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Abstract

instances, term MSCs is used throughout the review.

Mesenchymal stem cells hold the promise to treat not only several congenital and acquired bone degenerative
diseases but also to repair and regenerate morbid bone tissues. Utilizing MSCs, several lines of evidences advocate
promising clinical outcomes in skeletal diseases and skeletal tissue repair/regeneration. In this context, both,
autologous and allogeneic cell transfer options have been utilized. Studies suggest that MSCs are transplanted
either alone by mixing with autogenous plasma/serum or by loading onto repair/induction supportive resorb-able
scaffolds. Thus, this review is aimed at highlighting a wide range of pertinent clinical therapeutic options of MSCs in
the treatment of skeletal diseases and skeletal tissue regeneration. Additionally, in skeletal disease and regenerative
sections, only the early and more recent preclinical evidences are discussed followed by all the pertinent clinical
studies. Moreover, germane post transplant therapeutic mechanisms afforded by MSCs have also been conversed.
Nonetheless, assertive use of MSCs in the clinic for skeletal disorders and repair is far from a mature therapeutic
option, therefore, posed challenges and future directions are also discussed. Importantly, for uniformity at all
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Background

Bone marrow stroma consists of heterogeneous cell pop-
ulations that assist the processes of bone homeostasis
and hematopoiesis [1, 2]. After hematopoietic stem cells,
among the stromal cell populations, bone marrow
mesenchymal/stromal stem cells (MSCs)-the non-
hematopoietic portion, are the second most extensively
studied population [3].

Mesenchymal stem cells (MSCs)

In 1970, Friedenstien first reported the presence of non-
hematopoietic stem cell population in bone marrow
stroma by culturing whole bone marrow in a culture
dish and by removing non-adherent cells—leaving behind
the adherent cells with fibroblast like morphology, cap-
able of forming discrete colonies and exhibit density in-
sensitive growth [4]. Initially, MSCs were studied

* Correspondence: hamid.pharmacy@pu.edu.pk

'Section of Clinical Pharmacy, University College of Pharmacy, University of
the Punjab, Allama Igbal Campus, 54000 Lahore, Pakistan

Full list of author information is available at the end of the article

( ) BiolMed Central

because of their pivotal role in creating hematopoietic
supportive micro-environment, but later came to prom-
inence owing to their role as precursors of skeletal tis-
sue/bone [5-7]. Friedenstein and colleagues were the
first to demonstrate the osteogenic potential of cells ob-
tained from the bone marrow stroma with stemness
characteristics [8].

Multi-lineage potential and pertinent tissue sources of
MSCs

Studies have demonstrated that these MSCs have the
ability to self-renew and are multi-potent in nature,
meaning that they can be expanded and form discrete
colonies of undifferentiated cells, yet retain the ability to
differentiate into different mesenchymal lineages such
as, osteoblasts, adipocytes and chondrocytes [9-12]. Fur-
ther studies revealed that MSCs can differentiate into
other lineages i-e., neurons, skeletal muscle [13] and
myocardium [14]. However, only small numbers of these
cells (MSCs) can be obtained from the bone marrow,
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accounting for about 0.001-0.01 % of the total bone
marrow cell population [10].

Characterization of MSCs

MSCs are characterized by the identification of surface
antigens/markers. In this regard, numbers of surface
markers (CD markers) have been identified to distin-
guish a stem cell population from other cell types in
various cellular compartments, including bone marrow.
There is a considerable accord that MSCs are negative
for hematopoietic surface markers: CD34, CD45, CD14
and positive for: STRO-1, CD29, CD73, CD90, CD105,
CD106, CD166, CD146, and CD44 [15, 16]. Among
these, some are used individually or in combination in
an attempt to obtain a more homogeneous population.
For example, STRO-1 alone or in combination with
CD106 (VCAM-I1), CD146 (MUCIS8) [17], CD271 (low
affinity nerve growth factor receptor) [18], CD18 (b-2 in-
tegrin) [19] and embryonic stem cell marker; SSEA-4
[20] has been employed for enrichment purposes. More
recently, several other markers were employed, alone or
in combination, to document their in vivo location and
nature, such as PDGFR-q, Nestin and a-SMA (2, 21, 22].
Though all these putative markers identified self-
renewing multi-potent MSCs like populations, yet, the
scientific community still lack considerable agreement
on a set of reliable and definitive markers that define
their in vivo nature and origin, thus, there is a need to
identify a more stringent and definitive set of markers to
identify MSCs in vivo.

Are MSCs isolated from various tissues the same?

Since a very low number of MSCs can be isolated from
bone marrow aspirates, attempts have been made to iso-
late MSCs like cells from other tissues, i-e., peripheral
blood [23], adipose tissue [24], umbilical cord blood
[25], synovial membranes [26], deciduous teeth [27],
liver [28, 29] and amniotic fluid [30]. However, despite
sharing some common properties (surface markers), as
enlisted by International Society for Cellular Therapy
(ISCT) guidelines, these various MSCs populations ex-
hibited differences in their differentiation potential and
gene expression profiles, when compared alongside [31].
Since their identification, significant differences among
MSCs isolated from various tissues have been reported,
such as differences in relative ease of propagation, differ-
entiation spectrum and expression of cell surface
markers (STRO-1, SSEA-4, CD27 and CD34) [32, 33].
Regarding the superiority of the isolate, Yoshimura et al.,
demonstrated that rat synovial MSCs (S-MSCs) are su-
perior than bone marrow, adipose, periosteum and
muscle derived MSCs in terms of colony and cell num-
bers coupled with low degree of invasiveness, sans any
complications at the donor site [34]. Furthermore,
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scientific community lacks considerable agreement re-
garding the molecular signature (surface markers) in ori-
ginal stromal vascular fractions and later during culture
expansion. In this regard, studies have shown that sur-
face markers expression is heterogeneous in original
stromal vascular fractions, such as low expression of
CD54, CD31 and CD34, followed by rapid transition to a
more homogeneous expression of CD 29, CD73, CD90
and CD105 [35]. However, the detailed description of
differences in MSCs populations, isolated from various
tissue compartments, is beyond the scope of this review.

Thus, further in this manuscript, we discussed pertin-
ent therapeutic mechanisms of MSCs in skeletal repair
and regeneration followed by therapeutic uses of MSCs
in skeletal diseases and skeletal tissue repair/
regeneration.

Afforded mechanisms of MSCs in skeletal disease and
tissue repair/regeneration

Mesenchymal stromal stem cells (MSCs) have been in
the clinical settings for the last 10 years. Thus, plethora
of literature reports were aimed at delineating the prob-
able mechanisms through which MSCs afford their clin-
ical attendance.

MSCs produce their tissue reparative role by migration
to the site of injury upon receiving specific signals [36].
In this context, several chemotactic factors, receptors
and growth factors have been identified utilizing diverse
tissue specific regenerative themes involving skeleton,
brain, liver and heart [37]. Notable chemotactic factors/
receptors reported so far include, SDF1-CXCR4 axis,
CX3CL1-CX3CR1 axis and LPA-LPA1 axis [38, 39].
Similarly, noteworthy cytokines include, IL6, TNF-a, and
IL1b, while participating growth factors are IGFI,
PDGF-BB, TGF-b and HGF [36, 38]. With the release
and expression of these signals, the circulating MSCs get
entrapped within the tissue vasculature, thus setting a
platform for MSCs homing which subsequently prolifer-
ate to offer specialized progeny vital for tissue repair and
regeneration [37, 40]. Despite considerable understand-
ing, the exact mechanisms of MSC homing to injured
tissue are still obscure.

Similar to migration, homing is dependent upon the
migratory abilities of MSCs to home at the site of injury
after transplantation. Homing is a multistep process-
involving cascade of events; nevertheless, the most crit-
ical step is the rolling ability of MSCs mediated by ex-
pression of receptors on the circulating cells with
subsequent engagement of relevant endothelial receptors
apt for tethering and cell rolling contacts with endothe-
lium, followed by activation of integrin base adhesive-
ness vital for adhesion of implanted cell to the
extracellular matrix of target tissue/organ [41].
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Another trademark of MSCs signifying its clinical
value in improved therapeutic outcomes, after trans-
plantation, is the induction of angiogenesis. Number of
preclinical and clinical studies has demonstrated the role
of MSCs in promoting angiogenesis by virtue of VEGE,
HGE, FGF2 and angiogenin [42, 43]. A very few preclin-
ical literature evidences exist that demonstrated the role
of MSCs in bone repair via angiogenesis. In this context,
Li et al, provided first preclinical evidence of MSCs
driven angiogenesis in rabbit avascular femoral head ne-
crosis model. Data demonstrated that intravenous injec-
tion of allogenic MSCs resulted in vascular and bone
regeneration attributed to the production of BMP, VGEF
and OPN [44]. More recently, MSCs have been genetic-
ally modified to produce osteogenic and angiogenic
growth factors, thus MSCs act as indigenous factories to
produce desired factors in a spatial and temporal fash-
ion—promoting bone regeneration [45].

Previously, it was a predominant belief that MSCs
exert their therapeutic effect by replacing damaged tis-
sue and promoting tissue regeneration [46]. Recently,
several lines of evidence suggested that administered
MSCs mediate their tissue protective effect mainly by
soluble paracrine factors or trophic factors [47-49]. Pre-
sumably, spatial and temporal release of these soluble
factors is influenced by injured tissue microenvironment
[49, 50]. Several of these factors secreted by MSCs are
critical mediators of angiogenesis and anti-apoptosis, for
example, VGEF, IGF1, bGFG, HGF, IL6 and CCL2 [51,
52]. Similarly, anti-inflammatory effects of MSCs are as-
cribed to their immune modulatory properties; presum-
ably by modulating inflammation associated immune
cells [53]. Furthermore, a pre-clinical study demon-
strated that after MSCs administration, serum circulat-
ing levels of pro-inflammatory cytokines, such as IL6
and TNF-a, were reduced with concomitant up-
regulation in serum circulating levels of IL10, an anti-
inflammatory cytokine [54].

Another important way by which MSCs take part in
tissue reparative process is via immunomodulation.
MSCs have been proposed to act by inhibiting the
process of differentiation of monocytes to dendritic cells
thereby preventing the presentation of the antigen to T-
cells [55]. Moreover, MSCs directly interrupt the prolif-
eration of T-cells by interfering with their division at the
GO/G1 cell cycle phase, opposing the actions of interleu-
kin (IL)-2.

Furthermore, MSCs immune modulatory effects are
mediated by acclimatizing natural killer cells to a tissue
microenvironment favorable for tissue repair and less
vulnerable to autoimmune rejection [56]. As per the
published data, MSCs have the ability to escape T cell
mediated lysis [57], however, the effects are not limited
to T cells, ensuing studies further demonstrated that
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MSCs can inhibit B cell proliferation, suppress natural
killer (NK) activation and modulate cytokine secretion
profiles by macrophages and dendritic cells [58, 59]. Fur-
thermore, of note, secreted prostaglandin E2 (PGE-2) is
considered a chief mediator in mediating most of the
immune modulatory effects by MSCs, such as anti-
proliferative effects on T and NK cells and modulating
soluble factors released by macrophages and dendritic
cells [54, 60].

Therapeutic applications of MSCs in skeletal diseases

A brief overview of skeletal disease related therapeutic
options offered by MSCs is shown in Fig. 1, while list of
clinical studies employing MSCs in the treatment of
skeletal diseases are listed in Table 1. In each type of the
disease, under review, only first and more recent preclin-
ical reports were discussed, followed by all the pertinent
human studies available to date.

Osteogenesis imperfecta

Osteogenesis imperfecta (OI) is a genetic prenatal dis-
order characterized by osteopenia leading to frequent
fractures, bone fragility, bone deformities, and short stat-
ure. The underlying cause is the defect in genes
(COL1al, COL1a2) producing type I collagen proteins
in osteoblasts [61-63]. Many preclinical studies have in-
dicated the feasibility of transplanting MSCs to treat
bony and cartilaginous disorders in animal models of OI
[64, 65]. In this regard, Pereira et al. infused MSCs ob-
tained from wild type mice into irradiated transgenic
(human mini-COL1AI) mice of OI exhibiting fragile
bone phenotype. The results of in-situ PCR showed sta-
tistically significant increase in bone collagen and min-
eral content along with the presence of donor derived
fibroblast like cells in various non-hematopoietic tissue
compartments (2 -12 %) including bone, cartilage and
calvaria. Similarly, they also conducted a parallel con-
trolled study by infusing the whole marrow cells [WMC]
into female mouse. In this case, despite minimal contri-
bution of fibroblasts (4-6 %), bone collagen was im-
proved significantly [66]. Since bone collagen was
improved in both MSCs and WMC group, the positive
contribution of non-hematopoietic portion in both the
groups in terms of clinical improvements is uncertain,
also due to imprecise mixing ratio.

Clinical evidences

The first clinical evidence of allogeneic stem cell trans-
plantation in type III OI came from the seminal work of
Horwitz and colleagues—transplanting un-manipulated
bone marrow from HLA identical siblings in affected
children [61]. The representative histological samples
demonstrated new bone formation after three months of
engraftment in bone [20, 61]. Moreover, affected children
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exhibited increase in growth rate and bone mineral content
with significant reduction in bone fracture frequencies, des-
pite poor osteoblast engraftment (<2 %) in bone [61]. Seem-
ingly, the analysis of donor cells engraftment, employed in
the study, was under represented due to limited number of
biopsies for histological analysis, yet, rather than engraft-
ment, the production of Collal protein having normal
proa polypeptide chain might have contributed towards the
reduction in bone fracture and improved growth rate. Be-
sides, Horwitz and co-workers performed further studies
employing a similar strategy. In ensuing studies of allogen-
eic bone marrow transplantation, one clinical study found
that the affected children (3 out of 5), after 3 months of
treatment, showed an increase of 45-77 % in total body
bone mineral content compared to controls [67]. Another
study employed six children, undergoing BM transplant-
ation, suggested that MSCs infusion is safe and cells do en-
graft in bone with subsequent increase in growth velocity
and mineralization [68]. Likewise, Le et al. in 2005 per-
formed allogeneic transplantation of MSCs, 6.5 x 10° cells
derived from HLA mis-matched male, injected via umbil-
ical vein in fetuses at 32nd week of gestation, having intra-
uterine fractures associated with severe OI. After preterm
delivery at 35th week, in a bone biopsy stained for osteocal-
cin and osteonectin specific probes, targeting centromeric
XY-chromosome, 0.3 % of X (17/6000) and 0.3 % of Y (4/
1600), the XY donor cells exhibited engraftment. Import-
antly, data demonstrated the engraftment of MSCs into
bone, even in immuno-competent and HLA incompatible
clinical situation [69].

More recently, a different approach was used in treat-
ing OI patients, i-e., prenatal allogeneic transplantation
of MSCs and postnatal boosting with MSCs from the
same donor. Data suggested that transplantation of
MSCs during prenatal life was associated with engraft-
ment of MSCs in bone and the beneficial effects started
to decrease with passing time—attaining original state.
Moreover, postnatal boosting (after 8 years) with MSCs
resulted in poor engraftment, though with improved lin-
ear growth velocity, mobility and fracture incidences
[70]. Thus, in conclusion, data from above mentioned
studies corroborate and agreed upon one basic point
that MSCs clinical use during prenatal and re-use during
postnatal life is safe with no overt toxicities. However,
despite minute percentages of MSCs, engrafted after
allogenic use in either HLA identical or HLA mis-
matched immuno-competent clinical states, MSCs ther-
apy is associated with significant reduction in fracture
frequencies coupled with improved bone growth and
mineral content. Nevertheless, the therapeutic efficacy of
MSCs therapy is notably affected during postnatal life
and is dependent upon various factors, such as, cell dose,
cell type, prior conditioning, prior injury and donor age.

Infantile hypophosphatasia

A rare inherited metabolic disorder of bones characterized
by atypical bone formation and significantly low levels of al-
kaline phosphatase in serum and bone due to loss of func-
tion mutation in tissue non-specific alkaline phosphatase
(ALP) gene [71, 72], resulting in impaired mineralization of
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Table 1 Clinical Studies Utilizing MSCs in the Treatment of Skeletal Disease
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References Sample

size

Cell type

Delivery route

Treatment outcomes

Osteogenesis Imperfecta

Horwitz et 3
al, 2001 [67]

Horwitz et 6

al,, 2002 [68]

Le Blanc et Prenatal

al, 2005 [69] female
fetus

Gotherstrom  Female

etal, 2014 fetus

[70]

IV Ol

55-6.2 x 10% cells per Kg, Allogeneic
bone marrow stromal cells (MSCs)

1-5 % 10° cells per Kg, MSCs transduced
with retroviruses

6.5 10° HLA mismatched fetal MSCs

30 % 10° cells per kg followed by
postnatal dose of 10 x 10° Human fetal

with type MSCs

Infantile Hypophosphatasia

Whyte et al, 8 mo old
2003 [75] girl

Cahill etal, 8 mo old
2007 [72] girl

Osteoporosis

Stenderup et 13
al, 2001 [76]

Osteoarthritis

Wakitani et 12
al, 2002 [91]

Centenoet 1
al., 2008 [93]

Pak, 2011 2
[92]

Davatchiet 4

al, 2011 [94]
Orozco etal, 12
2013 [95]
Joetal, 18
2014 [96]

Vega et al, 15
2015 [97]

2.1 % 10° followed by SCB of 2.92 x 10’
mononuclear cells per Kg recipient
weight, Haplo-identical marrow stromal
cells

Four bone fragments (2 mm x 10 mm)
+MSCs

1% 10° cells per cm?, MSCs from Bone

marrow aspirate

13107, Autologous MSCs

224x10°% MSCs in PBS + PL +
dexamethasone

8.3 cm?, mixture of Autologous ADSCs,
PRP, dexamethasone, hyaluronic acid

8-9x 10° Autologous MSCs

40 % 10°, Autologous MSCs

1.0 x 10° Adipose tissue derived MSCs

40 x 10° allogenic MSCs

Transplantation

Intravenous infusions, two
doses with 8-21 days apart

Intra-uterine injection

Intrauterine implantation at
31 weeks of gestation.
Thereafter, i.v infusion at
13 month age

Bone marrow transplantation

Two fragments
intraperitonealy and two
subcutaneously

Surgical implantation

Percutaneous injection

Intra-articular injection

Intra-articular injection

Intra-articular injection

Intra-articular Injection

Intra-articular Injection

Total body bone mineral content improved
from 45 % to 77 % above baseline. Growth
velocity improved. The rate of fractures reduced
as documented by radiographs.

Patients experienced significant improvement in
growth velocity without concomitant increase
in bone mineral content

X-ray absorptiometry showed 48 % skeletal
mineralization compared to age matched
counterpart

Patient was followed for her normal growth
trajectory with no alloreactivity from received
MSCs

Striking improvements were seen in skeletal
mineralization soon after SCB

Bone mineral contents were increased upto
46 % revealed by x-ray absorptiometry. No
change in serum alkaline phosphatase levels
was observed

Bone remodeling and turnover occurred at
faster rate in osteoporotic patients. However, it
was dependent on the continuous availability of
osteoprogenitor cells, growth factors and
hormones.

No significant improvement was seen on clinical
evaluation, Histological examination revealed
hyaline like cartilage

MRI showed improvement in volume of
meniscus and cartilage

At 12 week, significant improvement in pain
(more than 90 %) and flexion of knee was
experienced by patients. MRI revealed improved
cartilage thickness

Mild improvement in subjective and objective
symptoms was observed.

Algofunctional indices strongly indicated clinical
efficacy of injected MSCs. T2 mapping
demonstrated significantly improved cartilage
quality in 11 out of 12 patients.

6 months follow up showed reduction in
WOMAC score, MRI findings revealed reduction
in the size of cartilage defect

Significant improvements in algofunctional
indices versus controls and improvements in
the quality of cartilage as assessed by T2
measurements

MSCs mesenchymal stem cells, PBS phosphate buffered saline, MRI magnetic resonance imaging, SCB stromal cell boost, HLA human leukocyte antigen, PRP
platelet rich plasma WOMAC Western Ontario and McMaster Universities Arthritis Index
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skeletal tissues, causing osteomalacia or rickets [71]. How-
ever, the disease became more severe and debilitating if in-
heritance is autosomal recessive [73, 74].

Clinical evidences

Literature searches revealed only two clinical trials on pa-
tients with Hypophosphatasia (HPP). In this disease, it is
particularly important to investigate therapeutic effects of
marrow cell transplantation because defect lies in chon-
drocytes and osteoblasts [71, 72]. In 2003, Whyte and his
co-workers performed first clinical trial of T-cell depleted
haplo-identical marrow transplantation in 8 months old
girl suffering from infantile hypophosphatasia [75]. Three
months post-transplantation, she showed signs of clinical
improvements in form of skeletal mineralization and heal-
ing of rickets, nevertheless, her disease warrant another
booster dose of donor derived marrow cells which re-
sulted in clinical and radiological improvements—less wid-
ened growth plates, diminished metaphyseal irregularity
and improved bone mineralization. Also, the beneficial ef-
fects were attributed to the contribution of donor mesen-
chymal stem cells towards functional osteoblasts and
chondrocytes that presumably ameliorated her disease
[75]. However, skeletal biopsies were not taken to confirm
donor cell engraftment, probably due to nature and sever-
ity of the disease. Similarly, in 2007, Cahill et al. broad-
ened our understanding regarding combined therapeutic
approach, i-e., donor bone marrow transplantation
followed by donor bone fragment insertions in infantile
hypophosphatasia (IHPP). They enrolled a nine months
old girl with similar IHPP disease pattern as reported pre-
viously [72]. Out of six bone fragments harvested from
donor, four bone fragments were inserted in patient,
2 intra-peritoneally (ip), 2 subcutaneously, while 2
were used to culture tissue nonspecific alkaline phos-
phatase (TNSALP) replete osteoblasts for subsequent
transplantation. Data demonstrated improved skeletal
mineralization with donor cell engraftment detectable
even after twenty months of post transplantation [72].
However, they did not observe any systemic improve-
ments in TNSALP and PPi (inorganic pyrophosphate)
despite improvements in mineralization, proposing
that deliverance of TNSALP and PPi by donor cells
at active skeletal sites is more crucial rather than over
all corrections in systemic levels. Thus in conclusion,
MSCs do engraft and offer specialized cells boosting skel-
etal regeneration capacity, yet might not be expanded
enough to correct the systemic defects, nonetheless, could
sufficiently replace deficient proteins required to correct
the tissue (skeletal) specific anomaly.

Osteoporosis
Osteoporosis, a generalized age-related bone disorder, is
characterized by reduced bone mass, due to imbalance
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between bone formation by osteoblasts and bone resorp-
tion by osteoclasts, leading to bone fragility and in-
creased risk of fractures [76, 77]. Numerous literature
evidences suggest a plausible link between osteoporosis
and defects in MSCs proliferation, differentiation into
osteoblast and enhanced apoptosis [78—80]. However,
there is a dearth of literature evidences regarding the
use of MSCs in the treatment of osteoporosis in
humans, thus we discussed a recent preclinical study
and pertinent clinical studies. Number of studies has re-
ported the use of MSCs in animal models of osteopor-
osis [79, 81]. More lately, Tan et al. suggested a possible
mechanism of age related osteoporosis by comparing
MSCs from adult and young rats for their osteogenic po-
tential and reactive oxygen species production after cyc-
lic stress of mechanical loading [82].

Partial clinical evidence

Stenderup and his co-workers provided the first clinical
evidence [76], conducted on twelve females and one
male osteoporotic patients, aged 58-83 and 70 years, re-
spectively, regarding the effect of age related osteopor-
osis on MSC population. MSCs population from
osteoporotic and normal subjects was enriched using
STRO-1 to compare MSCs for their proliferative and
osteogenic potential. Data suggested that the number
and proliferative capacity of MSCs remain unchanged
between osteoporotic and normal subjects, thus other
factors might be responsible for impaired osteoblast
functions in osteoporotic patients [77]. Yet, MSCs iso-
lated from osteoporotic patients exhibited marked re-
duction in their responses, such as recruitment to
fracture sites and towards bone anabolic signals—BMP2
and BMP7 [83]. Similarly, MSCs isolated from osteopor-
otic patients demonstrated reduced responses to mito-
genic signals (IGF-1) along with the production of
extracellular matrix sans type 1 collagen, promoting adi-
pogenic differentiation of MSCs—fat overload at the ex-
pense of bone [84]. Despite, known multi-faceted
pathophysiology of osteoporosis ranging from one’s dis-
ease state, genetics, age and life style patterns, such as
stress, diet and physical activity—the effects of all these
factors on patient’s derived MSCs and its impact on cell
therapy is still obscure. Seemingly, in osteoporosis, dif-
ferentiation potential of MSCs remain unchanged, yet
their capacity to generate and respond to signals vital for
bone formation and induction, respectively, is reduced
compared to controls.

Osteoarthritis

Osteoarthritis [OA], common form of arthritis, is a de-
generative disorder of articular cartilage, involving
subchondral sclerosis and local synovial inflammation
[85, 86]. OA affects mainly elderly population above
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65 years of age demonstrating radiographic signs of dis-
eased cartilage [87, 88]. So far, there is no specific treat-
ment available to prevent or reverse the degenerative
process. However, current treatment goal is to reduce
pain and associated stiffness, which remains under-
treated [89]. In this theme, we will focus more on
reviewing clinical evidences rather than pre-clinical re-
ports due to sufficient number of available reports—
osteoarthritis and cartilage repair.

Clinical evidences

According to a published report, MSCs obtained from
OA patients exhibited marked reduction in proliferative,
chondrogenic and adipogenic potential [90]. To date,
clinical trials on humans employing MSCs for the treat-
ment of OA are in initial stages, nevertheless, an exten-
sive research is being conducted to investigate their
clinical benefits in OA. In 2002, Wakitani et al., in Japan,
conducted first clinical trial regarding the use of MSC in
OA [91]. A total of 24 patients were recruited with
osteoarthritic knees with prior high tibial osteotomy.
Out of 24, 12 patients served as a cell free control while
other 12 patients received MSCs suspended in collagen
gel into the femoral condyle articular defect, later cov-
ered by autologous periosteum. Of clinical importance,
the arthroscopic examination revealed better outcomes
in treated subjects compared to controls. However, the
signs of improvements were not clinically significant.
Nonetheless, in 2004, the same research group per-
formed further studies on treated patients and later dis-
covered MSCs embedded in collagen gel in the patellae
of two transplanted patients. Clinical benefits of the
transplanted MSCs were examined six months post-
transplantation, whereupon satisfactory outcomes were
obtained as per the improvements in pain and mobility—
corroborated by arthroscopy findings of improved cartil-
age repair by transplanted MSCs.

Pak (2011) reported the efficacy of autologous AD-
MSCs (adipose derived MSCs) obtained after processing
patient lipo-aspirates to transplant into lateral and med-
ial knee joint of OA patients, after mixing with hyalur-
onic acid, dexamethasone, calcium chloride and platelet
rich plasma. Magnetic resonance imaging (MRI),
12 weeks after the transplantation, revealed significant
improvement in the meniscus cartilage thickness located
on the knee joints with more than 90 % improvement in
pain [92]. Centeno et al. demonstrated a clinical case of
46 years old OA patient involving knee, complaining
pain and walking disability. Autologous MSCs were im-
planted percutaneously which resulted in significant me-
niscus cartilage regeneration, as evident by MRI, better
joint mobility and pain settlement [93]. However, in all
of the above studies, immune modulatory role was nei-
ther discussed nor considered to examine the role of

Page 7 of 15

transplanted donor cell in modulating pro-inflammatory
cytokines (II13, TNF-a etc.) in deterring cartilage
damage.

Likewise, Davatchi and co-workers [94] performed a
clinical trial on four patients to assess damage reversal
effects of transplanted MSCs in knee joints of OA pa-
tients. After in-vitro expansion, MSCs were injected into
the affected knees of each patient resulting in improved
disease symptoms in 75 % of the patients, i-e., ability to
climb stairs on visual analog scale. Furthermore, twelve
patients with chronic knee pain, refractory to conserva-
tive treatment, were treated with autologous expanded
MSCs by intra-articular injection (40 x 10° cells). Data
demonstrated significant improvements in cartilage
quality by T2 relaxation measurements as evidenced by
marked reduction in poor cartilage area [95].

More lately, Jo et al. evaluated the efficacy of trans-
planted AD-MSCs into the knee joints [intra-articular]
of 18 OA patients employing three escalating doses -
low (1 x 107), mild-dose (5 x 107) and high dose (1 x
10%) [96]. All the treatment outcomes were significantly
improved in high dose group, such as, Western Ontario
and McMaster Universities Osteoarthritis  index
[WOMAC] score, visual analog scale for pain, radio-
logical and histological outcomes, further corroborated
by arthroscopy findings with significant reduction in the
size of cartilage defect in medial femoral and medial tib-
ial condyles [96]. A more recent study by Vega et al.- a
randomized clinical trial to evaluate the safety and feasi-
bility of using allogeneic MSCs to treat osteoarthritis,
conducted on 30 patients, unresponsive to conventional
treatments, by dividing into 2 groups-test and control.
The test group received allogeneic bone marrow MSCs
(40 x 10° cells) by intra-articular injection, while the
control group received intra-articular injection of hya-
luronic acid at a single dose of 60 mg. Data demon-
strated a significant improvements in cartilage quality in
MSC treated patients as quantified by T2 relaxation
measurements [97]. Yet, none of the studies, mentioned
above, examined the donor cell engraftment to debilitat-
ing cartilaginous tissue or attempted to study the expres-
sion of various cytokines after MSCs transplantation.
Therefore, it is not clear whether the beneficial clinical
effects are due to donor cell differentiation, paracrine
factors or by modulating host derived pro-inflammatory
cytokines. However, data do suggest that allogenic MSCs
transplantation is a workable option in patients with
osteoarthritis.

Regarding cartilage repair, irrespective of OA,
Brittberg and co-workers first demonstrated autologous
chondrocyte transplantation in cartilage repair, in brief;
chondrocytes were obtained enzymatically from healthy
biopsy of articular cartilage, expanded in culture
followed by periosteal graft placement over the defect
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and subsequent injection under the periosteal flap. Data
demonstrated significant repair of the tissue along with
pain reduction and restoration of joint function [98].
With this promising clinical finding, several other
researchers follow suit and performed autologous
chondrocyte transplantation in cartilage repair with
promising outcomes — improved knee condition and
function resulting in better quality of life [99-101].
However, this approach has its demerits and limitation,
such as limited expansion of cultured chondrocytes.
Thus, later attempts were made using bone marrow
mesenchymal stem cells (MSCs) to repair articular car-
tilage defects. In this context, employing autologous
MSCs embedded in collagen gel, a successful attempt
was made to treat full thickness cartilage defect in fem-
oral condyle of an athlete. Seven months post implant-
ation, arthroscopy revealed smooth tissue formation at
the site of injury followed by histological confirmation of
the presence of hyaline like cartilage tissue and improve-
ment of clinical symptoms [102]. In ensuing studies,
one-step bone marrow derived cell transplantation ap-
proach was used in osteochondral lesions [103]. Simi-
larly, other research groups engaged mesenchymal stem
cells in reparative therapies. In one study MSCs were
seeded onto collagen plate and transplanted under the
grafted periosteoum. Six months post transplantation,
significant improvement in clinical symptoms was ob-
served which was further substantiated by histology and
imaging [104]. Another study by was conducted by Lee
and co-workers employing a minimal invasive technique,
arthroscopic micro-fracture, to repair cartilage in human
knee by injecting MSCs with hyaluronic acid. A total of
seventy patients were enrolled and segregated into two
arms; proposed (n=35), minimally invasive technique
and open technique (n=35). After final follow-up
(24.5 months), significant and comparable improve-
ments, evident by IKDC score (International Knee
Documentation Committee), Lysholm knee score, SF-36
physical component score and visual analogue score,
were observed in both the groups [105]. More lately,
Yamasaki and co-workers treated articular cartilage de-
fect of osteoarthritic knee using autologous MSCs sug-
gesting that postoperative clinical assessment scores
were better than pre-operative scores, however, the
histological examination revealed that the repaired car-
tilage did not resemble completely with hyaline cartilage
[106]. In all the studies discussed above, despite histo-
logical analysis via biopsy samples, donor cell engraft-
ment was not examined; nonetheless, it is pertinent to
mention that the use of growth factors, morphogens and
scaffolds enhancing cartilage differentiation and engraft-
ment is worth investigating. Moreover, use of biodegrad-
able scaffold, platelet rich fibrin, seems promising.
Seemingly, the cartilage repair and within group
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variation among patient therapy outcomes could be at-
tributed to differences in the condition of cartilage de-
fects at the time of treatment, physical numerals of
MSCs actually transplanted, age of the patient and in
built inter-individual variations. Additionally, it would be
interesting to perform a side by side comparison of dif-
ferent protocols and their effects on donor cell survival,
differentiation, engraftment and release of trophic fac-
tors to identify the most suitable scaffold apt for clinical
purpose.

Therapeutic applications of MSCs in skeletal tissue repair
and regeneration

List of clinical studies, reported so far, regarding clinical
benefits of MSCs in skeletal tissue repair and regeneration
is shown in Table 2. Similarly, macrograph, briefly describ-
ing the process, is depicted in Fig. 2. As discussed in disease
section, regenerative conditions were reviewed beginning
with first and more recent preclinical evidences followed by
pertinent clinical studies. Moreover, cartilage regeneration
portion has been discussed in Osteoarthritis portion.

Bone fractures

Mesenchymal/marrow stromal stem cells (MSCs) are
considered, among others, the attractive therapeutic
choices to repair long bone fractures [107]. Plethora of
preclinical evidences has demonstrated the reparative ef-
fects of autologous or allogeneic MSCs therapy in bone
fractures [108—110]. Khadiyala and co-workers reported
the first pre-clinical evidence of healing critical size de-
fects employing MSCs. They implanted ex-vivo ex-
panded syngenic MSCs, loaded on to hydroxyapatite/
tricalcium phosphate cylinders, into the femora of adult
rats that resulted in complete healing of 8 mm segmen-
tal defects after 8 weeks [108]. More lately, in rat model
of femur fracture, role of MSCs in healing bone fractures
was attributed to Sox11 dependent regulation of MSCs
differentiation and migration [111].

Clinical evidences
In clinical settings, Quarto and co-workers contributed
first report regarding the use of MSCs in the treatment
of large bone defects [112]. They employed a cell based
tissue-engineering approach, i-e., osteo-progenitor cell
isolation, ex—vivo expansion and subsequent loading on
hydroxyapatite scaffolds to treat three patients with large
bone defects. All patients demonstrated considerable im-
provement in limb function supported by clinical evidences
obtained via radiographs and computed tomographic scans,
revealing callus formation along the implants and appropri-
ate integration at the interfaces with the host bones.

Later studies further demonstrated the promising re-
sults of culture expanded autologous osteoprogenitors
loaded onto porous HA ceramic scaffolds in the repair
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Table 2 Clinical studies utilizing MSCs for skeletal tissue repair & regeneration

Type of Repair Studied Patients Cell type Delivery Outcomes
By route
Thoraco-lumbar ~ Faundez 4 Autologous bone marrow aspirate Surgical Both visual and histological analysis confirmed
spine fracture et al, seeded on MCM coated with implantation  replacement of resorbable matrix with new bone
2006 [131] hydroxyapatite
Mandibular Ueda et 14 3.5 ml of mixture of PRP, MSCs (1.0Xx  Injectable Successful induction of new bone occurred and
defects al., 2008 10”cells/ml), 500 ul of thrombin/ bone grafts  osseointegration within short period of time that can
[116] calcium chloride mixture via syringes  reduce the burden of patients
Posterior spinal  Gan et al, 41 MSC suspension - Evaluation of patients after 34.5 months showed
defects 2008 [127] results of satisfactory spinal in 95.1 % cases
Degenerative Orozco et 10 Autologous MSCs Intra-articular  In addition to safety and clinical efficacy, MSCs
disc defects al, 2011 injection therapy rapidly settled low back pain and disability
[133] with intact normal biomechanics
Anterior Behniaet 3 MSCs mounted on biphasic scaffolds  Surgical Computed tomography scans showed 51.3 % fill of
maxillary cleft al, 2012 with PDGF implantation  the bone defect calculated 3 months post-operation
defects [124]
Knee cartilage Leeetal, 70 Combination of Arthroscopic Intra-articular ~ Final follow up of 24.5 months revealed considerable
defects 2012 [105] microfracture, MSCs and hyaluronic injections improvements in Lysholm knee scale, mean IKDC
acid and visual analog pain scores. Advantages included
minimal invasiveness and validated safety
Intertrochanteric  Torres et 15 Autologous bone marrow stem cells  Surgical Weight bearing ability of hip and femur improved
Hip fractures al, 2014 concentrate implantation  after 90 days

[115]

IKDC international knee documentation committee, MSCs mesenchymal stem cells, PDGF platelet derived growth factor, PRP platelet rich plasma, MCM mineralized

collagen matrix

of critical size long bone defects [113, 114]. More lately,
Torres et al.,, [115] utilized centrifugation technique to
concentrate bone marrow aspirates having 200-2000
mesenchymal stem cells/mL-mixed with hydroxyapatite
matrix for implantation into the fracture site. Significant
improvement in Harris Hip Scores [HHS] and Visual
Analogue Pain Scale (VAS) was observed in the bone
marrow concentrate group compared to controls. Above
mentioned studies clearly demonstrated that HA scaffold
is preferred over other scaffolds, yet the number of pro-
genitor cells and exogenous factors, if any, lack consider-
able agreement. These findings clearly demonstrate that

the transplanted MSCs can contribute towards regener-
ation of critical size bone defects, however, none of the
study demonstrated the contributory percentage of
donor and host derived MSCs and process modulation
by autocrine and paracrine factors secreted by MSCs.

Cranio-facial defects

Several craniofacial structures such as the mandibular
condyle, calvarial bone and cranial suture have been engi-
neered from mesenchymal stem cells, growth factor, and/
or gene therapy approaches [116-118]. In 1998,
Krebsbach and his co-workers reported first pre-clinical
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evidence of bone tissue reparative therapy using mice os-
seous defect model-transplanting allogeneic MSCs loaded
onto gelatin sponges at the site of surgical defects. Data
suggested significant repair of surgical defect two weeks
after the transplant, attributed to osteogenesis by trans-
planted MSCs [119]. Recently, Jiang et al, in 2012,
employed a different approach in transplanting MSCs to
rabbit calvarial defect model, with and without osteogenic
induction, by using platelet rich plasma as a scaffold [120].
More lately, another study employing rat calvarial defect
model, MSCs (allogeneic) were loaded onto chitosan/al-
ginate/hydroxyapatite scaffold (CAH), with and without
BMP-2 impregnation. Data demonstrated significant
osteogenic differentiation of MSCs in CAH/BMP2 group
corroborated by in vivo findings [121].

Clinical evidences

In clinical settings, in 2004, Warnke and his co-workers
employed bone muscle-flap prefabrication technique to
reconstruct and replace subtotal mandible defect. Three-
dimensional computed tomography and computer aided
design techniques were used to create titanium mesh
cage, mimicking subtotal mandibular defect, filled with
bone fragments, bone morphogenetic protein 7 and
20 mL of autologous bone marrow aspirate having mes-
enchymal stem cells. The titanium mesh scaffold was
then implanted into latissimus dorsi muscle for
7 weeks—results demonstrated significant re-modeling
and mineralization (new bone formation), evident by
skeletal scintigraphy and CT scans [122]. Thereafter,
more studies were done with promising outcomes using
MSCs [123]. In one study autologous MSCs, 5 x 107,
mixed with platelet-derived growth factor and mounted
on biphasic scaffold-3 mm cubes of HA/TCP, were im-
planted at the site of alveolar defect, 3 months post-
operation, the defect fill was measured around 51.3 % in
alveolar pre-maxillary clefts [124]. Furthermore, using
slightly different approach of mixed bone marrow cell
population (TRCs, tissue repair cells), enriched for
CD90 and CD14, Kaigler and co-workers compared
guided bone regeneration (GBR) with TRC therapy for
the regeneration of craniofacial defect—osseous defect of
jaw. Ensuing therapy results demonstrated that osseous
defect after tooth extraction exhibited significant regen-
eration of alveolar bone in TRC group as evident by
clinical, histological, tomographic and radiological mea-
sures [125]. More recently, Sandor and co-workers re-
ported 13 diverse cases of cranio-maxillofacial hard
tissue defects, treated with autologous adipose derived
stem cells seeded onto resorbable scaffolds and in some
cases impregnated with BMP-2, which resulted in in-situ
ossification attributed to adipose derived stem cells
[126]. Unlike long bone fractures, in cranio-facial de-
fects, different scaffolds were employed along with
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different exogenous factors (BMPs, platelet rich plasma
and platelet derived growth factor) to promote skeletal
tissue regeneration, probably due to the type, shape and
size of defects, with the aim to attain specific con-
formation of a defective portion requiring regener-
ation. All these studies demonstrate improvement in
osseous defects and bone tissue regeneration, yet sans
any scientific evidence of the contribution of donor
dervied MSCs in bone tissue regeneration or the role
of MSCs derived secretory factors in improving bone
tissue defects.

Vertebral disk regeneration

Number of pre-clincal and clinical reports has demon-
strated the use of MSCs in the treatment of disc degen-
eration [127-129]. In this perspective, in a canine disc
injury model, Ganey and co-workers demonstrated
promising use of ADRCs in disc regeneration, as evident
by histology and biochemical analysis, the disc levels of a
group, receiving ADRCs with hyaluronic acid, resemble
the healthy controls proven by matrix translucency,
compartmentalization of the annulus and cell density in
nucleus pulposus [130]. Similarly, by transplanting adi-
pose tissue derived stromal stem cells (ADSCs) in rat
inter-vertebral degeneration (IVD) model, Jeong et al.
demonstrated significant restoration of annulus structure
and MRI signal intensity in ADSCs treatment group
compared to saline treated group, further corroborated
by positive antibody staining for collagen type II and
aggrecan of human origin [128].

Clinical evidences

In clinical practice, Faundez et al., in 2006, first reported
the use of autologous bone marrow aspirates impreg-
nated with collagen hydroxyapatite scaffold to produce a
bone fusion mass for the treatment of thoracolumbar
fracture. After transplantation, significant fusion of
bones was confirmed intra-operatively and by mechan-
ical adequacy of fusion mass, which was further substan-
tiated by histological examination of newly formed bone
with signs of membranous and enchondoral foci [131].
Furthermore, the first therapeutic intervertebral disc de-
generation therapy in humans, employing mesenchymal
stromal stem cells, was performed in 2010 by Yoshikawa
and his co-workers [132] by enrolling two female pa-
tients with lumbar spinal canal stenosis confirmed by
myelo-graphy and MRI. Autologous MSCs were expanded
ex vivo in autogenous serum and were transplanted percu-
taneously into the degenerative inter-vertebral discs. Two
years post-transplantation, significant improvements were
observed in MRI signal intensity, vacuum phenomenon
and degenerative symptoms employing radiography and
computer tomography [132]. Another pilot study enrolled
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ten patients with back pain and lumbar disc degeneration,
yet with intact annulus fibrosis. Patients were treated with
autologous expanded MSCs injected into pulposus area
and were evaluated after one year. Results demonstrated
rapid improvement of pain and disability within
3 months and water level was elevated at 12 month,
though disc height was not improved [133]. Seemingly,
culture expanded fraction contains more number of
MSCs than freshly isolated bone marrow aspirate, but
were less agile. However, the concept has to be con-
firmed in a side-by-side comparison. Moreover, it’'s not
clear which type of donor cell contributed towards the
improvements, so that a specific cell type can be
enriched and expanded ex vivo to achieve more precise
therapy outcomes.

Repair of tendon and ligaments

There is scanty of clinical evidences regarding the use of
MSCs in tendon and ligament repair and regeneration.
However, this clinical condition is now gaining atten-
tions with numerous pre-clinical reports published dur-
ing the last decade. Autologous undifferentiated MSCs
have been shown to repair damaged tendon sans loading
scaffold evident by ultrasound scanning showing optimal
orientation of the repaired tendons [134]. Another study
employing rat model of enthesis degeneration, 45 days
post MSCs injection, showed significant healing and im-
proved load to failure response and load required to rup-
ture bone-tendon junction [135]. Recently, in racehorses
having digital flexor tendinopathy, the safety and regen-
erative capacity of MSCs to reduce re-injury rate was
assessed. Data suggested that after intra-lesional injec-
tions of MSCs, the re-injury rates were significantly re-
duced in racehorses with digital flexor tendinopathy
[136]. However, from studies it not clear whether chon-
drocytes or MSCs contributed majorly in the production
of collagen II and formation of enthesis, yet enthesis in-
duced by MSCs was of superior nature—suggesting that
MSCs were superior in regenerating enthesis than
chondrocytes, nevertheless, further investigations are re-
quired to confirm that the observed clinical improve-
ments were attributed either to the differentiation of
donor derived MSCs into chondrocytes or to host de-
rived chondrocytes induced by paracrine factors pro-
duced by donor MSCs.

To date, limited number of literature evidence is avail-
able regarding clinical use of MSCs in tendon healing
and regeneration. First clinical evidence of cell reparative
therapy in tendon repair did not employ MSCs rather
skin derived tendon-like collagen producing skin fibro-
blasts were transplanted for lateral epicondylitis [137].
Likewise, number of pre-clinical and clinical studies has
demonstrated the therapeutic usefulness of platelet rich
plasma (PRP) in treating injured ligaments and tendons
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[138], yet there is no clinical evidence that demonstrated
the use of MSCs in tendon and ligament repair in human
subjects, despite MSCs ex-vivo differentiation into tendons.

The demonic side of MSCs

Despite several therapeutic benefits of MSCs, plethora of
literature reports support the notion of MSCs related
un-wanted effects owing to their direct and indirect in-
volvement in cancer [139]. Moreover, the role of MSCs
in tumor modulation is still controversial; as many be-
lieve that MSCs can suppress tumor growth, while
others ascertain that MSCs may contribute to tumor
protection via anti-apoptotic effects and immune modu-
lation. In this context, Zhu et al, demonstrated that
bone marrow derived MSCs when grown in an in-vitro
three dimensional tumor microenvironment enhanced
the growth of ERa positive breast cancer cell lines
(T47D, BT474 and ZR-75-1) without affecting the ER«
negative counterpart (MDA-MB-231) [140]. Similarly, a
study by Sasser et al., revealed that subcutaneous trans-
plantation of human adipose-derived MSCs and human
fetal MSCs into BALB/c-nu/nu mice alone or together
with tumor cell lines F6 or SW480, supported the
growth of tumor cell lines [141]. More recently, it has
been demonstrated that MSCs interact with cancer stem
cells (CSC) in human cancer and regulate their self-
renewing capacity through cytokine networks involving
IL-6 and CXCL7 [142]. Moreover evidences, such as mi-
gration of MSCs towards metastatic sites, secretion of
chemokines promoting metastasis and their role in the
development of drug resistance in cancer cells further
confirm their demonic potential [143, 144]. Similarly,
immune-modulatory role of MSCs proved to be a double
edge sword benefiting patients with immune disorders
while the same effect can promote cancer cells growth—
evading variance checks [145]. However, a longer follow-
up is required to draw a final conclusion regarding
human MSCs’ tumorigenic potential, yet as per literature
evidences, clinical benefits overweighs their demonic ef-
fects in clinical practice and is subject to concurrence of
a tumorigenic condition.

More interestingly, studies have also shown that bone
marrow derived MSCs can worsen the natural course of
infection. One report by Meisel et al. showed that MSCs
obtained from mice may shift the macrophages to an
anti-inflammatory course, thereby suppressing inflam-
matory cytokine production and enhancing interleukin
(IL-10) production. Animals infused by these MSCs nor-
mally resistant to Mycobacterium tuberculosis showed
enhanced susceptibility to the disease [146].

Conclusion
Undisputedly, MSCs offer multitude of clinical benefits
in the treatment of skeletal disease along with repair and
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reformation of injured skeletal tissues. However, the
exact mechanism entailing their in-vivo therapeutic ef-
fects needs further elucidation. Likewise, the fate of
transplanted MSC:s is still obscure—variably regulated by
route, location and time of delivery. Moreover, from the
data, reviewed above, it is reasonable to conclude that
MSCs engraftment and differentiation into lineage spe-
cific cells, relevant for tissue repair, is not an absolute re-
quirement, since numerous ensuing evidences suggest
that, at some instances, even their presences as a
secretory recourse is sufficient for reparative effects.
More interestingly, their contribution as modulators in
appeasing donor stay, while minimizing the propensity
of donor rejection, is attaining much attention. However,
its not clear that how much immune modulation is
optimum for donor apt contribution in tissue repair and
regeneration. Similarly, there is no agreement among re-
searchers regarding uniform cell dose response relation-
ship, for a particular disease or degenerative condition,
suitable for lineage differentiation, release of trophic fac-
tors, immune modulation and repair supportive tissue
microenvironment-linked with ex-vivo expansion of
MSCs. Additionally, the presence of MSCs in many adult
tissues afford technical advantage of the availability of
multiple resources, however, they exhibit difference in
their surface marker profiles, differentiation potential
and gene expression profiles, hence not identical.
Despite tremendous progress in the field of MSCs
therapeutics—affording treatments for various diseases
and repair/reformation of degenerative tissues, still there
are un-resolved questions that beg further investigations.
Thus, the number of issues needs to be addressed before
MSCs can be utilized at clinician’s precise elections—
spatial and temporal control over lineage differentiation,
timely release of trophic factors, homing/migration to
injured or diseased site and duration of engraftment.
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