK), Gc-globulin (Vitamin D-Binding Protein;
ThermoFisher HYB 249-01B-005, Dublin, Ireland), IGFBP-3 (Insulin-Like Growth Factor Bind-
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ing Protein 3 DuoSet ELISA; RnD System DY675, Abingdon, UK) and ZAG (Zinc-alpha-2-
glycoprotein; Biotechne BAF4764, Dublin, Ireland). The second panel consisted of two serum-
based biomarkers: PEDF (Pigment Epithelium-Derived Factor; MSD W0060165) was assessed
on the Duplex 96-well 4-Spot MSD microplate plate and PSA (prostate-specific antigen; MSD
W0016950, Rockville, MA, USA), following on from previous studies in our laboratory [18].
The average detection ranges for each biomarker were APOAII = 480.2–1250,000 pg/mL,
CD14 = 61.93–58,500 pg/mL, Gc-Globulin = 87.2–1250,000 pg/mL, IGFBP-3 = 250–31,000 pg/mL
and ZAG = 1613–250,000 pg/mL. The average detection ranges for the 2 biomarkers were as
follows: PEDF = 6.21–500,000 pg/mL and PSA = 230.25–100,000 pg/mL. Internal pooled ref-
erence serum samples were also run. Samples were run as previously described [18] and
plates were read on an MDS plate reader (MESO Quickplex S120 microplate reader using
the MSD Workbench Software V2 (Rockville, MA, USA).

2.3. Statistical Method

Patient information used to build the model included the clinical risk factors (PSA,
Digital rectal examination (DRE) and biopsy Gleason Score (bxGS)) and serum biomarkers
identified previously by our group (CD14, IGFBP-3, APOAII, Gc-globulin, ZAG and
PEDF) [6]. The stepwise selection technique using R software [19] was applied to identify
the serum biomarkers that could predict time-to-BCR. A Cox regression model was used to
predict time-to-BCR using linear and nonlinear effects of the serum biomarkers.

The model discrimination is demonstrated using the Receiver Operator Characteristic
(ROC) curve and decision curve analysis [20] at 3 and 5 years. The discriminant ability of
the models was also numerically determined using the area under the ROC curve (AUC).
Comparison of AUC values took place via a method described by DeLong et al. [21].

The model calibration was tested using the Greenwood–Nam–D’Agostino goodness-
of-fit test [22]. Calibration plots were used to investigate how close the predicted probabili-
ties are to the actual probabilities using Frank Harrell’s method [23]. This method used
resampling techniques to get bias-corrected estimates of the predicted versus observed
values for Cox models.

Internal validation using the Irish cohort was performed using 10-fold cross-validation
to confirm that no patient was used to both develop and test the model. External validation
was performed to evaluate the model performance in the independent Austrian and
Norwegian cohorts. The validation technique for the Cox models proposed by Royston [24]
was used, which adjust the baseline survival function to the new cohorts. This adjustment
is crucial to assess the calibration of survival probabilities in the validation datasets since
the event probabilities are estimated relative to an unspecified baseline function [24].

Due to the short follow-up time for the large number of validation cases, the external
validation was only investigated at 3-year BCR. A second approach investigated a combined
dataset used to provide more validation sample cases. We combined the Irish, Austrian
and Norwegian cohorts and randomly selected 70% (346 samples) to generate a training set
for model development, and the remaining 30% (145 samples) to test the model using the
caret R package [25]. This approach provides sufficient data for model development and
validation at 3- and 5-year BCR. The results of the combined cohort are presented in the
supplementary data and described in the results section, as additional prospective studies
would be required to further validate these findings.

3. Results

The model for predicting BCR after RP was developed using the Irish cohort
(271 samples) and validated in the independent Austrian (128 samples) and Norwegian
(178 samples) cohorts. Figure 1 represents the cumulative probability of time-to-BCR
by cohort.
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The clinical characteristics grouped by cohort is shown in Table 1. The rate of 3-year
BCR across the three cohorts are 15% for Irish, 29.3% for Austrian and 28.7% for Norwegian,
and 18.5% for Irish, 37.8% for Austrian and 75.5% for Norwegian across the first 5 years
of follow-up. It should be noted that the Norwegian cohort have a higher rate of 5-year
BCR because they are a selected cohort, as previously published by Berge et al., for which
the rate of 5-year BCR is 27% [26]. The p-values for each clinical variable (Table 1) indicate
significant differences in the clinical variables (except stage) between the three cohorts.

The effect of the panel of biomarkers (APOAII, CD14, Gc-globulin, IGFBP-3 and ZAG)
combined with the clinical risk factors was investigated using the Cox model for the Irish
cohort. The variable selection technique identified the best combination of biomarkers to
integrate with either the classic three-tier ‘NCCN’ risk groups (low, intermediate and high)
(‘NCCNbio’) or the ‘Clinical’ variables (PSA, DRE and bxGS) (‘Clinicalbio’), respectively.
The effects of the risk factors on time-to-BCR for both models are given in Table 2.

The ‘NCCNbio’ model indicates that the intermediate-risk NCCN group and high-risk
NCCN group are expected to have 1.8- and 3.1-times higher risk of developing BCR over
time compared to the low-risk group, respectively. A 100,000 (pg/mL) increase in CD14
was also shown to increase the risk of BCR by 2%, while a 100,000 (pg/mL) increase in
PEDF was shown to decrease the risk of BCR by 17%.

The ‘Clinicalbio’ model indicates that a one-unit (ng/mL) increase in the logarithm
of PSA was shown to increase the risk of BCR by 163%, which is approximately a 2-
fold increase. The use of log transformation for PSA was shown to be essential in our
previous studies [27], where a change in smaller values of PSA is more critical. Patients
with abnormal DRE were shown to have a 23% higher risk of developing BCR over time.
Moreover, patients with a bxGS of 7 and 8 were shown to have a 1.5- and 3-times higher risk
of BCR compared to patients with a Gleason score of 6, respectively. PEDF is also identified
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as an essential marker in the ‘NCCNbio’ model where a 100,000 (pg/mL) increase in PEDF
was shown to decrease the risk of developing BCR by almost 20%.

Table 2. Summary of the ‘NCCNbio’ and ‘Clinicalbio’ models developed for the Irish cohort using the hazard ratio, 95%
confidence interval (CI) for the hazard ratio and p-value for the risk factors in the model.

Features
NCCNbio Clinicalbio

Hazard Ratio 95% CI p-Value Hazard Ratio 95% CI p-Value

PSA a - - - 2.628 (1.45, 4.75) 0.001

DRE
(Abnormal vs. normal) - - - 1.227 (0.62, 2.43) 0.556

Biopsy Gleason Score
(7 vs. 6) - - - 1.516 (0.73, 3.15) 0.265

(8 or above vs 6) - - - 2.99 (1.35, 6.65) 0.007

NCCN
(Intermediate vs. low) 1.808 (0.72, 4.54) 0.207 - - -

(High vs. low) 3.135 (1.33, 7.39) 0.009 - - -

CD14 (100,000 pg/mL) 1.02 (0.99, 1.05) 0.1 - - -

PEDF (100,000 pg/mL) 0.831 (0.70, 0.98) 0.03 0.801 (0.68, 0.95) 0.009
a The non-linear effect of the predictor using a log transformation.

Models with the NCCN risk groups (‘NCCN’) and the clinical variables, namely, PSA,
DRE and bxGS (‘Clinical’), were used as references for the ‘NCCNbio’ and ‘Clinicalbio’
models, respectively. A model including the effect of PEDF alone (‘Biomarker’) was also
included as an additional reference. Using cross-validation, the internal discriminate ability
of both models was compared numerically (Table 3A) and graphically (Figure S1) to their
references at 3- and 5-year BCR.

Table 3. The AUC for the ‘NCCNbio’ and ‘Clinicalbio’ compared to ‘NCCN’, ’Clinical’ and ‘Biomarker’ for the internal
validation using the Irish cohort (Panel A) and external validation using the Austrian and Norwegian cohorts (Panel B).

Models

(A) Internal Validation (B) External Validation

AUC at 3-Year
(Irish Cohort)

AUC at 5-Year
(Irish Cohort)

AUC at 3-Year
(Austrian Cohort)

AUC at 3-Year
(Norwegian Cohort)

NCCN 0.5335 0.5424 0.6958 0.5838

Clinical 0.6377 0.6777 0.6971 0.5174

Biomarker 0.5928 0.6236 0.5702 0.5330

NCCNbio 0.7058;
p-value (vs. NCCN) < 0.001 a

0.6968;
p-value (vs. NCCN) = 0.002 a

0.7065;
p-value (vs. NCCN) = 0.901 a

0.6224;
p-value (vs. NCCN) = 0.701 a

Clinicalbio 0.7076;
p-value (vs. Clinical) = 0.024 a

0.7531;
p-value (vs. Clinical) = 0.032 a

0.7659;
p-value (vs. Clinical) = 0.034 a

0.5877;
p-value (vs. Clinical) = 0.042 a

a DeLong test p-value.

The AUC for the 3- and 5-year BCR (Table 3A) for the ‘NCCNbio’ model (AUC of
0.7058 and 0.6968) demonstrates a significant improvement over the ‘NCCN’ (AUC of
0.5335 and 0.5424) model alone. The ‘Clinicalbio’ model (AUC of 0.7076 and 0.7531) also
demonstrates a significant improvement over ‘Clinical’ (AUC of 0.6377 and 0.6777) at 3
and 5-year BCR. The ROC (Figure S1A) and decision curves (Figure S1B) show that the
integration of the biomarkers with the clinical factors not only increased sensitivity and
specificity in almost all thresholds but also provided additional clinical benefit.

The Greenwood–Nam–D’Agostino test for ‘NCCNbio’ (p-value of 0.369 at 3 years and
0.610 at 5 years) and ‘Clinicalbio’ (p-value of 0.897 at 3 years and 0.691 at 5 years) indicate
that both models are well calibrated (Figure S1C).
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Using the independent Austrian and Norwegian cohorts, the external discrimina-
tion ability of the models compared to their references at 3 years is shown in Table 3B
and Figure 2. The AUC of the ‘NCCNbio’ model (0.7065 and 0.6224) has no significant
improvement over ‘NCCN’ (AUC of 0.6958 and 0.5838) for the Austrian and Norwegian
cohorts, respectively (Table 3B). However, the integration of the biomarker with clinical
factors in the ‘Clinicalbio’ model (AUC of 0.7659 and 0.5877) demonstrated a significant
improvement over ‘Clinical’ (AUC of 0.6971 and 0.5174). The ROC and decision curves for
the Austrian cohort on the top of Figure 2A,B demonstrates that the integration of PEDF
with the clinical risk factors (‘Clinicalbio’) increased sensitivity and specificity in almost all
thresholds and also provided additional clinical benefits (compared to the ‘Clinical’ model).

Cancers 2021, 13, x  7 of 11 
 

 

Biomarker 0.5928 0.6236 0.5702 0.5330 

NCCNbio 
0.7058; 

p-value (vs 
NCCN) < 0.001 a 

0.6968; 
p-value (vs 

NCCN) = 0.002 a 

0.7065; 
p-value (vs 

NCCN) = 0.901 a 

0.6224; 
p-value (vs 

NCCN) = 0.701 a 

Clinicalbio 
0.7076; 

p-value (vs Clini-
cal) = 0.024 a 

0.7531; 
p-value (vs Clini-

cal) = 0.032 a 

0.7659; 
p-value (vs Clini-

cal) = 0.034 a 

0.5877; 
p-value (vs Clini-

cal) = 0.042 a 
a DeLong test p-value. 

The AUC for the 3- and 5-year BCR (Table 3A) for the ‘NCCNbio’ model (AUC of 
0.7058 and 0.6968) demonstrates a significant improvement over the ‘NCCN’ (AUC of 
0.5335 and 0.5424) model alone. The ‘Clinicalbio’ model (AUC of 0.7076 and 0.7531) also 
demonstrates a significant improvement over ‘Clinical’ (AUC of 0.6377 and 0.6777) at 3 
and 5-year BCR. The ROC (Figure S1A) and decision curves (Figure S1B) show that the 
integration of the biomarkers with the clinical factors not only increased sensitivity and 
specificity in almost all thresholds but also provided additional clinical benefit. 

The Greenwood–Nam–D’Agostino test for ‘NCCNbio’ (p-value of 0.369 at 3 years 
and 0.610 at 5 years) and ‘Clinicalbio’ (p-value of 0.897 at 3 years and 0.691 at 5 years) 
indicate that both models are well calibrated (Figure S1C). 

Using the independent Austrian and Norwegian cohorts, the external discrimination 
ability of the models compared to their references at 3 years is shown in Table 3B and 
Figure 2. The AUC of the ‘NCCNbio’ model (0.7065 and 0.6224) has no significant im-
provement over ‘NCCN’ (AUC of 0.6958 and 0.5838) for the Austrian and Norwegian co-
horts, respectively (Table 3B). However, the integration of the biomarker with clinical fac-
tors in the ‘Clinicalbio’ model (AUC of 0.7659 and 0.5877) demonstrated a significant im-
provement over ‘Clinical’ (AUC of 0.6971 and 0.5174). The ROC and decision curves for 
the Austrian cohort on the top of Figure 2A and Figure 2B demonstrates that the integra-
tion of PEDF with the clinical risk factors (‘Clinicalbio’) increased sensitivity and specific-
ity in almost all thresholds and also provided additional clinical benefits (compared to the 
‘Clinical’ model). 

 
Figure 2. ROC curve (A), decision curve (B) and calibration plot (C) of the ‘NCCNbio’ and ‘Clinicalbio’ models externally
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The Greenwood–Nam–D’Agostino test for ‘NCCNbio’ (p-value of 0.286 of Austrian
and 0.008 of Norwegian) and ‘Clinicalbio’ (p-value of 0.121 of Austrian and <0.001 of
Norwegian) shows that both models are well calibrated to predict BCR for the Austrian
cohort but not for the Norwegian cohort. The calibration plots (Figure 2C) show that both
models generally give an overestimate for the chance of time-to-BCR at 3 years for the
Norwegian cohort.

We also undertook to combine the three cohorts (Irish, Austrian and Norwegian)
to give a larger sample size and build a separate model for predicting BCR. The model
was developed using 70% of the combined cohort (405 samples) and validated using the
remaining 30% of the combined cohort (172 samples). The clinical characteristics are shown
in Table S1. The p-values of the combined cohort in Table S1 show no significant differences
in clinical variables between test and train set (except for ‘Gleason Grade’).
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The model summaries for the combination of the selected biomarkers with either the
classic three-tier ‘NCCN’ risk groups (‘NCCNbio-s’) or the ‘Clinical’ variables (‘Clinicalbio-
s’) are given in Table S2.

The discrimination ability of the combined cohort is shown in Table S3A. This demon-
strates a significant improvement in the AUC values for ‘NCCNbio-s’ (AUC of 0.7329
and 0.7601) in comparison to ‘NCCN-s’ and ‘Clinicalbio-s’ (AUC of 0.7713 and 0.8332)
in comparison to ‘Clinical-s’ for both 3- and 5-year BCR. The ROC and decision curves
for the combined cohort in Figure S2 show that the integration of the biomarkers with
clinical factors has increasing sensitivity and specificity and provides additional clinical
benefit. The calibration plots also indicate that ‘NCCNbio-s’ (p-value of 0.168 and 0.457)
and ‘Clinicalbio-s’ (p-value of 0.856 and 0.716) are well calibrated at 3 and 5 years.

The external validation of the combined cohort also demonstrates improved discrim-
ination ability. The ROC and decision curves for the test set in Figure S3 show that the
integration of PEDF (which was the biomarker identified using the Irish cohort to build
the model and then validated in the Austrian and Norwegian cohorts, as above) into
the clinical risk factors (‘Clinicalbio-s’) increased the sensitivity and specificity, and also
provided additional clinical benefit. The Greenwood–Nam–D’Agostino test results for
‘NCCNbio-s’ (p-value of 0.335 and 0.107) and ‘Clinicalbio-s’ (p-value of 0.258 and 0.055)
indicate that both models are calibrated in the test set at 3 and 5 years (Figure S3).

4. Discussion

We have developed statistical models that combine biomarkers into the clinical vari-
ables to predict BCR. The clinical information was considered on their own (PSA, DRE
and bxGS) and also combined into the 3-tier NCCN [28], so they can be used as a tool for
treatment decision making.

The use of survival methods and the Cox model [5] were appropriate modelling
approaches. However, the initial analysis using logistic regression for 3-year and 5-year
BCR [29] identified PEDF as the important marker, which was in line with the finding of
the Cox model.

The methodology for validation of the Cox models was not straightforward as would
be for logistic models. This is mainly because the un-estimated baseline survival in the Cox
model is a vital component for the external validation. Royston [24] proposed an approach
to tackle this issue, which was used for our external validation.

Traditional biomarker studies build a model in one cohort and validate in an inde-
pendent cohort [30], which was the approach we undertook. However, due to the lack of
5-year follow-up in the individual cohort approach, we also undertook a combination of
the cohorts to generate a combined-cohort approach. Pooling data across the cohorts helps
to achieve a larger sample cohort, which allowed model validation at 5-year BCR [31,32];
however, additional prospective studies of these biomarkers will be required.

Our study demonstrated that the combination of PEDF with PSA, DRE and bxGS
improved the prediction of post-operative BCR in both the individual cohort and combined-
cohort studies. Previous studies by our group and others have demonstrated that the
integration of serum biomarkers improves prediction models [33–35]. PEDF has multiple
biological actions and is expressed by prostate epithelial and stromal cells [36]. Downregu-
lation of PEDF expression in prostate cancer has been linked to poor prognosis [37] and
the tumours metastatic phenotype [38]. It has been identified as a major antimetastatic
factor [39], which supports its role as a predictor of disease progression.

Robust methods, including the ROC curve, calibration and decision curve analysis,
were used to access model performance. The discrimination ability of the models is
presented at different thresholds; however, an optimal threshold needs to be chosen to make
the best clinical decision in practice. The selection of this threshold could be challenging
as it depends on a trade-off between a more sensitive or a more specific test [40]. Further
validation studies will be required to identify the best clinically accepted thresholds.
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5. Conclusions

This study shows that the pre-operative biomarker PEDF can improve the accuracy of
the clinical factors to predict BCR. The clinical and serum biomarker model can be employed
prior to treatment and could improve clinical decision making for the physician and patient
to choose the appropriate treatment, and this could impact on patients’ outcomes and
quality of life.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13164162/s1, Figure S1: ROC curve (A), decision curve (B) and calibration plot (C) of
the ‘NCCNbio’ and ‘Clinicalbio’ models internally compared with ‘NCCN’, ‘Clinical’ and ‘Biomarker’
models in the Irish cohort at 3-year (on the top) and 5-year (on the bottom), Figure S2: ROC curve (A),
decision curve (B) and calibration plot (C) of the ‘NCCNbio-s’ and ‘Clinicalbio-s’ models internally
compared with ‘NCCN’, ‘Clinical’ and ‘Biomarker’ models in the train set at 3-year (on the top)
and 5-year (on the bottom), Figure S3: ROC curve (A), decision curve (B) and calibration plot (C)
of the ‘NCCNbio-s’ and ‘Clinicalbio-s’ models externally compared with ‘NCCN’, ‘Clinical’ and
‘Biomarker’ models in independent test set at 3-year (on the top) and 5-year (on the bottom), Table S1:
Clinical characteristics of the patients in the train and test sets including the univariate p-value for
each clinical variablea, Table S2: Summary of the ‘NCCNbio-s’ and ‘Clinicalbio-s’ models developed
on the train set using hazard ratio, 95% confidence interval (CI) for hazard ratio and p-value for each
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