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Background and aims: Liver biomarkers and metabolic associated

fatty liver disease (MAFLD) have been shown to be associated with

cardiovascular disease (CVD). However, there is limited evidence on

CVD subtypes [myocardial infarction (MI), ischemic stroke (IS), and

intracerebral hemorrhage (ICH)], especially in the Chinese population.

We examined these associations overall, by genetic predisposition

to non-alcoholic fatty liver disease (NAFLD), and by lifestyle risk

factors.

Approach and results: This is a nested case-control study of CVD

(10,298 cases and 5,388 controls) within the China Kadoorie Biobank. Cox

regression was used to estimate adjusted hazard ratios (HRs) for CVD

associated with liver biomarkers and MAFLD and by stratum of genetic

risk and a combined high-risk lifestyle score. For liver enzymes, there

were positive associations with MI and IS, but no associations with ICH

or carotid plaque. There were positive associations of NAFLD with risks

of MI, IS, and ICH (HR 1.43 [95% CI 1.30–1.57], 1.25 [1.16–1.35], and

1.12 [1.02–1.23]) as well as carotid plaque (odds ratio 2.36 [1.12–4.96]).

The associations of NAFLD with CVD and carotid plaque were stronger

among individuals with a high genetic risk (ICH: p-interaction < 0.05),

while the associations with stroke were stronger among those with a

favorable lifestyle (p-interaction < 0.05). The results for MAFLD mirrored

those for NAFLD.
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Conclusion: In Chinese adults, liver biomarkers and MAFLD were associated

with risk of CVD, with different magnitudes of associations by CVD

subtypes. Genetic predisposition to NAFLD and lifestyle factors modified the

associations of fatty liver with stroke.
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liver enzyme, fatty liver disease (FLD), cardiovascular disease, genetics, lifestyle

Introduction

Cardiovascular disease (CVD) is one of the leading causes
of morbidity and mortality worldwide, especially in people over
50 years old (1). In China, there were 5.09 million deaths from
CVD in 2019, with stroke and ischemic heart disease (IHD)
ranking the top two causes of death (2). According to the Global
Burden of Disease in 2019, the age-standardized incidence rate
(ASIR) of stroke in China was much higher than that in Western
countries, so was the proportion of intracerebral hemorrhage
(ICH). Moreover, ICH and IS accounted for a similar number
of deaths in China, despite a three-fold higher incidence of IS.

Several liver biomarkers, including liver enzymes and fatty
liver index (FLI), have been reported to be associated with
CVD (3–11). Serum levels of liver enzymes, including alanine
aminotransferase (ALT), aspartate aminotransferase (AST),
and γ-glutamyltransferase (GGT), are important indicators
reflecting liver function and thus extensively measured in both
clinical settings and population-based studies. FLI, calculated
from triglycerides (TC), body mass index (BMI), GGT, and waist
circumference (WC), is widely used as a non-invasive test for
diagnosis of NAFLD in large-scale epidemiological studies (12).
A recent meta-analysis reported that NAFLD was associated
with increased risks of MI and IS (13). However, there is limited
evidence on the associations of liver biomarkers with CVD
subtypes (i.e., ischemic and hemorrhagic).

Previous prospective studies have shown a positive
association between metabolic associated fatty liver disease
(MAFLD), a newly suggested term to replace “non-alcoholic
fatty liver disease (NAFLD)” (14), and CVD, both in Caucasians

Abbreviations: ALT, alanine aminotransferase; ASCVD, atherosclerosis
cardiovascular disease; AST, aspartate aminotransferase; ASIR, age-
standardized incidence rate; BMI, body mass index; CDC, Chinese Center
for Disease Control; CFR, case fatality rate; CI, confidence interval; CKB,
China Kadoorie Biobank; CRP, C-reactive protein; CVD, cardiovascular
disease; FLI, fatty liver index; GGT, γ-glutamyltransferase; HBsAg,
hepatitis B surface antigen; HR, hazards ratio; ICD-10, International
Classification of Diseases, 10th Revision; ICH, intracerebral hemorrhage;
IHD, ischemic heart disease; IS, ischemic stroke; MAFLD, metabolic
associated fatty liver disease; MI, myocardial infarction; NAFLD, non-
alcoholic fatty liver disease; SD, standard deviation; SNV, single-
nucleotide variation; OR, odds ratio; TC, triglycerides; T2D, type 2
diabetes mellitus; UKB, UK Biobank; WC, waist circumference.

and East Asians (15–19). However, it is not clear whether
the associations with CVD differ for NAFLD and MAFLD.
Moreover, there is limited evidence whether the associations
differ by genetic predisposition to NAFLD or lifestyle factors.
Although a recent study in the UK Biobank (UKB) reported
that fatty liver disease-related genetic variants amplified the
health impact of MAFLD (16), the study was conducted
in the Western population and may not be generalizable
to the Chinese population, where substantial differences
exist in genetics, lifestyles, and CVD subtypes. Assessing the
associations between liver biomarkers and CVD may provide
a better understanding of disease etiology and inform disease
prognosis, while examining the interactions by genetic factors
or lifestyles helps identify individuals who may benefit most
from liver disease screening.

Therefore, we aimed to examine the associations of liver
biomarkers (i.e., liver enzymes and FLI) and MAFLD with CVD
subtypes and to assess whether the associations differ by genetic
predisposition to NAFLD or lifestyle factors.

Materials and methods

Study population

Details of the CKB (China Kadoorie Biobank) prospective
cohort study design, survey methods, population characteristics,
and long-term follow-up have been described elsewhere (20).
Briefly, 512,715 participants (male 41%) aged 30–79 years
were recruited into the study from 10 (5 urban and 5
rural) diverse areas in China during 2004–2008. Central ethics
approvals were obtained from the Chinese Center for Disease
Control (CDC) and the University of Oxford as well as
institutional research boards at the local CDCs in the 10 regions.
Written informed consent were obtained from all participants.
At local study assessment clinics, participants completed an
interviewer-administered, laptop-based questionnaire on socio-
demographic characteristics, smoking, alcohol consumption,
diet, physical activity, personal and family medical histories, and
current medication. A range of physical measurements were
recorded by trained technicians, including height, weight, hip
and WC, bio-impedance, lung function, blood pressure, and
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heart rate, using calibrated instruments with standard protocols.
Detailed descriptions of data collection on lifestyle risk factors
were shown in Supplementary Methods.

The present study excluded individuals with a prior history
of cancer (n = 8), cirrhosis or hepatitis (n = 203), positive
hepatitis B surface antigen (HBsAg) tests (n = 534), missing
values of any liver biomarkers (n = 1,136), and without
genotyping data (n = 616), leaving 15,686 individuals for the
main analysis (Supplementary Figure 1).

Nested case-control study of
cardiovascular disease

The current analysis was based in a nested case-control
study of CVD with clinical chemistry measurements among
18,183 participants. Cases were identified as those that had
an incident fatal or non-fatal event coded as International
Classification of Diseases, 10th Revision (ICD-10): I21-23 for
myocardial infarction (MI, n = 1,273); I63 and I69.3 for ischemic
stroke (IS, n = 5,447); I61 for ICH (n = 5,150) at the censoring
date of 1 January 2015. Common controls (n = 6,313) were
frequency matched to cases by age, sex, and region. Cases
and controls were free of prior vascular disease (including
absence of statin therapy) and cancer. Both MI and IS were
atherosclerotic CVD, with etiologies differing from ICH. ICH
cases were included to compare and contrast the associations
between liver biomarkers and CVD subtypes.

Assessment of liver biomarkers

Liver enzymes included ALT, AST, and GGT. Plasma
concentrations of TC was measured by Beckman-Coulter
AU680 clinical chemistry analyzers using manufacturers’
reagents, calibrators and settings (Beckman-Coulter,
United Kingdom). FLI for each participant was calculated
according to a previously published formula involving TC,
BMI, GGT, and WC (12). FLI ≥60, without excessive drinking
(≥30 g/day in men, ≥20 g/day in women) or concomitant liver
diseases (i.e., viral hepatitis, alcoholic liver disease, toxic liver
disease, biliary cholangitis, autoimmune hepatitis, Wilson’s
disease, or hemochromatosis), was used as an indicator of
NAFLD (12).

Metabolic associated fatty liver disease was diagnosed
based on the FLI-defined hepatic steatosis (FLI ≥60) and
the presence of any of the following three conditions: (1)
overweight or obesity (BMI ≥23 kg/m2), (2) presence of
type 2 diabetes mellitus (T2D), and (3) presence of at least 2
metabolic abnormalities, including increased WC (≥90/80 cm
for men/women), arterial hypertension (≥130/85 mmHg or
specific drug treatment), hypertriglyceridemia (≥150 mg/dl or
≥1.70 mmol/L or specific drug treatment), low high-density

lipoprotein cholesterol (<40/50 mg/dl or <1.0/1.3 mmol/L for
men/women or specific drug treatment), prediabetes (fasting
glucose levels 100–125 mg/dl), and subclinical inflammation
[plasma high-sensitivity C-reactive protein (CRP) level
>2 mg/L]. Insulin resistance was not measured in CKB
and thus excluded from our definition compared with the
international expert consensus (21).

Assessment of subclinical
atherosclerosis

Detailed assessment of subclinical atherosclerosis was
described in Supplementary Methods. In the current study,
carotid plaque burden was used as the outcome measure of
subclinical atherosclerosis. Carotid plaque burden was derived
by standardizing the plaque number and maximum size [i.e.,
dividing each by its standard deviation (SD)] and estimating
the average, then multiplying the average value by the SD of the
maximum plaque thickness to provide a plaque burden recorded
in millimeter units. Presence of carotid plaque was defined as
carotid plaque burden ≥2.

Genotyping measurement

A custom-designed 800K-single-nucleotide variation (SNV)
array (Axiom, Affymetrix) with imputation to 1000 Genomes
Phase 3 was utilized to conduct genotyping. Genotype data were
available for samples from 100,408 participants passing quality
controls (overall call rate >99.97% across all variants), which
included a population-based sample of 75,736 participants
randomly selected from the total CKB cohort and 24,672
participants genotyped as part of nested case-control studies.
For the nested case-control study of clinical chemistry, 17,567
participants were genotyped.

PNPLA3 p.I148M (rs738409), a well-established genetic
variant for NAFLD in both Caucasians and East Asians (22),
was selected as the target locus. The genotype was coded as 0, 1,
and 2 for non-carriers, heterozygous carriers, and homozygous
carriers of the risk-increasing allele, respectively.

Definitions of high-risk lifestyle factors

We selected smoking, alcohol, physical activity, and central
adiposity to construct a combined high-risk lifestyle score.
These factors were selected because of their associations with
risk of chronic liver disease in the Chinese population (23–
25). To investigate the combined effects of high-risk lifestyle,
we grouped each participant into 1 of 5 categories according to
the number of healthy lifestyle factors (0–4), including smoking
(current or former regular smokers), alcohol (weekly alcohol
consumption ≥210 g, ex-regular or reduced-intake drinkers),
physical inactivity [total physical activity <14.7 MET-h/day
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TABLE 1 Baseline characteristics of participants by incident disease status.

Controls MI IS ICH

Variable (n = 5,388) (n = 1,170) (n = 4,691) (n = 4,437)

Age (SD), year 58.1 (11.1) 54.4 (8.7) 53.5 (9.5) 59.2 (10.5)

Female, % 2,566 (47.6) 472 (40.3) 2,547 (54.3) 2,142 (48.3)

Socioeconomic and lifestyle factors

Urban region, % 1,197 (22.2) 396 (33.8) 2,066 (44.0) 977 (22.0)

≥9 years of education, % 703 (13.0) 181 (15.5) 1,086 (23.2) 433 (9.8)

Household income ≥35,000 RMB/year, % 524 (9.7) 134 (11.5) 662 (14.1) 412 (9.3)

Ever regular smoking, %

Male 1,725 (61.1) 508 (72.8) 1,386 (64.6) 1,386 (60.4)

Female 88 (3.4) 23 (4.9) 69 (2.7) 88 (4.1)

Weekly drinking, %

Male 819 (29.0) 195 (27.9) 724 (33.8) 679 (29.6)

Female 51 (2.0) 7 (1.5) 61 (2.4) 56 (2.6)

Total physical activity (SD), MET-h/day 19.0 (13.3) 19.3 (14.0) 18.6 (13.3) 17.6 (13.3)

Sedentary leisure time (SD), h/day 3.0 (1.5) 3.2 (1.5) 3.1 (1.5) 3.0 (1.6)

Blood pressure and anthropometry

SBP (SD), mmHg 134.9 (21.1) 142.0 (25.4) 141.2 (25.2) 152.5 (27.6)

RPG (SD), mmol/L 6.0 (2.3) 6.9 (3.7) 6.6 (3.3) 6.5 (3.0)

BMI (SD), kg/m2 23.0 (3.3) 24.0 (3.7) 24.4 (3.5) 23.3 (3.6)

Waist circumference (SD), cm 79.2 (9.5) 83.0 (10.4) 83.0 (10.0) 80.5 (10.2)

Hip circumference (SD), cm 89.1 (6.7) 91.5 (7.5) 92.4 (7.0) 89.6 (7.0)

Waist-to-hip ratio (SD) 0.89 (0.07) 0.91 (0.07) 0.90 (0.07) 0.90 (0.07)

Percent body fat (SD), % 25.4 (8.7) 26.7 (8.9) 28.8 (8.7) 25.7 (9.1)

Height (SD), cm 158.3 (8.6) 160.7 (8.7) 159.5 (8.4) 157.3 (8.4)

Liver biomarkers

NAFLD, % 489 (9.8) 205 (15.2) 709 (14.3) 518 (12.5)

MAFLD, % 619 (12.6) 265 (19.1) 917 (17.9) 645 (16.2)

AST (SD), µl 28.1 (13.4) 29.6 (26.8) 25.4 (1.06) 29.9 (19.4)

ALT (SD), µl 21.7 (15.6) 24.3 (19.1) 21.2 (14.3) 22.2 (16.8)

GGT (SD), µl 27.4 (42.4) 40.5 (90.7) 29.9 (41.5) 37.3 (107.1)

Disease history

Diabetes, % 253 (5.0) 160 (13.3) 545 (11.0) 375 (8.7)

Values are mean ± SD or %.
MI, myocardial infarction; IS, ischemic stroke; ICH, intracerebral hemorrhage; BMI, body mass index; MET, metabolic equivalent of task; RPG, random plasma glucose; SBP, systolic
blood pressure; FLI, fatty liver index; MAFLD, metabolic-associated fatty liver disease; AST, aspartate aminotransferase; ALT, alanine aminotransferase; GGT, γ-glutamyltransferase.

(the bottom 50%)], and central obesity [WC ≥90 cm (men)
or 80 cm (women)]. The cut-off points were selected for each
lifestyle factor based on a priori knowledge of the risk factors
for chronic liver disease and are considered achievable at the
population level.

Statistical analysis

The primary outcome was CVD, and the secondary
outcome was subclinical atherosclerosis. Cox proportional
hazards regression models were used to calculate hazard ratios
(HRs) of specific disease incidence and 95% confidence intervals
(CIs), adjusted for age, sex, region, education, smoking, and
alcohol. The underlying time scale was time since birth,

and participants entered the study at their baseline age.
We first examined the dose-response associations between
liver biomarkers and incident CVD, using quintiles as cut-
off points. Then, we examined the associations of genetic
and high-risk lifestyle factors with incident CVD. To further
examine whether the associations between liver biomarkers
and CVD differed by genetic or lifestyle risk factors, we
performed analyses stratified by genetic risk of NAFLD and
the number of high-risk lifestyle factors, separately. Participants
were divided into two groups according to their genetic
predisposition (low risk, 0 alleles; high risk: 1–2 alleles) or
the number of high-risk lifestyle factors (low risk, 0–1; high
risk, 2–4). For carotid plaques, a logistic regression model was
used to calculate odds ratios (ORs) and 95% CIs associated
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with liver biomarkers, adjusted for the same variables in
the Cox regression.

To assess potentially non-linear associations between liver
enzymes and CVD risk, restricted cubic splines were calculated
using three fixed knots at the 10, 50, and 90% quintiles. Non-
linearity was evaluated using the likelihood ratio rest to compare
the fit of linear and non-linear models. Subgroup analyses were
conducted by age (<60 vs. ≥60 years) and sex. In sensitivity
analysis, we additionally adjusted for BMI and physical activity,
potential risk factors for NAFLD.

For analyses involving more than two categories, all HRs
are presented, with 95% CIs calculated using “floating” standard
errors to facilitate comparisons between any two groups rather
than just with the reference group (26). Instead of selecting 1
level of the risk factor as the reference group, a “floated” variance
is assigned to each level, which describes the uncertainty in risk
without reference to another level. All analyses were performed
using R program (version 3.6.2; R Foundation for Statistical
Computing, Vienna, Austria).

Results

Baseline characteristics of participants

Among the 15,686 participants, the mean age of ICH cases
was similar to control subjects (Table 1), but the mean age
of MI and IS cases was younger. Likewise, the proportion of
women among ICH cases was similar to control subjects, but
the proportion was lower among MI cases and higher among
IS cases. Cases had higher SBP than control subjects, and they
were more likely to have diabetes at baseline. Levels of physical
activity, overall and central adiposity, and height were similar
between cases and control subjects (Table 1).

Overall, the proportions of NAFLD and MAFLD were
similar in each group, and cases were more likely to meet
the MAFLD criteria (MI 19.1%; IS 17.9%; ICH 16.2%; control
subjects 2.6%). For liver enzymes, MI and ICH cases had
higher mean concentrations of AST and ALT than control
subjects, while IS cases had lower concentrations of AST than
control subjects. Cases had higher concentrations of GGT than
control subjects.

The average follow-up period of this study is 10 years.

Associations of liver biomarkers with
risk of cardiovascular disease

There were positive associations of FLI and GGT with
atherosclerosis cardiovascular disease (ASCVD) (i.e., MI and
IS) but a weaker positive association with ICH. The adjusted
HRs per 1-SD higher FLI were 1.17 (95% CI 1.13–1.21) for
MI, 1.16 (1.13–1.19) for IS, and 1.04 (1.01–1.08) for ICH; the

corresponding HRs for GGT were 1.08 (1.05, 1.11) for MI, 0.93
(0.90, 0.97) for IS and 1.10 (1.08, 1.12) for ICH (Supplementary
Table 1). Of note, the positive association of FLI and GGT
with ICH was only observed when comparing the top and
the bottom quintile (FLI 1.12 [1.05–1.20] and GGT 1.16 [1.08,
1.24], Figure 1). Similar to FLI, there were positive associations
between MAFLD and all CVD subtypes (MI 1.42 [1.30–1.55],
IS 1.24 [1.15–1.33], and ICH 1.12 [1.03–1.22], Supplementary
Table 3). Participants with high AST had higher risks of MI
and ICH, but a lower risk of IS (HR comparing top vs. bottom
quintile: MI 1.11 [1.02, 1.21], IS 0.87 [0.81, 0.94], and ICH 1.16
[1.08, 1.23]). For ALT, positive associations were observed with
MI, but there were no associations with IS and ICH. Likelihood
ratio tests showed evidence of significant non-linear associations
of FLI with IS (p-value for non-linearity <0.01), ALT with IS and
ICH (p-value for non-linearity ≤0.02), and GGT with MI and IS
(p-value for non-linearity < 0.01) (Supplementary Figure 3).

When additionally adjusting for BMI and physical activity,
the associations of liver biomarkers with CVD slightly
attenuated, but the patterns remained (Supplementary
Figure 2). The associations of FLI and GGT with ICH differed
by sex (p-value for interaction ≤0.02), while the associations of
ALT and GGT with MI differed by age (p-value for interaction
≤0.01, Supplementary Table 4). For example, FLI was positively
associated with ICH among men, but no such association was
observed in women. For MI, the associations with ALT and GGT
attenuated among those ≥60 years (Supplementary Figure 4).

Associations of high-risk lifestyle and
genetic risk factors with risk of
cardiovascular disease

Alcohol and central adiposity were each associated with
higher risks of all CVD subtypes (Supplementary Table 2).
The HRs for alcohol were 1.12 (1.04–1.21) for MI, 1.13 (1.07–
1.20) for IS, and 1.18 (1.10–1.26) for ICH. The HRs for central
adiposity were 1.38 (1.28–1.48) for MI, 1.34 (1.27–1.42) for IS,
and 1.08 (1.00–1.17) for ICH. Smoking was associated with a
higher risk of MI (1.27 [1.15–1.41]), and the positive association
was borderline significant for IS (1.07 [0.99–1.17]). Physical
inactivity was associated with ICH (1.08 [1.00–1.17]). When
combining these four high-risk lifestyle factors, there were
positive associations between the number of lifestyle factors
and risk of all CVD subtypes (Figure 2). Compared with
those without high-risk lifestyle factors, the HRs for MI were
1.22 (1.12–1.33), 1.53 (1.45–1.61), and 1.82 (1.72–1.93) among
participants with 1, 2, and 3–4 lifestyle factors, respectively. The
corresponding HRs for IS were 1.06 (0.99–1.12), 1.25 (1.20–
1.30), and 1.47 (1.40–1.55), while the corresponding HRs for
ICH were 0.98 (0.91–1.05), 1.12 (1.07–1.17), and 1.22 (1.16–
1.28). For rs738409, there was a positive association between the
number of rs738409 M allele with ICH, but no association was
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FIGURE 1

Associations of liver biomarkers with risk of CVD. Columns (A–C) denote the results for MI, IS, and ICH, respectively. Boxes represent the hazard
ratios (HRs) of CVD associated with liver biomarkers, with the size of the box inversely proportional to the variance of the logHR. The model is
adjusted for age, sex, regions, education, smoking, and alcohol.

observed for MI or IS. Compared with those with 0 risk alleles,
the HRs for ICH were 1.06 (1.01–1.10) and 1.11 (1.03–1.20)
among participants with 1 allele and 2 alleles, respectively.

Associations of liver biomarkers with
risk of cardiovascular disease by
genetic predisposition to
non-alcoholic fatty liver disease

Participants with NAFLD or MAFLD had higher risks of
MI and IS, regardless of the genetic risk (p-value for interaction
0.21–0.77, Supplementary Table 3). Although the interaction
by genetic predisposition to NAFLD was non-significant, the
HRs tended to be stronger among individuals with a high
genetic risk (Figure 3). For instance, the HRs associated with
MAFLD among participants with a low genetic risk were 1.33
(1.16–1.52) for MI and 1.22 (1.10–1.35) for IS, while the HRs
among those with a high genetic risk were 1.48 (1.31–1.66)
and 1.25 (1.14–1.37). In contrast, the associations of NAFLD
and MAFLD with ICH differed by genetic predisposition to
NAFLD, with stronger associations among those with a high
genetic risk. For NAFLD, the HRs were 0.96 (0.82–1.12) and

1.24 (1.10–1.39) among those with a low and a high genetic
risk, respectively; the corresponding HRs for MAFLD were
0.98 (0.85–1.12) and 1.22 (1.10–1.36) (for both NAFLD and
MAFLD, p-value for interaction <0.05). Genetic predisposition
to NAFLD did not interact with liver enzymes on risk of CVD
(p-value for interaction 0.05–0.78).

Associations of liver biomarkers with
risk of cardiovascular disease by
lifestyle factors

Participants with NAFLD or MAFLD had higher risks
for MI, regardless of the lifestyle risk (p-value for interaction
0.28–0.35, Supplementary Table 3). The HR associated with
MAFLD among participants with a low lifestyle risk was 1.12
(0.75–1.67) for MI, while the HR among those with a high
lifestyle risk was 1.38 (1.26–1.52). In contrast, the associations
of NAFLD and MAFLD with IS and ICH differed by lifestyle
factors (Figure 4). For NAFLD, the HRs of IS were 1.57 (1.21–
2.03) and 1.16 (1.07–1.26) among those with a low and a high
lifestyle risk, respectively; the corresponding HRs of ICH were
1.38 (0.98–1.95) and 1.08 (0.98–1.19) (for both NAFLD and
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FIGURE 2

Associations of high-risk lifestyle and genetic risk factors with risk of CVD. Columns (A–C) denote the results for MI, IS, and ICH, respectively.
Convention as in Figure 1.

FIGURE 3

Associations of liver biomarkers with risk of CVD by genetic predisposition to NAFLD. Columns (A–C) denote the results for MI, IS, and ICH,
respectively. Boxes represent the hazard ratios (HRs) of CVD associated with high liver biomarkers, with the size of the box inversely
proportional to the variance of the logHR. Liver biomarker was each modeled as a dichotomous variable. The cut-off points are: ≥median for
AST, ALT, and GGT. High genetic risk denotes 1–2 risk increasing alleles of rs73409. Low genetic risk denotes 0 risk increasing alleles of rs73409.
The model is adjusted for age, sex, regions, education, smoking, and alcohol. p-Values for interaction: MI 0.11–0.50, IS 0.05–0.81, and ICH
0.009–0.54. p-Values for interaction <0.05: ICH, FLI 0.009, MAFLD 0.01.
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MAFLD, p-value for interaction <0.05). Lifestyle risk factors
did not interact with liver enzymes on risk of CVD (p-value for
interaction 0.19–0.82).

Associations of liver biomarkers with
subclinical atherosclerosis

Overall, there were positive associations of NAFLD and
MAFLD with of carotid plaque and no associations were
observed for liver enzymes (Supplementary Table 5). For
both NAFLD and MAFLD, the associations tended to be
stronger among individuals with a high genetic risk, though the
interaction was non-significant (p-value for interaction 0.18).
Similar associations were observed when stratified by high-risk
lifestyle factors.

Discussion

This study provides a comprehensive examination of the
associations of liver biomarkers with risk of CVD by subtypes.
The results showed that there were positive associations of liver
enzymes with ASCVD (i.e., MI and IS) and weaker associations
for ICH, regardless of the genetic predisposition to NAFLD
or lifestyle risk factors. Participants with NAFLD or MAFLD
had higher risks of all CVD subtypes as well as subclinical
atherosclerosis, with stronger associations among individuals
with a high genetic risk of NAFLD. For both IS and ICH,
the associations of NAFLD and MAFLD were stronger among
individuals with a favorable lifestyle.

The current study findings for liver biomarkers were
generally consistent with previous studies examining the
associations of liver enzymes in relation to CVD (4, 6, 8, 9, 27–
29). These studies include a meta-analysis published in 2019
involving 1,067,922 participants and a prospective cohort study
involving 416,122 participants in Taiwan (3, 6), both examining
CVD mortality. For MI and IS, our findings for ALT and GGT
were similar to the associations reported by two large cohort
studies involving 6,912,393 participants in Korea (4, 9). In
contrast to our null findings for ICH, a cohort of 108,464 Korean
men showed positive associations of AST and ALT with ICH
(28). For stroke subtypes, two cohorts conducted in Western
countries reported positive associations of ALT and AST with
ICH (8, 29), while one United States cohort reported a positive
association between GGT and IS (8). However, previous studies
involved a small number of ICH cases (ranging from 90 to
718) and the associations may be due to chance. Although the
current study included a large number of CVD subtypes (5,447
IS cases and 5,150 ICH cases), future studies are still warranted
to examine the associations of liver enzymes with CVD subtypes.

Fatty liver index is a commonly used indicator of NAFLD
in large population-based studies. Recently, an expert consensus

recommended the change from NAFLD to MAFLD, since the
latter included more metabolic factors and thus might be
more sensitive in demonstrating disease progression (14, 16).
Therefore, we explored the associations of MAFLD in relation to
CVD as a complement to NAFLD. Notably, our study findings
for NAFLD and MAFLD were fairly close, due to the fact that
FLI ≥60 captured individuals who met the MAFLD definition
in CKB. Previous studies have shown that both NAFLD and
MAFLD were associated with higher risk of CVD (7, 10, 11,
13, 16, 18, 19, 30), particularly MI and IS, which was in line
with our findings. For intermediate phenotypes, our findings of
positive associations of NAFLD and MAFLD with subclinical
atherosclerosis were also consistent with previous studies (31,
32). However, only a limited number of studies have examined
the association of NAFLD or MAFLD with hemorrhagic CVD
and further compared it with the associations with ischemic
CVD. Our study filled this gap and showed that compared to
ischemic CVD, there were weaker associations of NAFLD and
MAFLD with ICH, which indicated that the prognostic role of
NAFLD and MAFLD was more important for ischemic CVD.

There is limited evidence whether the associations between
liver biomarkers and CVD differ by genetic or lifestyle risk
factors. A recent study conducted in the UKB showed that
the adverse impact of MAFLD on CVD (mainly ASCVD) was
somewhat larger in individuals with a high genetic risk of
NAFLD compared with those with a low genetic risk (low 1.37
[1.30–1.44], high 1.42 [1.33–1.50]) (16). This study finding was
generally consistent with the results of MI and IS in CKB. In
addition to ASCVD, we showed that the associations of MAFLD
and NAFLD with ICH were much stronger among individuals
with a high genetic risk of NAFLD. The effect modification
by genetic risk was only observed for ICH, suggesting that the
genetic variants may have little contribution to the development
of ischemic CVD compared with hemorrhagic CVD. This is
possibly because that high genetic risk amplifies the impact of
metabolic factors on the progression of hypertension, a risk
factor showing a stronger association with ICH than ischemic
CVD in Chinese (33). Regarding lifestyle risk factors, we showed
that the associations of MAFLD and NAFLD with both IS and
ICH were stronger among individuals with a low-risk lifestyle.
A probable explanation was that individuals with a favorable
lifestyle differed in other risk factors for stroke (e.g., variability of
blood pressure) (34, 35). Future studies in independent cohorts
are needed to replicate our findings.

Our study has several clinical implications. Levels of liver
biomarkers not only reflect the status of liver function, but also
play an important role in CVD prediction, as demonstrated
by our and previous studies. Since liver biomarkers are
relatively easy to measure, these can be routinely monitored
in clinical practice to identify patients at risk of CVD. Our
results showed positive associations for both FLI and MAFLD
with CVD risk regardless of the subtypes, suggesting that
these two may be better indicators for CVD than liver
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FIGURE 4

Associations of liver biomarkers with risk of CVD by lifestyle factors. Columns (A–C) denote the results for MI, IS, and ICH, respectively.
Convention as in Figure 3. Low lifestyle risk denotes 0–1 high-risk lifestyle factors. High lifestyle risk denotes 2–4 high-risk lifestyle factors.
p-Values for interaction: MI 0.28–0.82, IS 0.02–0.74, and ICH 0.04–0.61. p-Values for interaction <0.05: IS, NAFLD 0.03, MAFLD 0.02; ICH, FLI
0.04, MAFLD 0.04.

enzymes. Regarding genetic risk stratification, although effect
modification was only observed for ICH, the associations
of FLI and MAFLD with CVD were both stronger among
individuals with a high genetic risk of NAFLD. This suggests
that FLI monitoring and MAFLD screening may be particularly
important for those with genetic predisposition to NAFLD to
predict risk of CVD.

The strengths of the CKB included a prospective design, a
large study population, detailed adjustments for risk factors of
CVD, and ascertainment of CVD through linkage to hospital
records in addition to death and cancer registries. However,
our study also had several limitations. First, we used FLI rather
than imaging or biopsy to diagnose NAFLD, which was not
the gold standard (36, 37). However, FLI has been externally
validated in population-based studies conducted in Western
countries and in China and is accepted by clinical practice
guidelines as a proxy for imaging or biopsy in large-scale
epidemiological studies (38–42). Second, insulin resistance, as
a criterion of MAFLD diagnosis, was not assessed in our study
due to the lack of serum insulin data in CKB. However, these
two limitations might result in non-differential misclassification
of NAFLD and MAFLD cases, and thus underestimating
the associations between NAFLD/MAFLD and CVD. Third,
it is probable that components of genetic predisposition to

NAFLD other than rs738409 were not included. However,
rs738409 had been recognized as the most important genetic
variant of NAFLD across ethnicities (22). A meta-analysis
of 12 Asian studies (7 of which were Chinese) with 4,495
cases reported that rs738409 M allele carriers were nearly
twice as likely to develop NAFLD as non-carriers (OR
1.92 [1.54–2.39]) (43). Finally, residual confounding due to
unmeasured or unknown variables cannot be ruled out (e.g.,
liver disease medications).

Conclusion

In conclusion, this study in a Chinese population
showed that liver biomarkers were associated with
risk of CVD, with different magnitudes of associations
by CVD subtypes. Genetic predisposition to NAFLD
and lifestyle factors modified the associations of fatty
liver with stroke, particularly ICH. The current study
findings may inform CVD risk stratification using liver
biomarkers in Chinese. FLI monitoring and MAFLD
screening may be recommended among those with a high
genetic risk of NAFLD.
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