
Citation: Liu, X.; Wang, N.; Liu, X.;

Deng, R.; Kang, R.; Xie, L. Vascular

Repair by Grafting Based on

Magnetic Nanoparticles.

Pharmaceutics 2022, 14, 1433.

https://doi.org/10.3390/

pharmaceutics14071433

Academic Editor:

Pedro Ramos-Cabrer

Received: 9 June 2022

Accepted: 6 July 2022

Published: 8 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Review

Vascular Repair by Grafting Based on Magnetic Nanoparticles
Xin Liu , Nan Wang, Xiyu Liu , Rongrong Deng, Ran Kang * and Lin Xie *

Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China;
liuxin@njucm.edu.cn (X.L.); wangnan082020@163.com (N.W.); liuxiyu1992@live.com (X.L.);
rongrdeng@126.com (R.D.)
* Correspondence: kangran@njucm.edu.cn (R.K.); xielin@njucm.edu.cn (L.X.)

Abstract: Magnetic nanoparticles (MNPs) have attracted much attention in the past few decades
because of their unique magnetic responsiveness. Especially in the diagnosis and treatment of dis-
eases, they are mostly involved in non-invasive ways and have achieved good results. The magnetic
responsiveness of MNPs is strictly controlled by the size, crystallinity, uniformity, and surface prop-
erties of the synthesized particles. In this review, we summarized the classification of MNPs and
their application in vascular repair. MNPs mainly use their unique magnetic properties to participate
in vascular repair, including magnetic stimulation, magnetic drive, magnetic resonance imaging,
magnetic hyperthermia, magnetic assembly scaffolds, and magnetic targeted drug delivery, which can
significantly affect scaffold performance, cell behavior, factor secretion, drug release, etc. Although
there are still challenges in the large-scale clinical application of MNPs, its good non-invasive way
to participate in vascular repair and the establishment of a continuous detection process is still the
future development direction.

Keywords: magnetic nanoparticles; vascular repair; magnetic responsiveness; non-invasive way

1. Introduction

Vascular damage caused by external force invasion or vascular disease is the leading
cause of death worldwide [1–3]. For minor vascular damage clinically, simple surgical
sutures and medical treatment can be used for treatment. However, severe trauma or
insufficient blood supply caused by large-scale defects can cause serious consequences, such
as claudication, sores, organ dysfunction, necrosis, or even death [4–6]. At present, vascular
grafts are widely used clinically to prevent severe vascular injury, such as polyurethane [7],
polyester [8], expanded polytetrafluoroethylene (ePTFE) [9], etc. However, the repair of
vascular structures is not a single graft but a complex repair process. Vascular repair mainly
includes three stages: inflammation, neointimal hyperplasia, and vascular remodeling,
in which dysfunction at any stage will affect the vascular repair [10–12]. Due to their
unique magnetic responsiveness [13,14], magnetic nanoparticles (MNPs) are considered an
effective non-invasive technical means to assist in various stages of vascular repair and have
achieved good results in both diagnosis and treatment [15–17]. For example, MNPs are
used as magnetic resonance contrast agents to evaluate and monitor the fate and function of
grafts with non-invasive imaging methods [18–20]; MNPs-labeled vascular endothelial cells
(VECs) can be driven to seed at designated sites to accelerate endothelialization [16]; MNPs
are used as a targeted anticoagulant drug carrier reduces thrombus formation [21,22], etc.

The application of MNPs in vascular repair mainly depends on their biological safety
and magnetic response characteristics [23,24]. The currently developed MNPs contain
various metals and metal oxides, but only a few MNPs are used in clinical research, mainly
due to potential toxicity and rapid oxidation [25,26]. Iron oxide nanoparticles (IONPs)
are commonly used MNPs [27–30], especially pure iron oxides such as magnetite (Fe3O4)
and maghemite (γ-Fe2O3) [31,32]. Although IONPs doped with magnetically susceptible
elements (e.g., MFe2O4 where M = Co, Mn, Ni, or Zn) and metal alloy nanoparticles (e.g.,
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FeCo and FePt) revealed better magnetic responsiveness than pure IONPs, their potential
toxicity greatly limits their applications [33,34]. Therefore, MNPs involved in vascular
repair generally refer to the core of pure nano-iron oxide crystals and the surface coating
with high biological safety to avoid reactive oxygen species (ROS) [27,35,36].

At present, the latest literature search found that the application of MNPs in vascular
repair mainly focuses on a single aspect, such as magnetic resonance imaging (MRI) charac-
teristics, magnetically driven targeted drug delivery, magnetic hyperthermia, etc., which
often makes readers unable to fully understand the role of MNPs in all stages and causes of
vascular repair. In fact, as a scaffold for large-segment vascular defects, the use of MNPs to
improve the performance of scaffolds has rarely been discussed. Therefore, it is necessary to
supplement this topic to give readers a more comprehensive understanding of the various
roles of MNPs in vascular repair; for example, MNPs can improve the performance of
vascular scaffolds, including mechanics, porosity, degradation, etc., but there is no focused
review to discuss in-depth, and this review can inspire them to focus on this aspect.

In this manuscript, we briefly introduce the classification and magnetic response char-
acteristics of MNPs currently obtained in the research and overview their most prominent
(pre-)clinical applications in vascular repair. Regarding the application of MNPs in vascular
repair, currently, it is mainly used as individual MNPs or MNPs-labeled assemblies (e.g.,
MNPs labeled cells, MNPs assembled scaffolds, MNPs-loaded drug delivery, etc.). Finally,
we also discussed the future development trend of MNPs in vascular repair and practical
strategies to expand the scope of application.

2. Overview of Magnetic Nanoparticles (MNPs)
2.1. Classification and Composition of MNPs

Magnetic nanoparticles (MNPs) are a kind of intelligent nano-magnetic material [29,34].
They have the unique properties of nanomaterials, such as small particle size [37], large
specific surface area [38], high coupling capacity [39], magnetic responsiveness [40], and su-
perparamagnetism [41], which can make them aggregate and locate in a constant magnetic
field and absorb electromagnetic waves to generate heat in an alternating magnetic field.
Using these properties, MNPs are used in biomarking and separation, magnetic resonance
imaging (MRI), tissue repair, drug carriers, and disease diagnosis and treatment [27,42,43].
MNPs designed for biomedical applications are mainly divided into single-component
metal nanoparticles (e.g., Fe, Ni, Co, Mn, and Zn) (Figure 1A), metal alloy nanoparti-
cles (e.g., FeCo and FePt) (Figure 1B), metal oxide nanoparticles (e.g., Fe3O4, γ-Fe2O3,
CoFe2O4, and MnFe2O4) (Figure 1C), and heterostructures (e.g., Fe3O4@Au, γ-Fe2O3@PSC,
γ-Fe2O3@SiO2) [44] (Figure 1D). However, only a few of these types of nanoparticles have
entered (pre-) clinical studies, mainly due to their potential toxicity. Pure iron oxide is the
most widely used nanomaterial in clinical applications due to its better biocompatibility and
biological tolerance. However, the possible release of iron ions can produce ROS, and most
of them will be coated with functional coatings (e.g., amino acids [45], polymers [46], fatty
acids [47], oxides [46], metals [48], and multifunctional materials [49]) in scientific research
and clinical applications [27]. Among these materials, polymer is the most commonly
used coating material. In recent years, some natural and synthetic polymers, such as
dextran [50], gelatin [51], alginate [52], chitosan [53], starch [54], albumin [55], casein [56],
poly(ethylene glycol) (PEG) [57], poly(vinylpyrrolidone) (PVP) [58], poly(vinyl alcohol)
(PVA) [59], polydopamine [60], poly(lactic-glycolic acid) (PLGA) [61], and dendrimers [62]
have been used to coat MNPs in different forms. It is worth noting that PEG and dextran
are the most widely used coatings, mainly because they have good biosafety and will not be
quickly recognized and cleared by macrophages in the liver and spleen during intravenous
administration [63,64]. PEG and PEGylated coatings (such as PEGylated starch) have high
biocompatibility and are usually used to prolong the intravascular circulation of MNPs.
Two critical parameters in PEG coating, molecular weight and surface density, significantly
affect the dispersity, stability, cytotoxicity, and blood circulation time of MNPs [54,65].
Likewise, dextran (C6H10O5) n (a coating agent under the trade names ferumoxtran and



Pharmaceutics 2022, 14, 1433 3 of 22

ferumoxides) and its derivatives carboxydextran (a coating under the trade name ferucarbo-
ran) and carboxymethyl dextran (a coating under the trade name ferumoxytol) agent) are
also known as highly biocompatible agents. However, it must be remembered that while
glucan is not directly toxic to cells, its degradation products may affect specific cellular
processes [66–68]. At present, many coating-modified IONPs have been evaluated in (pre-)
clinical trials, and some of them have entered the market (Figure 2A). However, some
approved iron oxide nanoparticles were later withdrawn because of their serious side
effects [31]. In order to increase the stability and multifunctional therapeutic effects of
nanoparticles (such as including disease treatment and imaging), polymer micelle-based
iron oxide nanosystems have also been developed, mainly including: (1) A shell composed
of a hydrophilic shell; (2) magnetic nanocrystallites and hydrophobic cores of polymer
hydrophobic segments; (3) drug/gene payloads for therapy; (4) ligands which target the
shell surface [69] (Figure 2B).
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Figure 1. (A) Single-component metal nanoparticles. (a) TEM image of 65 nm Fe NPs; (b) TEM im-
age of 3.7 nm Ni NPs; (c,d) TEM images of (c) 6 nm and (d) 9 nm Co NPs. (B) Metal alloy nanopar-
ticles. (a,b) TEM images of (a) 11 nm and (b) 16 nm FePd NPs; (c,d) TEM images of (c) fcc-FePt@Fe3O4 
and (d) fct-FePt NPs; (e) TEM image of FePt NWs and (f) HRTEM image after annealing; (g,h) TEM 
images of (g) FePt NWs and (h) FePt NRs. (C) Metal oxide nanoparticles. (a) TEM image of 16 nm 
Fe3O4 NPs; (b–d) TEM images of (b) 7 ± 0.5 nm, (c) 8 ± 0.4 nm, and (d) 10 ± 0.8 nm Fe3O4 NPs. The 
scale bars are 20 nm; (e) TEM image of octahedral Fe3O4 NPs; (f) TEM image of Fe3O4 nanoprisms; 
(g–i) TEM images of (g) 14 nm spherical and (h) 32 nm and (i) 53 nm truncated octahedral FeO NPs 
and (j) SEM image of truncated octahedral FeO NPs; (k,l): TEM images of (k) Co(OH)2 and (l) CoO 
NPLs. (D) Heterostructures. (a,b) Schematic illustrations of the syntheses of (a) Fe3O4@Au [(i) Fe3O4; 
(ii) Fe3O4@Au; (iii) hydrophilic Fe3O4@Au] and (b) Fe3O4@Au(@Ag; (c) Schematic illustration of 

Figure 1. (A) Single-component metal nanoparticles. (a) TEM image of 65 nm Fe NPs; (b) TEM image
of 3.7 nm Ni NPs; (c,d) TEM images of (c) 6 nm and (d) 9 nm Co NPs. (B) Metal alloy nanoparticles.
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(a,b) TEM images of (a) 11 nm and (b) 16 nm FePd NPs; (c,d) TEM images of (c) fcc-FePt@Fe3O4 and
(d) fct-FePt NPs; (e) TEM image of FePt NWs and (f) HRTEM image after annealing; (g,h) TEM images
of (g) FePt NWs and (h) FePt NRs. (C) Metal oxide nanoparticles. (a) TEM image of 16 nm Fe3O4

NPs; (b–d) TEM images of (b) 7 ± 0.5 nm, (c) 8 ± 0.4 nm, and (d) 10 ± 0.8 nm Fe3O4 NPs. The scale
bars are 20 nm; (e) TEM image of octahedral Fe3O4 NPs; (f) TEM image of Fe3O4 nanoprisms;
(g–i) TEM images of (g) 14 nm spherical and (h) 32 nm and (i) 53 nm truncated octahedral FeO NPs
and (j) SEM image of truncated octahedral FeO NPs; (k,l): TEM images of (k) Co(OH)2 and (l) CoO
NPLs. (D) Heterostructures. (a,b) Schematic illustrations of the syntheses of (a) Fe3O4@Au [(i) Fe3O4;
(ii) Fe3O4@Au; (iii) hydrophilic Fe3O4@Au] and (b) Fe3O4@Au@Ag; (c) Schematic illustration of
FePt−Au HNWs. FePt NWs were first prepared at high temperature, and then Au nanocrystals were
grown onto them to form FePt−Au HNWs. By control over the amount of H2, different morphologies
were obtained, such as (d) tadpole-like, (e) dumbbell-like, and (f) bead-like HNWs; (g) Schematic
illustration of FePt−Au heterostructured NPs and (h−j) TEM images of (h) FePt concave nanocubes
and (i) FePt−Au1 and (j) FePt−Aun heterostructured NPs. The scale bars are 50 nm. Reprinted with
permission from Ref. [44]. Copyright 2018 Copyright Zhu Y. et al.
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SPIOs: super paramagnetic iron oxides. (B) IONPs: polymer micelle-based system in research.
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2.2. Main Preparation Methods of MNPs

MNPs used in scientific research and clinical use usually need to be customized and
regulated by specific methods according to different use targets to meet the diagnosis
and treatment of target diseases. For example, MNPs suitable for tissue MRI should be
superparamagnetic and have a particle size distribution of usually 10–200 nm because
particles larger than 4 µm risk clogging the lungs, while particles smaller than 7 nm tend to
leak out of vascular structures and be blocked by kidney clearance and excretion [70,71];
MNPs suitable for magnetic hyperthermia applications should have stronger magnetic
responsiveness [72]; MNPs as drug delivery carriers require smaller particle size to pass
through the body barrier [73]; MNPs as iron supplements or cell tracers require better
stability and surface functionality to avoid oxidative stress caused by iron release and to
facilitate labeling by cell recognition [74]. Therefore, to better adapt to the needs of target
diseases and ensure the shape, size, crystallinity, and surface properties of MNPs, their
preparation methods mainly include chemical, physical and biosynthetic methods [75–77].
However, due to the lack of ability of physical methods (including powder ball milling,
electron beam lithography, aerosol, and vapor deposition) to control particle size in the
nanometer range and the low yield and broad size distribution of biological methods, MNPs
accounted for less than 10% of the synthetic method [75]. The chemical synthesis method
is currently the most widely used preparation method because it can precisely control
the size, composition, and structure of the obtained MNPs, including co-precipitation,
high-temperature pyrolysis, microemulsion, sol-gel, and the technology that can be applied
in industrialization is only for chemical co-precipitation [29]. The chemical co-precipitation
technique is mainly based on finalizing customized MNPs by adding weak or strong bases
by adjusting synthesis parameters (such as Fe2+/Fe3+ ratio, temperature, pH, type of salt,
and type of alkaline) [66,78]. In this way, the prepared MNPs will achieve the following
goals: (a) form a protective layer with good stability; (b) reduce the surface energy of
nanoparticles to avoid agglomeration; (c) can be adjusted by nucleation and growth process
to control the size of MNPs; (d) promote the directional growth of the core structure to
form shaped MNPs.

3. MNPs for Vascular Repair
3.1. MNPs in Vascular Grafts

Vascular grafts (also called vascular scaffolds) have always been a clinically effec-
tive treatment strategy for large vascular defects caused by vascular disease or violent
invasion [4,79,80], such as polyurethane (PU) [81], polyester (PET) [82], ePTFE [83], etc.
Although these vascular grafts, when used in larger-diameter vessels (>6 mm) show sat-
isfactory long-term performance, they display inferior performance in small-diameter
vessels (<6 mm), mainly because they are prone to intimal hyperplasia (IH) and thrombo-
genesis [84]. Given the above-mentioned unsatisfactory factors and the shortcomings of
secondary operations caused by non-degradability, it has always been a goal to seek natural
materials with better biocompatibility to construct vascular grafts. Unfortunately, the many
properties of natural materials cannot meet the application requirements of vascular grafts,
such as mechanical strength [85], elasticity [16], and degradation [86,87]. MNPs are believed
to effectively improve the performance of vascular grafts and provide more applications in
other areas (such as MRI [43] or nano-modification [88]). Ghorbani et al. [89] synthesized
INOPs by co-precipitation technique and they were evenly distributed in PLGA-gelatin
scaffolds. The results showed that the added MNPs had no special effect on the pore
morphology but slightly reduced the pore size distribution. The MNPs containing the
construct had enhanced mechanical strength, but the absorption capacity and biodegra-
dation rate were reduced. Our previous study [16] also proved that MNPs were evenly
distributed in silk fibroin scaffolds by infiltration. The results showed that the obtained
magnetic silk fibroin scaffolds significantly delayed the degradation rate and enhanced
mechanical strength (Figure 3A). Lekakou et al. [90] found that gelatin/elastin gels are
nanocomposite scaffolds with flattened elastin nanodomains embedded in a gelatin matrix
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that mimic the structure of the arterial media. They studied gelatin/“hydroxyapatite” (HA)
nanocomposite scaffolds, and “HA” was generated in situ in solution. When a magnetic
field of 9.4 T was applied, the HA particles and gelatin microfibrils in the gelatin were
oriented perpendicular to the direction of the magnetic field, which provided a basis for
the preparation of arterial vascular layered scaffolds. Mertens et al. [20] prepared three
ultra-small superparamagnetic iron oxide nanoparticles (USPIO), which were subsequently
directly colonized in collagen scaffolds by chemical cross-linking and used indirectly as
imaging graft scaffolds. Imaging can also be performed in the case of acellular implants
to visualize the degradation of collagen scaffolds in vivo, which is beneficial for analyz-
ing the in vivo degradation cycle and mechanism of rapidly degrading natural materials.
Currently, MNP-added vascular grafts are mainly used to improve mechanical strength,
mainly based on the high modulus, abundant functional groups. and uniform dispersion
of MNPs (Figure 3B) [91].
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3.2. MNPs Regulate Vascular-Related Cell Behavior and Factor Expression

Vascular injury repair is a highly organized engineering that mainly involves three
stages, including inflammation, neointima, and remodeling [10]. For the initial acute in-
flammation stage, many macrophages will migrate to the injury site and secrete various
inflammatory factors (such as TNF-α, IL-6, MCP-1) to clear the damaged cell debris and
play a defensive role. When entering the late stage of inflammation and transitioning
to the neointimal stage (active re-endothelialization stage), macrophages secrete various
repair cytokines (such as bFGF, VEGF, and TGF-β) to regulate the microenvironment at the
injury site. Thus, it regulates the behavior of various cells involved in re-endothelialization,
including adhesion, migration, proliferation, phenotype, and homing [92,93]. However,
regardless of the stage, various related cells and factors are involved, and favorable cell
behavior and factor secretion can rapidly remodel blood vessels. Numerous studies have
proved that the unique magnetic properties of MNPs can regulate cell behavior and factor
secretion, thereby promoting vascular remodeling [94]. MNPs regulate cell behavior and
factor secretion in the following ways: (1) MNPs through the stimulation of labeled cells
(Figure 4A); (2) MNPs-labeled cells respond to magnetic fields (Figure 4B); (3) MNPs bind to
materials to affect adherent cell behavior and factors (Figure 4C); (4) MNPs indirectly affect
the behavior and factor secretion of target cells by affecting related pathways (Figure 4D).
Lshii et al. [95] assembled a magnetic cell sheet by combining Fe3O4 nanoparticles with mes-
enchymal stem cells (MSCs) and then transplanted them into the hind limbs of nude mice
to evaluate the potential of angiogenesis. The results showed that the magnetic cell sheet
group had more angiogenesis, increased vascular endothelial growth factor expression,
and decreased apoptosis. Perea et al. [96] first labeled human smooth muscle cells (SMCs)
and human umbilical vein endothelial cells (HUVECs) with MNPs and then used radial
magnetic force to drive the cells to efficiently reach the lumen surface of tubular scaffolds,
fixed the cells on the matrix surface, and adhered firmly, which effectively promoted the
process of vascular endothelialization. To overcome irreversible damage to the endothelial
cell layer caused by surgery in repairing blood vessels, resulting in impaired vascular
function and restenosis, Vosen and his team [94] combined nanotechnology with gene
and cell therapy for site-specific re-endothelialization and restoration of vascular function
(Figure 4B). The researchers overexpressed the vascular protection gene endothelial nitric
oxide synthase (eNOS) in endothelial cells (ECs) using a complex of lentiviral vectors and
MNPs. MNPs-loaded and eNOS-overexpressing cells are magnetic, and even under flow
conditions, they can be positioned on the vessel wall in a radially symmetric manner by the
magnetic field. The results demonstrated that the treated vessels showed enhanced eNOS
expression and activity. Furthermore, the replacement of ECs with eNOS-overexpressing
cells restored endothelial function in a mouse model of vascular injury. More interestingly,
Mattix et al. [97] added MNPs to the cell spheres through the Janus method and then
manipulated the cell sphere to fuse into a vascular tissue structure with a diameter of
5 mm through the magnetic force generated by the external magnetic field (EMF). For the
binding of MNPs to materials, Filippi et al. [98] prepared novel magnetic nanocomposite
hydrogels by incorporating MNPs into PEG-based hydrogels containing cells from the
stromal vascular fraction (SVF) of human adipose tissue; the stimulation of an external
static magnetic field (SMF) on the angiogenic properties of the constructs were investigated.
The results showed that endothelial cells, pericytes, and perivascular genes were strongly
activated, and the expressions of VEGF and CD31(+) were increased. After subcutaneous
transplantation in mice, the magnetic drive structure showed denser, more mineralized,
and faster-vascularized tissue. Gu et al. [99] studied iron oxide nanoparticles to regulate
macrophage phenotype toward M1 polarization and down-regulate M2-related arginase 1
(Arg-1) by affecting the interferon regulatory factor 5 (IRF5) signaling pathway, in which
iron-based MNPs are anti-cancer and inhibit tumor angiogenesis, providing new insights.
However, MNPs have a concentration-dependent effect on the phenotypic polarization of
macrophages. Many studies have shown that low-dose MNPs also can promote M2 polar-
ization, but the related pathway mechanism is rarely studied [100,101]. The aforementioned
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favorable behaviors based on cell and factor secretion regulation by MNPs can effectively
participate in vascular repair.
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Figure 4. (A) Magnetic nanoparticles (Fe2O3@PSC)-labeled VECs and their effects on the expression
of related factors. Reprinted with permission from Ref. [102]. Copyright 2019 Copyright Wen T. et al.
(B) The eNOS, a vascular protective gene, was overexpressed in ECs using a complex of lentivirus
vectors and MNPs, and then localized on the vessel wall in a radially symmetric manner by a
magnetic field. Reprinted with permission from Ref. [94]. Copyright 2016 Copyright Vosen S. et al.
(C) Effects of magnetic macroporous hydrogels prepared by magnetic nanoparticles composite PEG
hydrogels on the function of human hematopoietic stem and progenitor cells (HSPCs). Reprinted
with permission from Ref. [103]. Copyright 2018 Copyright Rodling L. et al. (D) Magnetic nanopar-
ticles (Fe3O4@D-SiO2 and Fe2O3@D-SiO2) rely on the IRF-5 signaling pathway to polarize M1 and
downregulate M2-related Arg-1, thereby affecting the expression of related cytokines, and can be
used for tumor vascular injury therapy. Reprinted with permission from Ref. [99]. Copyright 2019
Copyright Gu Z. et al. The results were considered significant at * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

3.3. MNPs as Carriers for Targeted Drug Delivery

MNPs have unique advantages in the construction of drug delivery systems (magnetic
drug delivery, MDD), such as inherent magnetic targeting, magnetocaloric drug release,
and accessible surface modification, which can maximize drug delivery. By applying a
permanent magnet near the target tissue, the accumulation of MNPs at the target site
can be induced, reducing the drug’s distribution in the whole body, thereby improving
the therapeutic effect and reducing the toxic and side effects [104]. When using MNPs
as drug delivery systems, the magnetic properties of nanoparticles are size-dependent,
and magnetic nanoparticles with excellent performance can be obtained by adjusting the
size. The charge and hydrophobic properties of MNPs affect their interactions with plasma
proteins, the immune system, extracellular matrix, or non-targeted cells and determine
their biological distribution. Hydrophobic MNPs readily adsorb plasma proteins, leading
to recognition by the reticuloendothelial system and eventual clearance from the circulatory
system under opsonization, resulting in a short circulating half-life. After modifying its



Pharmaceutics 2022, 14, 1433 9 of 22

surface with hydrophilic PEG and other molecules, its circulating half-life can be increased.
Positively charged MNPs easily bind to non-targeted cells and undergo a nonspecific inter-
nalization process. Compared with negatively charged MNPs, positively charged MNPs
generally exhibit higher cellular internalization effects [105,106]. In recent years, MDD
systems have been widely developed to treat various diseases [107,108], including tumors,
such as designing Fe3O4 nanoparticles-based targeted drug delivery systems to enhance
cancer targeting to suppress tumors under static magnetic fields and laser irradiation
growth, and the system proved effective for in situ transdermal drug delivery, magnetic
fields, and synchronization of laser and biological targeting. Demonstrated in breast can-
cer models, this system is an effective alternative for the treatment of superficial cancers
(Figure 5A) [109]; bone, for example, has developed an exosome derived from neutrophils
modified by sub-5 nm ultra-small PBNP (uPB) engineering through click chemistry, which
can target deep into cartilage, significantly improve the joint injury of CIA mice, and inhibit
the overall severity of arthritis, showing considerable potential in the clinical diagnosis and
treatment of arthritis (Figure 5B) [110]; in vascular structures, a developed nanoparticle
(MMB-PLGA-PTX) can be used for in-stent restenosis (ISR) treatment that is responsive to
external magnetic fields and LIFU. The results showed that magnetic targeting increased
the accumulation of MMP-PLGA-PTX 10-fold, while LIFU facilitated the penetration of
the released PLGA-PTX into the arterial tissue, thereby increasing the retention time of the
released PTX in the stented vascular tissue. Combined with efficacy, this strategy holds
great promise for the precise delivery of antiproliferative drugs to stented vascular tissue
for ISR therapy (Figure 5C) [111]; skin, such as heme-modified prussian blue nanoparticles
(PBNP, an iron-based magnetic nanoparticle) forms a colloid with NO, which is locally
dropped at the skin wound site in response to NIR light and releases NO in a targeted
and controllable manner to enhance blood Microcirculation, thereby effectively enhancing
angiogenesis and collagen deposition during skin wound healing [112] (Figure 5D). In the
treatment of vascular injury, the main focus is on treating the etiology [113]. For example,
arterial occlusion caused by external force injury or cardiovascular disease can cause severe
mortality [114,115], so the rapid recanalization strategy can effectively reduce the risk of
death. Intravenous injection of tissue plasminogen activator (tPA) at a fixed dose is the
main method to dredge arterial occlusion [116,117]. Still, it will produce complications such
as insufficient curative effect and bleeding. Therefore, magnetic drug targeting (MDT) is an
effective therapeutic method, which uses an EMF to enhance the specific accumulation of
drugs bound to MNPs in the diseased vascular system [118]. Ma et al. [119] first studied
the possibility of local thrombolysis with MDT. MNPs combined with tPA (tPA equivalent
is 0.2 mg/kg) were used in the rat embolism model. In this study, MNPs administered
intravascularly moved and accumulated along the iliac artery affected by thrombus under
the action of an external magnet, which resulted in effective targeted thrombolysis and
was only less than 20% of the free tPA dose. Atherosclerosis (AS) is also a severe disease
that can cause vascular damage [120,121]. Although many drugs can treat atheroscle-
rosis [122–124], their systemic administration has serious disadvantages. In particular,
the proportion of therapeutic dose reaching atherosclerotic lesions is small, resulting in
poor therapeutic effect. Increasing the dose is often impossible in many cases because it
can cause serious side effects and drug tolerance. Since the existing treatment strategies
for AS are far from ideal, there is an urgent need for targeted therapy as an alternative
strategy to exert better therapeutic effects. Cicha et al. [125] developed the combination of
dexamethasone on MNPs, which magnetically targeted the balloon injury area in rabbits as
well as advanced atherosclerotic plaques. Although the desired effect was not achieved,
this may also be due to the selection of candidate drugs. In addition, myocardial infarction
caused by coronary plaque rupture can also cause severe inflammation and even heart
failure [126–128]. Zhang et al. [129] studied in a rat myocardial infarction model, using
an in vitro epicardial magnet to accumulate MNPs that bind to the human VEGF gene
encoded by an adenovirus vector in the ischemic area. Results showed that targeting MNPs
resulted in higher VEGF gene expression in the affected area and better cardiac repair.
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Currently, the treatment of myocardial infarction with stem cell preparations promises to
improve myocardial tissue recovery, but this is still limited due to poor accumulation and
retention of therapeutic agents at target sites. Cheng et al. [130] used MNPs to enhance
the targeted delivery of cardiac-derived stem cells (CDCs) in female rats with myocardial
infarction. Then, a 1.3 T circular magnet was placed about 1 cm above the apex of the
heart for 10 min, starting with an intramuscular injection of CDCs. During this process,
the naked eye can see slight discoloration of adjacent tissues, suggesting that magnetic
particle-labeled CDCs could prevent coronary washout. After 24 h, histology confirmed
the retention of magnetic particle-labeled CDCs. Semi-quantitative fluorescence imaging
showed that cells spread more in a subgroup of rats injected with non-magnetic or magnet-
ically labeled CDCs without magnets than in rats that received labeled cells and additional
magnetically targeted therapy to their lungs and spleen. Subsequently, the SRY gene that
was decisively differentiated was analyzed by polymerase chain reaction (PCR). The results
showed that CDCs implantation was three times higher in the myocardial tissue of rats in
the magnetic target group. Therefore, the authors concluded that magnetic targeting could
effectively attenuate the flushing of magnetic-particle-labeled CDCs at the injection site
and significantly increase short-term CDCs engraftment in just 10 min. As targeted carriers,
MNPs can effectively participate in the treatment of vascular injury. More applications can
also be used as magnetic resonance contrast agents for MRI, which can accurately evaluate
vascular functional and structural parameters to diagnose and treat.
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coated with dendritic acid on the surface of the composite. LMN was then loaded into the bac-
terial cellulose (BC) membrane. Synthetic BC/LMN enhances transdermal drug targeting for
breast cancer when administered via magnetic field and laser. Reprinted with permission from
Ref. [109]. Copyright 2019 Copyright Zhang L.K. et al. (B) Surface-engineered neutrophil-derived
exosomes (NEs-Exo) and ultra-small Prussian blue magnetic nanoparticles (uPB) effectively treat
advanced rheumatoid arthritis by clicking on the chemically mediated repair of the inflammatory
environment. Reprinted with permission from Ref. [110]. Copyright 2022 Copyright Zhang L. et al.
(C) Schematic diagram of magnetic guided and ultrasonic stimulation for the treatment of ISR with
targeted and deep penetrating delivery strategies (a); Evaluation of MMB-PLGA Rhdomain targeting
and penetration of isolated porcine coronary arteries. (b) Representative fluorescence images of the
stented porcine coronary arteries at 0 min and 2 h after different treatments; (c) Quantification of
the fluorescence intensity in the areas within the black dotted frames at 0 min and 2 h post treat-
ments; (d) Representative fluorescence and bright field images of the stents at 2 h post treatments;
(e) Quantification of the fluorescence intensity of the stents shown in the fluorescence images.
Reprinted with permission from Ref. [111]. Copyright 2020 Copyright Wang S. et al. (D) Preparation
of NO-carried Prussian blue (PB-NO) nanocubes for the treatment of incisional wounds. Reprinted
with permission from Ref. [112]. Copyright 2019 Copyright Su C.H. et al.

3.4. MNPs as Contrast Agents for Vascular Microenvironment Imaging

Magnetic Resonance Imaging (MRI) is one of the most effective diagnostic imaging
tools in medicine, providing clinicians with a high spatial and temporal resolution of
biological anatomy and metabolic/functional information in a non-invasive manner. Tissue
necrosis, ischemia, and other malignant diseases are of great significance. Under the action
of an EMF, different tissues and organs of the organism can generate different resonance
signals to form MR images. The strength of the resonance signal is determined by the water
content of each part of the body and the relaxation time of water protons. The contrast
agent is an image-enhancing contrast agent that can change the body’s relaxation rate
of water protons, improve imaging contrast, and display lesions [29,32,131]. MNPs are
considered to have promising applications in T2 MRI contrast agents, and especially
iron-based MNPs exhibit longer half-lives than clinically used gadolinium-based contrast
agents [132] (Figure 6). At present, a variety of iron-based MNPs have been developed as
clinical MRI contrast agents for imaging various tissues. For example, the FDA approved
Feridex to detect liver lesions, and Combidex has entered the phase III clinical trial stage
for the imaging of lymph node metastasis [133]. In terms of vascular structures, in addition
to participating in vascular repair in the above ways, MNPs can also be used as vascular
microenvironment imaging contrast agents to observe the dynamic changes of vascular
graft contour, stenosis or occlusion, and other abnormalities through image visualization to
evaluate the process and effect of repair [134]. Flores et al. [135] demonstrated the feasibility
of MRI to assess the in vivo performance of tissue-engineered vascular grafts (TEVG) by
labeling human aortic smooth muscle cells (HASMCs) with USPIO nanoparticles, which
were then seeded into a TEVG and implanted in mice in vivo. The results showed that
USPIO-labeled TEVG consistently had sharper boundaries and lowered T2 relaxation time
values than unlabeled control scaffolds. In addition, MNPs labeled cells were also used to
observe the behavior of related vascular cells by MRI. Perea et al. [136] Labeled HUVECs
with clinically approved SPIO, then drove cells to the lumen of polytetrafluoroethylene
(PTFE) tubular grafts through a particular electromagnet and then detected endothelial
cells with a 1.5 T magnetic resonance scanner to evaluate vascular endothelialization.
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3.5. Other Role of MNPs in Vascular Repair

MNPs are exposed to alternating EMF, which triggers particle movement and local
heating, which produces a high-temperature effect that causes tissue damage in the area
around the nanoparticles and have been applied to tumor treatment. The main mechanism
of action is to raise the temperature above 42 ◦C through magnetic heating and lead to
protein denaturation, which leads to cell death (Figure 7A). At present, this method has
also been an effective means to treat tumor vascular injury. Higher thermal stimulation
based on physiological temperature can effectively kill intravascular tumor cells [137,138]
and inhibit blood flow to promote the recovery of vascular function [139]. In recent years,
studies have also found that MNPs also have biological effects, such as promoting the
polarization of macrophages and producing ROS effects (Figure 7B). These effects will
also have a significant impact on the vascular repair. Zanganeh et al. [140] found that
high concentrations of ferumoxytol can promote macrophage polarization to M1, thereby
enhancing the regulation of cancer immunotherapy, including breast cancer, liver cancer,
and lung cancer. However, some scholars pointed out that a low concentration of MNPs can
also promote the growth of blood vessels [101]. There is no more evidence to prove whether
it may regulate the polarization of macrophages at the injured site to M2 type to promote re-
pair. ROS plays important physiological roles in maintaining cardiac and vascular integrity
in the cardiovascular system. In particular, it plays a pathophysiological role in cardio-
vascular dysfunction associated with hypertension, diabetes, atherosclerosis, ischemia-
reperfusion injury, ischemic heart disease, congestive heart failure, and violent vascular
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defects [141,142]. The main ROSs that are important in these processes are superoxide anion
(O2

−), hydrogen peroxide (H2O2), hydroxyl radical (OH), and reactive nitrogen species,
among others [143,144]. ROS is both a signaling molecule and an inflammatory mediator,
which is central to the progression of many inflammatory diseases [145]. Under normal
physiological conditions, ROS of the body is maintained at a low level of dynamic balance
and participates in many important physiological processes, such as controlling the inflam-
matory reaction, killing toxic and harmful substances or tumor cells, promoting leukocyte
phagocytosis, responding to growth factor stimulation, participating in the synthesis of
biological macromolecules such as prothrombin and collagen, and participating in cell
differentiation, proliferation, apoptosis, migration, and other cellular processes [146,147].
For vascular structures, once the body is pathologically damaged, the level of ROS will in-
crease, which can trigger a series of inflammatory reactions, resulting in apoptosis or death
of cells, thereby aggravating the damage of vascular structures. An important reason for the
high level of ROS at the injury site is that the level of antioxidant enzymes in pathological
tissue is lower than that in normal tissue, so it is a strategy to effectively remove ROS and
maintain dynamic balance [148,149]. Commonly used antioxidants include vitamins A, C,
and E, coenzyme Q10, beta-carotene, superoxide dismutase, and catalase, while commonly
used ROS generation inhibitors include NADPH oxidase inhibitors and xanthine oxidase
inhibitors [150,151]. The most typical are Prussian blue nanoparticles (PBNPs, a kind of
iron-based magnetic nanoparticle), which are nanozymes just discovered in recent years,
which have incomparable advantages to other nanozymes, such as multi-enzyme activity,
high catalytic rate, excellent ROS scavenging ability, and good biological safety. Nowadays,
PBNPs have received extensive attention in treating inflammatory diseases and show great
potential for application [152–156]. Zhang et al. [70] utilized the scavenging properties of
hollow Prussian blue nanoparticles (HPBZs) to treat ischemic stroke in rats. HPBZs can not
only reduce oxidative stress but also inhibit apoptosis, alleviate inflammation, and improve
the tolerance of ischemic brain injury. Zhao et al. [71,157] Used PBNPs and their analogs
as active ingredients to treat inflammatory bowel disease. PBNPs can not only clear ROS
but also effectively reduce inflammatory factors and have a good therapeutic effect on
intestinal inflammation induced by dextran sodium sulfate. In conclusion, these results
may be candidates for vascular repair applications, especially for vascular defects.

MNPs participate in vascular injury repair based on their unique physicochemi-
cal properties. However, no matter how it participates in vascular repair, MNPs will
pass through the blood circulatory system, affecting the vascular wall’s function, blood
pressure, or hemodynamics. The most typical is that when INOPs are less than 7 nm,
they will leak out of the vascular structures and be discharged by the kidney, while
200 nm–4 µM particles are easily phagocytized by macrophages of the mononuclear phago-
cytosis system (MPS). Therefore, the development of INOPs for vascular usually needs
to be at 10–200 nm [158,159]. Secondly, we know that the endothelial cell layer is the
innermost layer of the vascular wall, which can maintain the hemostasis and smooth
blood flow of vascular structures by releasing NO, heparin, plasmin, and other regula-
tory molecules [160,161]. The instability of INOPs sometimes leads to the release of iron
ions, resulting in the dysfunction of most organelles in endothelial cells, such as lysosome,
golgi apparatus, endoplasmic reticulum, and mitochondria, which in turn induces ox-
idative stress, inflammation, and gene mutation, and finally leads to the destruction of
the endothelial cell layer, the impairment of vascular wall function, and thrombosis [162].
In addition, usually naked INOPs are prone to aggregate in complex saline solutions
(such as blood), adversely affecting living tissue or occluding vascular structures. Stable
anti-aggregation coatings, such as serum albumin, can greatly improve IONP dispersibil-
ity [163–165]. More importantly, studies have shown that the concentration of ions also
significantly affects blood pressure and hemodynamics. For example, in atherosclerotic
coronary arteries, the deposition of fibrofatty plaque reduces the elasticity of the arterial
wall and may ultimately increase pulse pressure. This can lead to advanced disease within
the large arteries [166]. Injecting a suspension of nanoparticles as a drug carrier into the
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bloodstream changes the viscosity of the blood and causes a pressure drop in atherosclerotic
coronary arteries. However, these are related to the concentration of nanoparticles used,
and high concentrations of nanoparticles may also increase blood pressure and even reduce
hemodynamic effects [167]. Therefore, a suitable nanoparticle concentration is also crucial.
In conclusion, the repair of vascular structures based on MNPs shows great potential for
clinical application, but its impact on the vascular microenvironment cannot be ignored.
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4. Conclusions and Outlook

Vascular injury caused by various reasons seriously affects human health, which is
also one of the significant challenges clinical surgery faces. MNPs play important roles
in diagnosing, treating, and repairing vascular structures based on their unique magnetic
properties, including magnetic stimulation, magnetic actuation, magnetic resonance imag-
ing, magnetic hyperthermia, magnetic-assembled scaffolds, and magnetically targeted drug
delivery. The occurrence of these magnetic response behaviors can significantly affect the
scaffold performance, cell behavior, factor secretion, and drug delivery related to vascular
repair, thereby effectively promoting the rapid repair of vascular structures. However,
there are still challenges in the large-scale clinical application of MNPs, which can only
be reflected in the experimental academic environment, and the challenges in the human
body will be more prominent. Under the fact that the physiological environment of human
vascular cannot be changed, the preparation of high-performance MNPs suitable for vascu-
lar repair is the key to clinical application. For example, MNPs must be small enough to
move freely between various vascular structures when dispersed in blood to avoid vascular
embolism. Studies have also found that MNPs at the 10–100 nm scale could maintain
longer blood circulation time; high saturation magnetization, the strong driving force at
low doses in drug-targeted treatment of vascular injury, and a high temperature rise effect
at low doses in magnetic hyperthermia repair of vascular structures; and functional coating
in the vascular physiological environment, in which MNPs will be adsorbed on the surface
by plasma proteins in the blood and proteins and coagulation factors in the complement
system to form the so-called blood protein corona, covering the original surface-design
nanoparticles (NPs) and disturbing the recognition receptors of target cells. Therefore,
polyethylene glycol is usually coated to reduce corona formation so that they can be rec-
ognized by immune cells quickly and clearly. Biological effects, magnetically assembled
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scaffolds capable of rapid re-endothelialization, are crucial for rapid re-endothelialization
the repair of vascular rupture damage. The loaded MNPs should have the ability to regu-
late the microenvironment of the injury site to promote rapid reendothelialization, such
as affecting the migration and polarization of immune cells, including macrophages and
neutrophils. However, the problems to be solved by high-performance MNPs suitable for
vascular repair are not limited to the above description but include crystallinity, uniformity,
surface properties, shape, hydrophilicity, and hydrophobicity.
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Abbreviations

MNPs Magnetic nanoparticles
ePTFE expanded polytetrafluoroethylene
PTFE polytetrafluoroethylene
VECs vascular endothelial cells
ROS reactive oxygen species
MRI magnetic resonance imaging
PEG poly(ethylene glycol)
PVP poly(vinylpyrrolidone)
PVA poly(vinyl alcohol)
PLGA poly(lactic-glycolic acid)
PVA Polyvinyl alcohol
TEM transmission electron microscope
NPs nanoparticles
IH intimal hyperplasia
HA hydroxyapatite
USPIO ultra-small superparamagnetic iron oxide nanoparticles
SPIO super paramagnetic iron oxide
PU polyurethane
PET polyester
SFC silk fibroin scaffolds
TNF-α tumor necrosis factor-α
IL-6 interleukin-6
MCP-1 monocyte chemotactic protein-1
bFGF basic fibroblast growth factor
VEGF vascular endothelial growth factor
TGF-β transforming growth factor-β
MSCs mesenchymal stem cells
SMCs smooth muscle cells
HUVECs human umbilical vein endothelial cells
eNOS endothelial nitric oxide synthase
ECs endothelial cells
EMF external magnetic field
SMF static magnetic field
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SVF stromal vascular fraction
IRF-5 interferon regulatory factor-5
MDD magnetic drug delivery
Arg-1 Arginase-1
HSPCs hematopoietic stem and progenitor cells
PSC polydextrose sorbitol carboxymethyl ether
tPA tissue plasminogen activator
CIA collagen induced arthritis
ISR in-stent restenosis
PBNP prussian blue nanoparticles
uPB ultra-small PBNP
PTX paclitaxel
MMB magnetic nanoparticle coated microbubbles
NO nitric oxide
NIR near infrared
MDT magnetic drug targeting
AS atherosclerosis
CDCs cardiac-derived stem cells
PCR polymerase chain reaction
LMNs laser-sensitized magnetic nanoparticles
BC bacterial cellulose
NEs-Exo neutrophil-derived exosomes
HASMCs human aortic smooth muscle cells
FDA food and drug administration
TEVG tissue-engineered vascular grafts
GBCAs gadolinium-based contrast agents
IONPs iron oxide nanoparticles
·O2

− superoxide anion
H2O2 hydrogen peroxide
·OH hydroxyl radical
NADPH nicotinamide adenine dinucleotide phosphate
HPBZs hollow prussian blue nanoparticles
SEM scanning electron microscope
MPS mononuclear phagocytosis system
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