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Sporadic Creutzfeldt–Jakob disease is a rare fatal rapidly progressive dementia caused by the accumulation and spread of patho-

logically misfolded prions. Evidence from animal models and in vitro experiments suggests that prion pathology propagates along

neural connectivity pathways, with the transmission of misfolded prions initiating a corruptive templating process in newly encoun-

tered brain regions. Although particular regional patterns of disease have been recognized in humans, the underlying mechanistic

basis of these patterns remains poorly understood. Here, we demonstrate that the spatial pattern of disease derived from publicly

available human diffusion-weighted MRI data demonstrates stereotypical features across patient cohorts and can be largely

explained by intrinsic connectivity properties of the human structural brain network. Regional diffusion-weighted MRI signal

abnormalities are predicted by graph theoretical measures of centrality, with highly affected regions such as cingulate gyrus demon-

strating strong structural connectivity to other brain regions. We employ network diffusion modelling to demonstrate that the spa-

tial pattern of disease can be predicted by a diffusion process originating from a single regional pathology seed and operating on

the structural connectome. The most likely seeds correspond to the most highly affected brain regions, suggesting that pathological

prions could originate in a single brain region and spread throughout the brain to produce the regional distribution of pathology

observed on MRI. Further investigation of top seed regions and associated connectivity pathways may be a useful strategy for

developing therapeutic approaches.
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Introduction
Sporadic Creutzfeldt–Jakob disease (sCJD) is a fatal rap-

idly progressive dementia caused by the accumulation of

misfolded pathological prion proteins [scrapie prion pro-

tein (PrPSc)] throughout the brain. Prion deposition is

accompanied by a number of pathological hallmarks

including neuronal cell death, gliosis and spongiform

change (Manners et al., 2009). Because PrPSc is capable

of inducing conformational conversion of normal cellular

prion protein to PrPSc (Pan et al., 1993), introduction of

even a single PrPSc molecule may initiate a profound con-

version of cellular prion protein into pathological species

by positive feedback. Multiple lines of evidence suggest

that PrPSc spreads along neural connectivity pathways

(Fraser, 1982; Bartz et al., 2003), suggesting that intrinsic

properties of the brain structural connectome may influ-

ence the spatial patterning of disease. However, investiga-

tion of this hypothesis in humans has been limited by

patient heterogeneity, small datasets and paucity of ap-

propriate analytic techniques. As combined neuroimaging

and computational modelling approaches have been suc-

cessfully employed to explain disease patterning in neuro-

degenerative disorders such as Alzheimer’s disease (Raj

et al., 2012) and Parkinson’s disease (Pandya et al.,

2019), a similar approach may provide insight into the

mechanisms controlling spatial patterning in sCJD.

In recent years, there has been recognition that diffu-

sion-weighted MRI (dMRI) demonstrates marked abnor-

malities in sCJD (Shiga et al., 2004; Young et al., 2005)

and is important for accurate imaging-based diagnosis of

sCJD (Zerr et al., 2009). Areas of dMRI abnormality

have also been shown to correspond to pathological hall-

marks, demonstrating that dMRI is an imaging biomark-

er of sCJD pathology (Manners et al., 2009). Two

studies are particularly notable for their relatively large

number of CJD patients and high-quality dMRI data.

Vitali et al. (2011) analyzed dMRI from 48 sCJD

patients, and Eisenmenger et al. (2016) obtained data

from 37 sCJD patients. These two groups used essentially

the same regional brain parcellations and semi-quantita-

tive scoring schemes to report dMRI findings. Here, we

utilize regional dMRI data from these studies to investi-

gate factors that may control or mediate regional vulner-

ability to sCJD pathology and its spatial patterning

throughout the brain.

Using an analysis procedure that integrates regional

dMRI of patients with the structural connectome of

healthy subjects (which is used in the absence of an avail-

able CJD-specific connectome), we show that highly

affected brain regions demonstrate elevated interregional

connectivity, which may predispose to infection by propa-

gating pathological prion species. We ask whether the

spatial pattern of disease can be predicted from a disease
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spread process from a single brain region. To this end,

we employ network diffusion modelling (NDM) (Raj

et al., 2012), which mathematically encapsulates the

spread of prions along neural connectivity pathways as a

diffusion process on the structural connectome. It should

be noted that this mathematically defined diffusion pro-

cess is unrelated to dMRI, despite similar-sounding ter-

minology. Furthermore, dMRI was used here to compute

measures of the microstructural properties of grey matter

(GM) structures under disease conditions, and not, as is

typical in dMRI studies, as a means of computing the

loss of structural integrity of white matter fibres. In this

study, we do not consider whether and how white matter

architecture of the brain is altered in sCJD, focusing in-

stead on the spread of sCJD pathology along intact fibre

projections. By seeding the model at all possible brain

regions in turn, we show that the most likely seeds are

also those that demonstrate the most dMRI abnormality.

Specifically, we show that the top seed, in the posterior

cingulate gyrus, recapitulates the spatial pattern of path-

ology observed on dMRI.

Our findings are concordant with a mechanism in

which pathological prion species spread from a limited

area of the brain along neural connections, ultimately

producing a spatial pattern of disease governed by the

structural connectome. Further investigation of top seed

regions and associated neural connectivity pathways may

prove to be a useful strategy for therapeutic development.

Materials and methods

Subject cohorts

MRI data were obtained from two publicly available sub-

ject cohorts. The first cohort is from Vitali et al. (2011),

comprising 48 subjects from the University of California,

San Francisco. There are 23 male subjects and 25 female

subjects in this cohort, with a mean age of 63 years

(range 40–81 years). The mean time from symptom onset

to MRI scan was 8.5 months.

The second cohort is from Eisenmenger et al. (2016),

comprising 37 subjects from the UK, who were referred

to the National Prion Clinic. There are 23 male subjects

and 14 female subjects in this cohort, with a mean age

of 65 years (range 39–85 years). The mean time from

symptom onset to MRI scan was 5.7 months.

Mapping of dMRI signal
abnormalities

Average regional dMRI abnormalities were obtained from

the datasets published in Vitali et al. and Eisenmenger

et al. For Vitali et al., diffusion-weighted imaging (either

diffusion-weighted imaging with 3 diffusion-encoding dir-

ectional gradients or diffusion tensor imaging with 6 or

15 directional gradients) was acquired at 1.5 T on two

GE Signa scanners. The b value was 1000 s/mm2. Slice

thickness varied from 3 to 5 mm. The mean diffusion in

each region was visualized, and two neuroradiologists

(with experience of 4 and 20 years) rated each region for

the presence of abnormal hyperintensity, based on the ex-

tensive clinical knowledge of the normal appearance of

the brain on clinical MRI. Each region was assigned a

score of 0, 1 or 2 corresponding to the number of read-

ers rating it as hyperintense.

For Eisenmenger et al., diffusion-weighted imaging (ei-

ther diffusion-weighted imaging with 3 diffusion-encoding

directional gradients or diffusion tensor imaging with 64

directional gradients) was acquired on 1.5- or 3-T scan-

ners including the GE Signa LX and Siemens TIM Trio.

The b value was 1000 s/mm2. Slice thickness varied from

2 to 5 mm. Similar to Vitali et al., each region was

assigned a score of 0, 1 or 2 based on the appearance of

the average regional diffusion, where 0 indicates normal,

1 indicates mild hyperintensity and 2 indicates clear

hyperintensity; white matter was also used as an internal

reference standard.

For the purposes of this study, the scores from both

studies were considered analogous with a regional score

of 0 denoting normal, 1 denoting intermediate hyperin-

tensity and 2 denoting marked hyperintensity.

To facilitate joint analysis with the structural connec-

tome, regional dMRI abnormality scores were mapped

from the original 62 region atlases in each study to cor-

responding areas of the Desikan–Killiany atlas (Desikan

et al., 2006), filling 66 out of 86 possible regions.

Semantic matching was used as the initial mapping strat-

egy for each region (i.e. ‘caudate nucleus’ in the original

62-region atlas is mapped to ‘caudate nucleus’ in the

Desikan atlas). For regions mapping to more than a sin-

gle Desikan atlas region, the regional value was mapped

to each of the relevant Desikan regions (for instance val-

ues for ‘hippocampus–amygdala’ are mapped to both

‘hippocampus’ and ‘amygdala’ in the Desikan atlas).

Values for multiple regions mapping to a single Desikan

region were averaged (for instance values for ‘thalamus

anterolateral’ and ‘thalamus posteromedial’ were averaged

and the average value mapped to ‘thalamus’ in the

Desikan atlas).

Regional prevalence of dMRI signal abnormality is

defined as the proportion of patients who demonstrate

abnormal dMRI signal (i.e. score 1 or 2) for each region

in each study.

Glassbrain representations of dMRI signal and preva-

lence, as well as all additional variables rendered in this

way, display the variable of interest as a sphere centred

within the region with radius proportional to the value.

Structural connectome

Axial T1-weighted structural fast spoiled gradient-echo

scans (echo time ¼ 1.5 ms, repetition time ¼ 6.3 ms, in-

version time ¼ 400 ms, 15� flip angle, 230� 230� 156

Network mediation of pathology pattern in sCJD BRAIN COMMUNICATIONS 2020: Page 3 of 12 | 3



isotropic 1 mm voxels) and high angular resolution diffu-

sion imaging data (55 directions, b¼ 1000 s/mm2, 72 1.8-

mm-thick interleaved slices, 0.8594 mm � 0.8594 mm

planar resolution) were acquired on a 3-T GE Signa

EXCITE scanner from 73 fully consented young healthy

volunteers (40 men and 33 women, mean age 30 years)

under a previous study approved by the Weill Cornell in-

stitutional review board; for details of study protocols,

see Kuceyeski et al. (2013). Tractograms were extracted

from these 73 young healthy subjects to create the nor-

mative connectome for the study. The measure of con-

nectivity used here is the anatomical connection strength

(Iturria-Medina et al., 2008). The overall differences in

regional connectivity were normalized by a scaling factor

equal to the sum of the connections. Thus, the connec-

tion strength, ci,j, between ROIs i and j, was defined as

the anatomical connection strength score of streamlines

connecting the two GM regions i and j. We refer to this

network as graph G ¼ fV, Eg whose nodes �I 2 V rep-

resent the ith GM region, and edges ei,j 2 E represent

white matter fibre pathways whose connection strength is

ci,j. Connections are assumed to be bidirectional since dir-

ectionality is not deducible from diffusion tensor imaging

tractography data. A subset of the full connectome was

created using only the values for the 66 GM regions

mapped from the dMRI data.

Graph theoretical analysis of
structural connectivity

Graph theoretical measures of degree centrality, between-

ness centrality, eigenvector centrality and mean distance

were computed using the Matlab implementation of the

Brain Connectivity Toolbox (BCT; Rubinov and Sporns,

2010). The Pearson correlation coefficient r for regional

dMRI signal abnormality and each regional graph theor-

etical measure of interest was computed. To assess

whether significant correlations of regional dMRI signal

abnormality with betweenness centrality and mean dis-

tance were due to underlying correlations with degree

centrality, we created 103 random graphs from the con-

nectivity matrix with preserved degree distribution using

the Brain Connectivity Toolbox function ‘null_mode-

l_und_sign’ and then computed the Pearson correlation

coefficient r for dMRI signal abnormality and the graph

theoretical measure of interest. The mean of the resultant

sampling distribution of r was then calculated.

Regional transcriptional analysis

The genes encoding prion protein (PRNP) and mGluR8

(GRM8) were identified for regional transcriptional ana-

lysis. For each gene, data were obtained from the public-

ly available human Allen Brain Atlas (ABA; Hawrylycz

et al., 2012). The ABA includes 926 brain regions, with

each region having microarray expression levels from a

set of 58 692 probes that correspond to 29,181 distinct

genes. ABA samples were mapped to the 66-region subset

of the Desikan–Killiany atlas. All samples for all probes

within the same region were then averaged for each gene.

White matter tracts were excluded from analysis.

Expression for each gene was averaged for six subject

brains (which comprises data for six left hemispheres and

two right hemispheres; more information can be found at

help.brain-map.org/download/attachments/2818165/Norm

alization_WhitePaper.pdf).

Network diffusion modelling

sCJD disease progression is considered as a diffusion pro-

cess on the connectivity matrix C, referred to as the net-

work diffusion model (NDM) (Raj et al., 2012). Briefly,

the transmission of pathology from Region 1 to Region 2

is asserted to satisfy the equation dx1

dt ¼ bc1;2 x2 � x1ð Þ;
where x1 and x2 are pathology concentrations in the two

regions and b is a global diffusivity constant empirically

set to 0.15 (Pandya et al., 2019). Extending this relation-

ship to all regions i we define the regional pathology vec-

tor x tð Þ ¼ xi tð Þ
� �

, and the above equation becomes, after

appropriate normalization of the connectivity matrix by

node degree, dx tð Þ
dt ¼ �bHx tð Þ, where H is the graph

Laplacian H ¼ I �D�
1
2CD�

1
2:

The above linear differential equation has a closed-

form solution, in which the regional pathology vector x

at timepoint t is given by the equation x tð Þ ¼ e�bHtx0

where x0 is the initial state of the model at t¼ 0 (e.g. ini-

tial pathological insult). The NDM was separately initial-

ized at all possible seed regions such that x0 is 1 at the

seed region and 0 at all other regions. The Pearson cor-

relation coefficient (R) of the actual measured dMRI sig-

nal abnormality map with the NDM-predicted regional

pathology vector x tð Þ was calculated for each timepoint t

and for each seed region. The maximum R occurring

over all model timepoints t for each seed region was

determined and is considered as a measure of seed region

likelihood (SR). SR was also calculated for the top seed

region best NDM prediction and 104 random permuta-

tions of the true dMRI map, yielding ‘SRscrambled’.

Directional connectivity bias for the top seed region

right posterior cingulate gyrus was simulated by varying

the fraction of outgoing connections in the connectivity

matrix C from 0.01 to 1 in increments of 0.01. SR was

computed for each of the resultant directional models.

Following model initialization, we also calculate arrival

time for each non-seed region, defined as the time t at

which 98% of the maximum theoretical x tð Þ value in

that region is achieved.

Data availability

All data will be made available upon reasonable request.
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Results

Stereotypical disease pattern across
patient cohorts

Regional dMRI abnormalities have been reported for

sCJD patient cohorts in Vitali et al. (2011) and

Eisenmenger et al. (2016). Glassbrain representations of

regional dMRI abnormality prevalence in these two

studies are shown in Fig. 1A and B. The overall regional

pattern of disease is similar in these two cohorts, with

commonly affected areas including the cingulate gyrus,

superior frontal gyrus and caudate nucleus. There is a

substantial overlap in the top 20 most commonly

affected regions, with 13 of the same regions repre-

sented in the top 20 for each cohort (Dice coefficient

0.65) (Fig. 1C). Regional prevalence is significantly cor-

related across cohorts (r¼ 0.59, Fig. 1D), demonstrating

that there is a stereotypical pattern of sCJD pathology

despite significant heterogeneity within and across pa-

tient cohorts. There are some differences between the

cohorts despite the similar overall pattern, which may

be due in part to subject heterogeneity. The Vitali et al.

cohort exhibits more widespread pronounced dMRI

abnormalities, which may reflect a more advanced dis-

ease state, as the mean time of MRI scanning was

8.5 months from symptom onset versus 5.7 months in

Eisenmenger et al.

Furthermore, the prevalence of dMRI signal abnormal-

ity is very highly correlated with the magnitude of the

signal abnormality in the Eisenmenger cohort (r¼ 0.95,

Fig. 1D), suggesting that regions that are affected more

commonly are also affected more severely by prion

pathology.

Graph theoretical measures of
regional connectivity predict dMRI
signal

To investigate possible relationships between dMRI

abnormalities and regional interconnectivity, we com-

puted three different measures of network centrality as

well as the mean number of connections required to

reach the region of interest from another region (mean

distance) (Fig. 2). Degree centrality and betweenness cen-

trality are positively correlated with dMRI signal

(r¼ 0.42, P¼ 5.0 � 10�4 and r¼ 0.34, P¼ 5.6 � 10�3,

respectively), suggesting that highly affected regions have

more connections and are located in more interregional

pathways. The mean correlation of dMRI signal with

random graph betweenness centrality is only 0.04

(n¼ 103 random graphs), suggesting that the effect of

betweenness centrality is not only due to the underlying

degree structure of the structural connectivity matrix.

Eigenvector centrality is not correlated with dMRI sig-

nal (r ¼ �0.006, P¼ 0.96), suggesting that all

interregional connections are relevant, not just those to

other highly connected regions. Mean distance (i.e. topo-

logical path length) is negatively correlated with dMRI

signal (r ¼ �0.40, P¼ 9.3 � 10�4), possibly indicating

that highly affected regions are those that can be reached

from other regions via a fewer number of connections,

on average. However, the mean correlation of dMRI sig-

nal with random graph mean distance is �0.42, very

similar to the value of �0.40 derived from the true con-

nectivity matrix, suggesting that the underlying degree

distribution of the connectivity matrix drives this effect.

Together, these results suggest that highly affected regions

are also those with connectivity properties well suited to

receive and disseminate pathological prion species.

Regional expression of PRNP and
genetic modifier GRM8 does not
predict dMRI signal

Given that structural connectivity measures predict abnor-

mality in microstructural integrity measured on dMRI,

we sought to determine whether local genetic factors,

which may be considered as surrogates of innate regional

vulnerability to sCJD pathology, are also influential. To

this end, we computed average regional transcript abun-

dance from the ABA for PRNP (which encodes cellular

prion protein) and GRM8 (which encodes the metabo-

tropic glutamate receptor mGluR8), an sCJD GWAS gen-

etic modifier (Sanchez-Juan et al., 2015). We found that

PRNP expression is not correlated with dMRI signal

(Fig. 3A), suggesting that other factors are more import-

ant than PRNP transcript abundance in promoting re-

gional pathology. Similarly, GRM8 expression (Fig. 3B)

is uncorrelated with dMRI signal.

NDM predicts the spatial disease
pattern from single seeds

We next asked whether the regional pathology pattern

on dMRI can be predicted by NDM, which mathematic-

ally encapsulates the hypothesized mechanism of prion

propagation along neural connectivity pathways. A sche-

matic representation of the modelling approach is shown

in Fig. 4A. Using this methodology, we find that the

right posterior cingulate gyrus is the most likely seed re-

gion (seed region likelihood (SR) ¼ 0.53, P¼ 5.4 �
10�6). To assess whether the best fit NDM prediction is

likely to achieve this level of correlation with the dMRI

map by chance, we repeatedly randomly permuted the

dMRI map vector and calculated the resultant SR

(SRscrambled) from the permuted dMRI map. We find

that the mean SRscrambled is �0 (mean ¼ 4.7 � 10�4,

standard deviation ¼ 0.12) while the maximum

SRscrambled is 0.47, less than the true SR derived from

the non-permuted dMRI map (Fig. 4B). This suggests

that the high SR observed for the top seed region is
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unlikely to be due to chance similarity between the

NDM prediction and dMRI map (true SR z-score

derived from the SRscrambled distribution ¼ 4.4, P¼ 9.8

� 10�6).

The next three top seed regions are also located with-

in the cingulate gyrus (SR ¼ 0.50–0.44), suggesting

that this region serves as a critical disease epicentre

in controlling the regional pattern of disease. The

remaining top 10 seed regions are listed in Fig. 4B.

We find that dMRI signal and prevalence are highly

correlated with SR (Fig. 4C), indicating that commonly

and severely affected regions are those identified as

Figure 1 Stereotypical disease pattern across patient cohorts. (A) Glassbrain depiction of abnormal dMRI signal prevalence across 66

regions in the Eisenmenger et al. cohort (n¼ 37 patients). The radius of the sphere centred at each region is proportional to prevalence. (B)

Similar regional distribution of prevalence in the Vitali et al. cohort (n¼ 48 patients). (C) Top 20 most commonly involved regions in the

Eisenmenger et al. and Vitali et al. cohorts. Regions that are represented in both sets are shown in orange. (D) (Left) Scatterplot of Eisenmenger

et al. prevalence versus Vitali et al. prevalence, demonstrating a significant correlation. (Right) Scatterplot of prevalence versus dMRI signal in the

Eisenmenger et al. cohort, demonstrating a strong correlation.
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likely seed regions by our unbiased modelling

methodology.

NDM prediction from the posterior

cingulate recapitulates the spatial

pattern of disease

We further investigated the spatial pattern of disease pre-

dicted from single model seeding at the right posterior

cingulate gyrus. Visual inspection of the overall spatial

pattern of dMRI abnormality predicted by NDM verifies

close approximation to the measured dMRI abnormality

map (Fig. 5A and B). Predicted dMRI abnormality is

more conspicuous in the right hemisphere, reflecting uni-

lateral seeding (SRRight ¼ 0.55, P¼ 8.6 � 10�4, n¼ 33

right-sided regions). However, a similar pattern of disease

is evident in the left hemisphere with relatively smaller

average dMRI abnormality (SRLeft ¼ 0.53, P¼ 1.5 �
10�3, n¼ 33 left sided regions). Seeding at the bilateral

posterior cingulate gyrus improves SR only to 0.55 from

0.53 for unilateral seeding at the right posterior cingulate

gyrus, indicating that bilateral seeding is not substantially

more plausible than single region seeding.

We performed an additional simulation using an

expanded connectome defined on the full 86-region

Desikan–Killiany atlas to determine whether disease

propagation in GM regions not assessed by dMRI could

alter our results. We obtained similar findings with right

anterior cingulate gyrus as the top seed region (SR ¼
0.48) and right posterior cingulate gyrus as the second

ranked seed region (SR ¼ 0.44). Left anterior and poster-

ior cingulate gyri were the next ranked seeds (SR ¼ 0.43

and 0.42, respectively), again reinforcing an important

role for cingulate gyrus in the disease process.

Simulated influence of directional

connections on NDM prediction

We next asked whether the model is influenced by dis-

proportionately directional connections to the top seed re-

gion since directional interregional connections are

abundant in the brain, but largely inaccessible to empiric-

al tractography (Leopold et al., 2014). We performed

NDM simulations seeded at the right posterior cingulate

gyrus with fractional outgoing connection directionality

from this region varying from 0.01 to 1 (Fig. 5D). As

our results thus far have used a nondirectional

Figure 2 Graph theoretical measures of regional connectivity predict dMRI signal. Glassbrain representations of connectivity

measures and scatterplots of each measure with dMRI signal. (A) Degree centrality and (B) betweenness centrality are positively correlated with

dMRI signal. (C) Eigenvector centrality is not significantly correlated with dMRI signal. (D) Mean pathway distance to each region is negatively

correlated with dMRI signal, but the correlation coefficientis similar to that derived from random graphs.
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connectome (fractional outgoing connections ¼ 0.5), we

sought to determine whether model fit could be improved

or degraded by varying directional connectivity bias from

the top seed region, right posterior cingulate gyrus. We

find that increasing retrograde connection bias improved

model fit from the nondirectional model with SR

approaching 0.6. In contrast, increasing anterograde bias

degraded model fit significantly with SR approaching 0.2

with purely outgoing connections arising from the top

seed. However, we do note that model fit degradation is

probably more sensitive to increasing outgoing connection

strength, as outgoing connections influence the model tra-

jectory immediately in its timecourse. Incoming connec-

tions must exert their influence after seeded pathology

has been transmitted to another region and back to the

top seed, forming a loop.

NDM temporal spread predicts
regional dMRI prevalence

We next asked whether the prevalence of dMRI signal

abnormality can be predicted by the NDM temporal pat-

tern of disease evolution. To this end, we quantify NDM

‘arrival time’, defined as the model timepoint at which a

given region achieves 98% of its maximal dMRI signal

abnormality following seeding at the right posterior cin-

gulate gyrus. In this context, regions with smaller arrival

times are those that are affected earlier due to misfolded

prion propagation from the top seed region. We find that

prevalence correlates negatively with arrival time (r ¼
�0.47), suggesting that regions affected earlier in the dis-

ease process more commonly exhibit dMRI

abnormalities.

Discussion
Here, we demonstrate that the regional pattern of sCJD

pathology on neuroimaging can be substantially explained

by a network spread process originating in a single brain

region. Using graph theoretical analysis of the structural

connectome, we show that highly affected brain regions

are also highly connected to other brain regions. Top

seed regions such as the posterior cingulate gyrus are

thereby optimally positioned to serve as both accumula-

tors and propagators of prion pathology via interregional

connections. Previous graph theoretic studies of other

dementias have reported the existence of such disease

‘epicentres’, which may anchor diverse proteinopathies

(Seeley et al., 2009; Zhou et al., 2012).

While a graph theoretical framework has been

employed to gain insight into various forms of neuro-

pathology including neurodegenerative disorders (Raj

et al., 2012; Mezias et al., 2020), trauma (Caeyenberghs

et al., 2012) and ischaemia (Crofts et al., 2011), we are

not aware of any prior studies utilizing this approach in

prion disorders. The proposed molecular mechanism of

prion disease pathogenesis and intercellular spread is ef-

fectively translated to the macroscopic scale using our

graph theoretical and NDM approach. Indeed, here, we

show for the first time that macroscopic features of sCJD

visible on neuroimaging can be explained by interregional

structural connectivity and accurately modelled by assum-

ing that disease propagation from a single region can ex-

plain the global pattern of pathology. Our results are

compatible with a scenario in which a single misfolded

prion could cause a devastating cascade of pathology

that involves numerous brain regions.

These findings are particularly important in light of re-

cent work on the trans-neuronal spread of tau in

Alzheimer’s disease, as they provide strong verification of

this mechanism using human imaging data in the canon-

ical trans-neuronal disease process. For example,

Franzmeier et al. (2019) recently showed an association

between functionally connected regions and the regional

burden of tau as assessed by PET. The same group re-

cently extended these findings to show that regional

increases in tau over time are predicted by changes in

connected brain areas (Franzmeier et al., 2020). Similar

to the findings in our study, strongly connected regions

were found to be particularly susceptible to tau accumu-

lation (Cope et al., 2018; Hoenig et al., 2018), suggesting

Figure 3 Regional expression of PRNP and genetic

modifier GRM8 does not predict dMRI signal. (A) Glassbrain

representation of PRNP regional transcript abundance and

scatterplot with dMRI signal. There is no significant correlation

between dMRI and PRNP expression. (B) Glassbrain

representation of GRM8 regional transcript abundance and

scatterplot with dMRI signal. There is no significant correlation

between dMRI and GRM8 expression.
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that such regions may serve as critical accumulators and

disseminators of pathological proteins.

Furthermore, the predictive accuracy of our NDM

results are on par with those cited in other recent studies

of Alzheimer’s disease (Acosta et al., 2018) and

Parkinson’s disease (Pandya et al., 2019), despite the use

of much larger patient cohorts and fully quantitative

MRI target measures of pathology in these studies. This

may indicate that NDM may offer even more powerful

predictive capacity in future studies that utilize single sub-

ject data, CJD-specific structural connectivity or more

quantitative measures of dMRI abnormalities.

The central role of the cingulate gyrus in sCJD is intri-

guing. We note that the top seed region, the right poster-

ior cingulate gyrus is (along with the left posterior

cingulate gyrus) the most highly connected region in our

66 region brain parcellation as measured by degree cen-

trality. Three of the four regions with the largest connec-

tion strengths to this region are also top eed regions—the

left posterior cingulate gyrus, right anterior cingulate

gyrus and right superior frontal gyrus. These areas likely

comprise a core network within the brain that accumu-

lates prion pathology and promotes its spread within and

beyond the network in the early disease state.

Our modelling approach is compatible with known fea-

tures of prion pathology at the mesoscopic and micro-

scopic levels. We find that the regional pathology pattern

can be predicted using only a single brain region as a

pathology seed. This is in accordance with the hypothesis

that a single misfolded prion could initiate mass conver-

sion of normal species by corruptive templating. Evidence

showing that prions can be transmitted along neural con-

nectivity pathways is also compatible with our model.

We find a likely role for both retrograde and anterograde

connections from the top seed region posterior cingulate

gyrus, in accordance with biochemical data demonstrating

that prion-containing vesicles can undergo both antero-

and retrograde axonal transport via kinesin- and dynein-

dependent mechanisms (Encalada et al., 2011). However,

incoming connections seem particularly important as sim-

ulating an increase in the fraction of incoming connec-

tions improves model fit. This may suggest that the

Figure 4 NDM predicts the spatial disease pattern from single seeds. (A) Schematic representation of our analytical approach. The

disease process is modelled as a diffusion process on the structural connectome with a single pathology seed region. The best fit NDM dMRI

prediction from the model for each seed was used to calculate the correlation with the measured dMRI map, yielding SR (R). (B) (Left) The top

10 seeds from repeated seeding analysis are shown. The top seed is located at the right posterior cingulate gyrus (R¼ 0.53), which also

demonstrates high dMRI signal and prevalence. The next top three seeds are also located in cingulate gyrus. (Right) Scrambled SR cumulative

probability curves obtained from 104 permutations of the true dMRI map. The maximum SR for the unpermuted map is shown at the right curve

plateau. (C) Seed region likelihood is highly correlated with dMRI signal (left) and prevalence (right).
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posterior cingulate gyrus assumes a prominent role in the

disease process by aggregating misfolded prions from di-

verse connected brain regions.

We do not find a role for the regional transcription of

PRNP or GRM8 in predicting seed location. While tran-

script levels are informative, they are less relevant to cel-

lular function than protein levels and function. In this

case, there may be more important cellular factors that

lead to prion misfolding and accumulation than regional

variation in transcription. However, we note that data

from the ABA come from healthy normal subjects and it

is possible that subjects with risk factors for developing

sCJD may have differing transcriptional profiles that in-

fluence disease pathogenesis. In the future, transcriptomic

and proteomic analyses of sCJD subjects may provide

further insight into this issue.

Figure 5 NDM prediction from the top seed region recapitulates the spatial pattern of disease. (A) Triplanar glassbrain

representations of dMRI signal. A similar pattern of disease is recapitulated by seeding at the right posterior cingulate gyrus, r¼ 0.53 (B).

(C) Temporal evolution of the NDM for the top seed. The clipped curve is the dMRI prediction for the seed itself. Additional dMRI predictions

for the other brain regions are shown as separate curves. The timepoint of best NDM fit with the measured dMRI map is shown as a dashed line.

Inset is the correlation curve with the dMRI map, again with the dashed line showing the point of maximum correlation. (D) Seed region

likelihood for the top seed as a function of simulated directional connectivity bias. Connections to the top seed region were biased on a

spectrum from completely retrograde to completely anterograde and NDM was run on each of the resultant connectomes. Retrograde biased

connections produced similar R to the standard nondirectional connectome (dashed line), but anterograde bias reduced the model fit.

(E) Scatterplot of NDM arrival time from the top seed region and dMRI abnormality prevalence, demonstrating a negative correlation.
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There are several limitations to our study that warrant

discussion. The first is that regional dMRI signal in both

datasets utilized here are described with a simple 3-tier

scoring scheme. While this may prove useful for clinical

imaging applications and promotes inter-reader reliability

for neuroradiologists, it necessarily introduces compres-

sion of the dMRI dataset, and loss of potentially useful

information. Direct quantification of apparent diffusion

coefficient is an alternative consideration, but there are

also limitations to this approach including variability

across MRI scanners and magnetic field strengths. For in-

stance, a study directly quantifying apparent diffusion co-

efficient (Caverzasi et al., 2014) noted several

discrepancies between the findings using this approach

and those more firmly established by expert reader visual

analysis, possibly due to technical factors.

A second limitation is the relatively small number of

subjects. This is partially an inherent limitation of study-

ing a rare disease. Nonetheless, these datasets are limited

by the signal-to-noise ratio of dMRI and decreased power

in statistical hypothesis testing. Despite these limitations,

the robust effects we find here suggest that there is a

powerful mechanistic basis underlying the stereotypical

pattern of disease observed on MRI. Future work investi-

gating disease progression in individual subjects may pro-

vide further insight into the disease process. For instance,

while we find that right posterior cingulate gyrus is the

top seed region, it is likely that some subjects tend to ex-

hibit more disease in the corresponding contralateral re-

gion. Examining these differences in individual subjects

may improve prediction accuracy and reveal important

subgroups with prognostic or therapeutic implications.

A third limitation is that we have necessarily employed

a normative connectome derived from young healthy sub-

jects instead of CJD subjects, due to the lack of sufficient

multidirectional dMRI data from the CJD subject

cohorts. While using a CJD-specific connectome would

be ideal, there are reasons why using a normative con-

nectome is reasonable in its absence. The first is that

there is no published evidence of a gross difference in

overall structural brain network topology between

healthy people and CJD patients. The second is that a re-

cent study of NDM in Alzheimer’s disease demonstrated

that NDM predictions were not significantly different

when using an AD-specific connectome or the young

healthy normative connectome (Powell et al., 2018). We

hope to address this question for CJD in the future as

more data become available.

An additional issue is that while NDM provides accur-

ate predictions of the regional dMRI map based on

macroscopic structural connectivity, there are likely add-

itional factors that control regional sensitivity to prion

pathology that our model does not include. For instance,

we find that NDM underestimates the dMRI signal in

the caudate nuclei. This may reflect region-specific cellu-

lar factors that render this area particularly sensitive to

prion pathology, apart from its position in the structural

connectivity network. In the mouse brain, it has been

shown that there are specific regional distributions of dif-

ferent cellular prion protein isoforms (Beringue et al.,

2003), which may influence conformation conversion

rates and susceptibility to PrPSc-induced pathology.

Accordingly, analogous isoform distributions in humans

may in part explain disease patterning.

In summary, intrinsic properties of the structural brain

network can largely explain the regional pattern of sCJD

disease observed on MRI. Further investigation of top

seed regions and associated connectivity pathways may

provide insight into the early disease state and potential

therapeutic interventions. A more extensive understanding

of pathology patterning in sCJD may also inform future

studies of other diseases, which also likely involve trans-

neuronal spread of pathological proteins, such as

Alzheimer’s disease and Parkinson’s disease.
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