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Gut microbiome: a new player in gastrointestinal disease
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Abstract
The gastrointestinal (GI) tract harbors a diverse and host-specific gut microbial community. Whereas host-microbe interactions
are based on homeostasis and mutualism, the microbiome also contributes to disease development. In this review, we summarize
recent findings connecting the GI microbiome with GI disease. Starting with a description of biochemical factors shaping
microbial compositions in each gut segment along the longitudinal axis, improved histological techniques enabling high reso-
lution visualization of the spatial microbiome structure are highlighted. Subsequently, inflammatory and neoplastic diseases of
the esophagus, stomach, and small and large intestines are discussed and the respective changes in microbiome compositions
summarized. Finally, approaches aiming to restore disturbed microbiome compositions thereby promoting health are discussed.
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Introduction

All body surfaces being in contact with the environment, like
the skin and the gastrointestinal (GI), urogenital, and respira-
tory tracts are colonized by microorganisms. These microbial
consortia, collectively termed Bmicrobiome^ or Bmicrobiota,^
are now viewed as integral part of our body, being essential for
proper organ function. Thus humans are considered
holobionts composed of not only Bown^ (eukaryotic) cells
but also microbial cells and understanding the mechanisms
underlying health and disease development needs to encoun-
ter the microbial part of our body too [1, 2]. Different types of
microorganisms are part of the human microbiome, including
bacteria (prokaryotes), archea, fungi, protists, and virus.
Dependent on the habitat, the composition of the microbiome
differs significantly [3]. For instance, the gut microbiota is

mainly populated by bacteria (> 99% [4]), whereas the skin
harbors also significant amounts of fungi (≈ 10% [5]). The
vast majority of commensal microorganisms reside in the co-
lon, with estimates of up to 1013 bacteria followed by the skin,
which harbors about 1012 bacteria. Thus, the collective
microbiome colonizing our body (approx. 1013 microbial
cells) outnumbers our own nucleated body cells (approx.
1012) by the factor of 10, which gives already an estimate of
the biological potential of our Bsecond genome^ [4, 6].

The biological functions conferred by the microbiome are
manifold. The gut microbiome is a major factor involved in
metabolism and energy regulation [7]. Up to 10% of our daily
consumed calories are provided by the gut microbiota partly
via degradation of complex (plant-derived) polysaccharides
into short-chain fatty acids (SCFAs; e.g., butyrate), a process
called fermentation. Thus, the gut microbiome is a major fac-
tor contributing to obesity and its sequels like type II diabetes
mellitus [8–10]. Another prominent feature of the microbiome
is the education of the immune system. The mucosal immune
system needs to tolerate the resident microbiome, whereas it
needs to react against pathogens. This homeostasis is achieved
by an intricate interplay of the microbiome and the host [11].
Especially the induction of tolerance via induction of anti-
inflammatory cells and cytokines (e.g., regulatory T cells,
IL-10, TGFβ) is an important trait of the microbiota, con-
ferred by special microbial products directly interacting with
the host’s immune system [12–15]. In addition, it has been
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recognized that CD4+ T cell responses are directed and mod-
ulated by specific commensals towards a T helper (Th) cell 1
or Th17 immune reaction, which has major implications not
only in mucosal defense but also in autoimmune and
autoinflammatory processes beyond the GI tract [16].

Moreover, physiologically colonized body surfaces are in-
trinsically protected from colonization with pathogens, a high-
ly effective defense mechanism called pathogen exclusion or
colonization resistance [17]. Various mechanisms have been
described in this context. So it has been shown that a low-fiber
diet quickly shapes the structural composition of the
microbiome promoting the expansion of a mucus-degrading
microbiota. This renders mice more susceptible to colitis elicited
by certain intestinal pathogens [18]. On the other hand, a fiber-
rich diet reduces the numbers of mucus-degrading commensals
and promotes the bloom of fiber-degrading SCFA-producing
bacteria. SCFA then support mucosal barrier functions through
distinct mechanisms impacting on oxygen consumption by intes-
tinal epithelial cells [19], modulating the threshold of intracellular
danger receptors such as inflammasomes [20], or shifting naïve T
helper cells towards regulatory T cells [13]. Other mechanisms
include less-well investigated mechanisms of microbe-microbe
interactions. So it has been shown that by producing iron-binding
siderophores certain pathobionts and pathogens acquire a growth
advantage during colitis when iron is scarce [21]. Certain protec-
tive commensals harness this circumstance by coupling these
siderophores with antimicrobial microcins, which then enter
and target pathobionts as BTrojan horses^ through siderophore-
receptor based uptake [22].

Factors shaping the spatial organization
of the human gut microbiome

Babies are born sterile. During birth, the body becomes im-
mediately colonized by microbes from the surroundings,
which is the main determinant shaping microbiome composi-
tion early in life [23]. Consequently, babies born naturally
acquire different microbes like Lactobacillus and Prevotella
resembling the mother’s vaginal microbiota, whereas babies
born via Cesarian section are dominated by Bskin^-type bac-
teria like Staphylococcus , Corynebacterium , and
Propionibacterium [24]. Interestingly, differences in early col-
onization are supposed to contribute also to different suscep-
tibilities to immune-mediated diseases, like asthma and aller-
gies, later in life [25]. The first year of life is signified by an
increased variability of the microbiome, which Bstabilizes^
when adult diet is introduced after weaning [26]. At this
time-point (about 1 year of age), the infant microbiome resem-
bles largely an adult microbiome.

The structure of the human microbiome is mainly deter-
mined by environmental factors like diet. Consequently, rela-
tives or individuals living in the same household and having

the same living habits share more microbes than unrelated
individuals [27]. Overall, the gut microbiome appears to be
quite stable over time for years, possibly life-long [26]. In
addition, there seems to be also a (small) heritable component
determining GI microbiome structure [28–30]. For instance,
several genotyping studies correlating host genotype with gut
microbiome composition have revealed a genetic association
of the human lactase gene locus with Bifidobacterium abun-
dance providing evidence of a gene-diet-gut microbiome in-
teraction and giving new clues about pathogenesis of lactose
intolerance [31, 32].

The human GI tract could be simply seen as a tube with an
input and output. A constant flux of microbes originating from
the environment, diet, and the oral cavity exists which poten-
tially facilitates entry of foreign and potentially harmful mi-
crobes. Nevertheless, a quite specific and stable microbiota is
maintained in each gut segment under healthy conditions.
Compositions and densities of the gut microbiome along the
GI tract are mainly governed by biochemical factors like pH,
oxygen, antimicrobial peptide (AMP) gradients, and presence
of bile acids, as well as the speed of transit [33]. As indicated
in Fig. 1, pH is lowest in the stomach, gradually increases
towards the terminal ileum, decreases in the cecum, and again
gradually increases towards the distal colon. An oxygen gra-
dient exists along the length of the gut, with levels highest in
the upper GI tract which decrease to anaerobic conditions in
the distal colon. However, there is also a radial oxygen gradi-
ent in the colon, with anoxic conditions in the lumen and a
slight increase in oxygen tension towards the mucosa, which
can be consumed by microorganisms living in proximity to the
mucosa, also from enteropathogens [35]. Each gut segment
harbors a unique repertoire of AMPs, specifically suppressing
certain groups of bacteria. Saliva contains high amounts of
lysozyme efficiently degrading the murein wall of microbes
and also the stomach epithelium is able to produce AMPs
[36]. In the small intestine, Paneth cells secrete AMPs like α-
defensins, C-type lectins, lysozyme, and phospholipase A2. In
the large intestine, enterocytes secrete AMPs like β-defensins,
C-type lectins, cathelicidins, galectins, and lipocalin [37].
Interestingly, the microbiome of the large intestine encodes
genes providing resistance to specific AMPs conferring resil-
ience to the microbiome during inflammation, when AMP
levels are high, allowing faster recovery of a Bhealthy^
microbiome after infection [38].

The microbiota is spatially organized along the transverse
axis of the GI tract, from the lumen to the mucosa. A major
factor driving this transverse organization is the mucus layer
covering the GI tract. Mucins are gel-forming glycoproteins,
polymerizing into a mesh like structure. There are two dis-
criminable mucus layers in the stomach and colon, an outer
Bloose^ layer which is densely populated by bacteria and an
inner Bsolid^ layer, which is enriched in innate and adaptive
immune effectors providing a biochemical barrier that
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segregates the microbiota from direct contact with the epithe-
lium [34, 39]. This inner layer is nearly free of microbes.
However, specific microbes like the mucin utilizer
Akkermansia muciniphila are able to degrade the layer thus
reaching inner areas [40, 41], in addition to various pathogens,
like Helicobacter pylori in the stomach or enteropathogenic
Escherichia coli, Salmonella, Yersinia, and Campylobacter in
the colon. In the small intestine, the mucus layer is discontin-
uous and less defined; the tips of the villi often not covered by
mucin (Fig. 1). Importantly, routine histological preparations
do not preserve mucus layer architecture. The mucus layer is
heavily hydrated and dehydration, which happens during con-
ventional fixation with formaldehyde, shrinks the mucus layer
leading to a very thin film lining the epithelium. Techniques
for improved mucus preservation employ fixation of tissue
with chloroform, dry methanol, and glacial acetic acid (i.e.,
Carnoy’s fixative), and processing in water-free solutions be-
fore embedding in paraffin, which preserves mucus layer

architecture [34, 39, 42]. Moreover, this fixation method al-
lows also for simultaneous staining of bacterial RNA/DNA by
fluorescence in situ hybridization (FISH). Application of this
technique allows for a high-resolution analysis of gut-
microbiome interactions as exemplified in Fig. 2, wherein a
mouse colon fixed in Carnoy’s solution was used to track a
specific gut pathobiont (Alistipes finegoldii) in the GI tract in
situ.

The total number of microbes increases from the esophagus
to the distal colon, where the microbial load is estimated to be
1012 microbes per gram of feces. The acidic pH and oxygen-
ated environment of the upper GI tract limit microbial coloni-
zation to acid- and oxygen-tolerant bacteria (e.g.,
Lactobacillus, Streptococcus, Veillonella), whereas in the
large intestine the flow is slower, and metabolism favors fer-
mentation of complex plant-derived polysaccharides (e.g., fi-
ber) or from host mucus. This results in greater species rich-
ness (i.e., number of prevalent taxa), higher microbial

Fig. 1 Biogeography and factors shaping the spatial organization of the
gut microbiome. Left: factors determining gut segment specific
microbiome composition like oxygen, pH, bile acids (BA),
antimicrobial peptides (AMPs), and concentration of short-chain fatty
acids (SCFAs). Middle: schematic representation of the GI tract and of
the segment specific mucus layer architecture (adapted from [33, 34]).

The inner solid (amber) and the outer loose mucus layer (gray) are shown.
Note that in the stomach and colon the mucus layer is continuous,
whereas in the small intestine the layer is discontinuous. Muc5AC and
Muc2 denote the dominant mucins produced in the respective gut
segment. Right: bacterial load and typical taxonomic compositions of
different gut segments
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densities and dominance of the saccharolytic Bacteroidales
and Clostridiales in the large intestine [39].

Dysbiosis—chicken and egg

It is important to note that many studies investigating the
microbiome in the disease context describe associations and
the reported shifts in microbiome composition (termed
Bdysbiosis^) are often not proven causal for the respective
disease and could just represent epiphenomena, wherein
changed habitat factors (e.g., by change of substances pro-
duced by the host cells during disease) lead to altered micro-
bial community compositions [43]. However, changed habitat
factors and subsequent dysbiosis could contribute to disease
as well, especially if these alterations are persistent.
Paradigmatic in this context are epithelial tumors of
microbially colonized organs like colorectal cancer (CRC)
and its precursors (adenomas). Recently, it has been shown
that the neoplastic colon epithelium overexpresses a polysac-
charide, D-galactose-b(1-3)-N-acetyl-D-galactosamine (Gal-
GalNAc), which is selectively bound by a Fusobacterium
nucleatum lectin (Fap2) enriching this protumorigenic mi-
crobe in CRC tissue [44]. Another impressive example for a
direct contribution of the microbiome to disease pathogenesis
is exemplified by approaches aiming in restoration of
dysbiosis, like bacteriotherapy or fecal microbiome transplan-
tation (FMT). This approach is already regularly used to treat
recurrent Clostridium difficile (pseudomembranous) colitis a
disease caused by antibiotic-induced dysbiosis and subse-
quent pathogen overgrowth [45, 46]. Importantly, the restora-
tion of dysbiosis by FMT shows also efficacy in chronic

inflammatory GI diseases like ulcerative colitis and even in
metabolic diseases like in individuals with metabolic syn-
drome [47, 48].

Microbiome and inflammatory diseases
of the upper GI tract

Esophagus and gastro-esophageal junction

The composition of the esophageal microbiome is heavily
influenced by microbes originating from the oral cavity, dom-
inated by taxa like Streptococcus followed by Prevotella,
Veillonella, and Fusobacterium, which represent the healthy
esophageal core microbiome [49–51]. Chronic exposure of
the distal esophagus to gastric acid and duodenal bile salts is
thought to be a major factor underlying the pathogenesis of
gastro-esophageal reflux disease (GERD), Barrett’s esopha-
gus (BE), and subsequently adenocarcinoma of the gastro-
esophageal (GE) junction. As discussed above, changing hab-
itat factors lead also to altered microbiome compositions,
which could in turn fuel inflammation and tumorigenesis.
Certain studies noted significant taxonomic changes in the
esophageal microbiome in GERD, BE, and adenocarcinoma
of the GE junction. Dominant taxa like the Gram-positive
Streptococcus are depleted, whereas Gram-negative taxa like
Veillonella, Prevotella, Campylobacter, Fusobacterium,
Haemophilus, andNeisseria are enriched in the diseased states
[52, 53]. Notably, the oral taxonsCampylobacter concisus and
C. rectus have been found enriched in the mucosa of GERD
and BE but were depleted in adenocarcinoma of the GE junc-
tion [54, 55]. Interestingly, C. concisus seems to be adapted to

Fig. 2 In vivo tracking and improved spatial resolution of gut-
microbiome interactions. A mouse colon was fixed in Carnoy’s solution
to preserve mucus layer architecture. a The section was counterstained
with 4′,6-diamidino-2-phenylindole (DAPI) indicating the colonic epithe-
lium (E) in the left lower corner, the interlaced (I) mucus layer (indicated
by the two dotted lines), which is devoid of bacteria, and the colonic
lumen (L) on the right side. The structure in the upper right depicts a
plant component. b Bacteria were stained by FISH using a fluorescein
isothiocyanate (FITC) pan-specific EUB338 probe (green) which covers
approximately 90% of the domain bacteria. c In this experiment, mice

were gavaged with the gut bacterium Alistipes finegoldii (phylum
Bacteroidetes), which were cultured in the presence of the thymidine
analog 5-ethynyl-2′-deoxyuridine (EdU). Metabolically active Alistipes
was tracked utilizing click chemistry that is based on a copper-catalyzed
covalent reaction between an alkyne (within the EdU) and an
AlexaFluor® 647-containing azide. Note that the bacterium colonizes
the luminal site of the colon, not the mucus layer (arrows). d The right
picture shows the merged panels. Cells were imaged on a Zeiss
Axioobserver Z1 microscope equipped with a LSM700 confocal unit.
Original magnification 400×
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the harsh (acidic) environment of the upper GI tract.
Significantly increased RNA transcripts of C. concisus com-
pared to other stomach microbes were detected in the human
gastric juice [56]. These taxa are also increased in individuals
with IBD, especially children with Crohn’s disease [57]. In
addition, also Fusobacterium nucleatum, a Gram-negative fili-
form bacterium normally inhabiting the human oral cavity (den-
tal plaque), is overabundant in Crohn’s disease, in addition to its
association with adenomas and CRC [58]. Importantly, several
molecular studies have shown a proinflammatory and
protumorigenic behavior of F. nucleatum, wherein the bacteri-
um was shown to specifically activate epithelial cell prolifera-
tion, to induce a protumorigenic immune-microenvironment
and inhibits immunological tumor surveillance [59–61].

Another prominent disease of the esophagus is represented
by eosinophilic esophagitis (EoE). Although the primary
cause of EoE is thought to be a non-IgE-mediated food hyper-
sensitivity [62], also increased levels of Gram-negative bacteria
(Neisseria, Corynebacterium, Haemophilus) were reported [63,
64]. If these microbiome changes also contribute to disease path-
ogenesis needs to be clarified. Recent reviews have summarized
the majority of existing studies investigating microbiome com-
positions in diseases of the upper GI tract [49–51].

Stomach

Helicobacter pylori is a bacterium purely adapted to the hu-
man host. This restricted host spectrum has led to a coevolu-
tion of the bacterium with humans [65] and has shaped the
molecular determinants of host-pathogen interaction manifold
[66]. Noteworthy, the intimate relationship between the bac-
terium and humans has led also to beneficial effects of
H. pylori infection aside of the clear pathogenic effects leading
to chronic gastritis, ulcers, and subsequently gastric adenocar-
cinoma andMALT lymphoma [67, 68]. Noteworthy, it has for
instance been shown that early life-time infection with
H. pylori lowers significantly the risk of developing asthma
and celiac disease later in life [69, 70]. Many of this beneficial
traits are induced by immune system modulation of H. pylori,
due to the induction of a tolerogenic immune-state (e.g., in-
duction of regulatory T cells), which helps the bacterium to
persist in the human host. Therefore, H. pylori represents a
paradigm Bpathobiont,^ a term which specifies bacteria with a
commensal and pathogenic lifestyle that is determined not just
exclusively by bacterial traits but also by host (e.g., age, con-
comitant microbiome) or environmental factors [71]. The
view of a commensal lifestyle of H. pylori is also supported
by reports showing low level colonization of asymptomatic
individuals [72–76]. Under disease conditions,H. pylori is the
dominant stomach bacterium outcompeting the normal resi-
dent microbiome and its preferred niche is the gastric mucosal
surface (Fig. 3). Interestingly, H. pylori infection also signifi-
cantly impacts lower gut microbiome composition [77, 78].

That pathogenicity of H. pylori is also determined by non-
H. pylori factors is supported by the finding that the concom-
itant gastric microbiota is also important to drive gastric tu-
morigenesis. Interestingly, distinct sequential changes in
microbiome compositions occur along the gastric
metaplasia-dysplasia development [79–81]. In analogy to ad-
enocarcinoma of the GE junction also bacteria originating
from the oral cavity seem to be involved in tumorigenesis of
the H. pylori-infected stomach [82].

Another form of chronic gastritis is lymphocytic gastritis
(LyG), characterized by increased CD8+ intraepithelial lym-
phocytes (IELs; ≥ 25 per 100 epithelial cells). In addition to
the association with celiac diseases (CeD), a great proportion
of LyG has unclarified causes. H. pylori is normally absent in
LyG; however, eradication therapy seems to be an effective
treatment of LyG, even in the absence of identifiableH. pylori,
suggesting an alternative bacterial cause for the disease. We
recently identifiedPropionibacterium acnes as a possible LyG
disease trigger inducing the natural killer group 2 member D
(NKG2D) system and the proinflammatory cytokine interleu-
kin (IL)-15 in the gastric mucosa [76]. Natural killer (NK) cells,
CD8+ T cells, and certain other T cells express the NKG2D
receptor. The NKG2D receptor ligands (NKG2DLs) are
expressed mainly on epithelial cells at low levels under physi-
ological conditions, but their expression is induced under con-
ditions of cell stress, such as infection, neoplastic transforma-
tion, or challenge with specific metabolites (e.g., short-chain
fatty acids, SCFAs) or gliadin in the case of CeD. Upon
ligand-receptor interaction, NKG2D triggers a cytotoxic re-
sponse in the receptor-bearing lymphocyte, eliminating the
stressed cell that is overexpressing the ligand. This reaction is
enhanced by the presence of IL-15 [83–86]. Of note, the
NKG2D-NKG2DL system and IL-15 are important for immu-
nological tumor surveillance, which is necessary for the elimi-
nation of neoplastic cells. The system has therefore been inves-
tigated as a potent target for cancer immunotherapy [87, 88].

Small intestine

In CeD, the NKG2D system is critical for recruitment of CD8+

IELs and subsequent villus atrophy in the duodenum [83, 84].
In addition to the genetic causes (i.e., HLA-DQ), also envi-
ronmental factors play a role in the development of CeD,
including the microbiome [89]. Phenomena like the so-
called Swedish CeD epidemic, wherein the incidence of
CeD fourfold increased in children within a short period
followed by a rapid drop, resembles an infectious disease
(i.e., Bout-break pattern^) [90]. Recently, it was shown that
gut bacteria are able to differentially degrade gluten giving a
possible explanation for these phenomena. Specifically, over-
growth of the opportunistic pathogen Pseudomonas
aeruginosa was reported in CeD, which is able to produce a
specific elastase (lasB). This enzyme degrades gluten in a
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specific manner enabling the released peptides to better trans-
locate the intestinal barrier, which subsequently leads to the
activation of gluten-specific T cells driving the disease [91].

Another inflammatory disease often prevalent in the small
intestine, wherein the microbiome plays a role, is graft versus
host disease (GvHD). GvHD is caused by the alloactivation of
T cells, which recognize host antigens as foreign, causing
autoimmune attack to organs such as the GI tract, lungs, liver,
and skin [92]. A microbial factor contributing to disease de-
velopment was already suspected in the 1970s when it was
demonstrated that mice kept under germ-free conditions de-
veloped less GI GvHD [93, 94]. Although the underlying
molecular mechanisms of the contribution of the microbiome
to GvHD development are largely unknown, depletion of the
resident microbiome, due to the intensive antibiotic and che-
motherapeutic treatment regimens, seems to play a pivotal
role. Notably, the magnitude of intestinal diversity loss is a
risk factor for treatment-related mortality including death from
GvHD [95]. The intestinal diversity loss (e.g., depletion of
specific Clostridia) leads to impaired microbial fermentation
and a lack of SCFAs (e.g., butyrate), the main energy source of
gut epithelia. SCFA deprivation has been shown to induce
apoptosis in intestinal epithelial cells, the hallmark histologi-
cal change observed in GvHD [96]. Moreover, a common
dysbiotic fecal microbiome signature in GvHD was reported
recently, specified by an (over-)abundance of Enterococcus
species (E. faecium, E. faecalis). This microbiome type is
significantly associated with the risk to develop gut GvHD
after hematopoietic stem cell transplantation [97].
Interestingly, treatment strategies which restore a physiologi-
cal gut microbiome (e.g., FMT) appear to be beneficial in
patients with chronic active GvHD [92, 98].

Microbiome and inflammatory diseases
of the lower GI tract

Antibiotic-associated colitis

Colitis is a frequent side effect of antibiotic therapy [99].
Besides direct drug-induced toxicity of antibiotics, depletion
of the gut microbiome and subsequent pathogen overgrowth
are major disease causes, like in Clostridium difficile colitis
(CDC [45]). In CDC, the bile acid 7α-dehydroxylating intes-
tinal bacterium Clostridium scidens seems to be depleted
which leads to a lack of suppression of C. difficile [100].
Noteworthy, FMT is already an established highly effective
treatment for recurrent CDC, indicating the potential of ther-
apies aiming to restore an altered microbiome [46]. Of note,
antibiotic-associated colitis could be caused also by other
pathogens, like Klebsiella oxytoca, the causative agent of
antibiotic-associated hemorrhagic colitis (AAHC). AAHC is
usually observed after therapy with penicillins and represents
as segmental, often patchy hemorrhagic colitis, typically dom-
inant in the right colon [101, 102]. In AAHC, overgrowing
K. oxytoca intrinsically resistant to beta-lactams and produc-
ing the enterotoxin tilivalline lead to intestinal epithelial apo-
ptosis and colitis (Fig. 4). In extreme forms of antibiotic-
associated colitis microbiome depletion can lead to disease
courses resembling severe acute GvHD. We described recently
a series of severe apoptotic enterocolitis cases emerging after
therapy with antibiotics and steroids, wherein severe
microbiome depletion seemed to trigger the disease. Notably,
FMT performed in one case restored a normal gut microbiome
and was highly effective to dampen epithelial cell death and
enterocolitis [103].

Fig. 3 Stomach microbiome in chronic H. pylori gastritis. a Gastric
corpus biopsy signifying the preferred mucosal niche of H. pylori
(arrow heads). b Microbiome analysis (based on the 16S rRNA gene)

indicates the dominance of H. pylori at the mucosal sites, whereas in
gastric juice only few H. pylori are prevalent
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Inflammatory bowel diseases

Crohn’s disease and ulcerative colitis represent the two major
clinically defined forms of inflammatory bowel diseases
(IBD). Our current mechanistic understanding puts the intes-
tinal epithelial cell as the central orchestrator of the innate
immune system into the limelight, integrating genetically
based interactions between the intestinal microbiome, the mu-
cosal immune system, and environmental factors [104]. A
genetic component in IBD has been postulated early in the
process of identifying and understanding disease etiologywith
evidence from early epidemiological [105, 106] and twin stud-
ies [107]. Recent genome-wide association studies (GWAS)
identified more than 200 IBD susceptibility loci, with most of
them conferring modest disease risk in terms of odds-ratios
[108]. Nevertheless GWAS resulted in new insights in IBD
biology revealing a substantial overlap between the genetic
risks of CD and UC and between other autoimmune and
autoinflammatory diseases [109, 110]. Furthermore, these
techniques pointed out previously unappreciated pathways in
IBD, ahead of autophagy [111].

Nevertheless, the incidence of both Crohn’s disease and
ulcerative colitis is increasing dramatically worldwide, which
is of course hardly explained by changes in the genetic land-
scape [112]. IBD was among the first diseases in which the
microbiome has been studied intensively. These studies iden-
tified not only significant compositional alterations of the
microbiome with reduction of potentially-protective commen-
sals such as Faecalibacterium prausnitzii [113] but also a less
stable microbiome, an increased adherence of microbes to the
epithelial surface, however, no clear signature with specific
pathobionts. Of note, many of the early studies included pa-
tients under medication which potentially influenced some of
the results. More recently, Gevers and colleagues studied the
treatment-naïve microbiome including 447 children and ado-
lescents with newly diagnosed Crohn’s disease and 221 con-
trols. They identified a strong correlation of disease with in-
creased abundance of Enterobacteriaceae, Pasteurellacaea,
Veillonellaceae, and Fusobacteriaceae and a decreased abun-
dance of Erysipelotrichales, Bacteroidales, and Clostridiales
[58]. This study included several other interesting aspects
showing that composition of the gut microbiome may be pre-
dictive for an individual disease course and that in early-stage
and lower grade inflammation the mucosa-associated
microbiome, e.g., from rectal biopsies, may be superior to
fecal microbiome analysis. Noteworthy, more recent studies
implied relevant alterations in the structural composition of
the gut Bvirome^ in IBD [114], and two recent clinical trials
showed that blocking IL-17Awith secukinumab or IL-17RA
with brodalumab worsened Crohn’s disease, with some pa-
tients developing mucocutaneous candidiasis ventilating a
role for the gut mycobiome in IBD, which has been implicated
in intestinal inflammation as well [115, 116].

Fig. 4 Histology and microbiome representation of antibiotic-associated
hemorrhagic colitis (AAHC). a Colon histology with micropapillary ep-
ithelial protrusions (arrow heads) indicating the cytotoxic effect of the
enterotoxin tilivalline produced by K. oxytoca. b Activated caspase-3
immunohistochemistry signifying epithelial cell apoptosis. c Fecal
microbiome composition in AAHC (based on the 16S rRNA gene anal-
ysis). A highly reduced overall diversity is evident with the overgrowth of
the proteobacterium K. oxytoca. A diverse healthy fecal microbiome is
shown on the left
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Are aberrant immune responses to the intestinal
microbiome indeed causally related to IBD? Evidence from
clinical studies showed that mucosal inflammation recurs
quickly after reinfusion of ileal content from a protective prox-
imal loop ileostomy, which certainly proved that the Benemy^
lies within the Bfecal stream^ [117]. Various experimental
models implicated that an altered dysbiotic microbiota causes
transmissible disease, both in the ileum and the colon.
Schaubeck and coworkers demonstrated that only a certain
proportion of TNFΔARE mice, which overproduce TNFα
and develop spontaneous ileitis, will develop high-grade his-
tological inflammation, while others show no inflammation at
all, despite identical genetic background and a comparable
environment. Using a reductionist approach, they transplanted
the stool from inflamed and non-inflamed TNFΔARE mice into
germ-free animals and demonstrated that the microbiome was
indeed the driving force for inflammation in this model [118].
Our own studies indicated a transplantable dysbiotic
microbiome in mice double-deficient of IL-10 and lipocalin
2 (Lcn2) driving colonic inflammation. In cross-foster exper-
iments, IL-10 pups raised by double-deficient nursingmothers
developed the same phenotype irrespectively of their own
genotype [119].

However, there are additional relevant environmental mod-
ulators of the intestinal microbiome. BWe are, what we eat^
and the axis food-microbiome represents another important
player particularly in IBD [120]. From clinical trials, we have
learned that an elemental or polymeric diet is highly effective
in the treatment of Crohn’s disease in children [121]; however,
the underlying mechanisms remain elusive as recent studies
suggest that an exclusive enteral nutrition further aggravates
dysbiosis [122]. Moreover, a western diet, enriched in animal
protein and fat, reduced in dietary fiber, and the intake of
processed foods has been shown to promote intestinal inflam-
mation through different mechanisms [15, 123, 124].

Colorectal cancer

Colorectal cancer (CRC) represents the third most commonly
diagnosed malignancy and the fourth leading cause of cancer-
related deaths worldwide. CRC burden is expected to increase
by 60% until 2030. CRC is one of the clearest markers of
cancer transition and incidence is growing fastest in low-
and middle-income countries and is associated with adoption
of a western lifestyle [125]. Mechanistically, malignant trans-
formation of intestinal epithelial cells and the development of
CRC includes at least three relevant steps namely (i) the in-
duction of oncogenic mutations within the Lgr5+ intestinal
stem cells (SC), (ii) an altered beta-catenin/Wnt signaling,
and (iii) proinflammatory cascades such as TNFα-NFκB
and IL6-STAT3 that catalyze CRC development [126].

CRC has been associated with specific changes in gut
microbiome composition [127–129]. Recently, we studied

microbial alterations along the adenoma-carcinoma sequence,
collecting stools from healthy controls, patients with advanced
adenomas and patients with CRC [127]. A metagenome-wide
association study (MGWAS) was performed and found, that
certain Bacteroides spp. (e.g., B. dorei, B. vulgatus,
B. massilensis) and E. coli were associated with systemic in-
flammation and tumor stage. In line with others, Parvimonas,
Bilophila wadsworthia, Fusobacterium nucleatum, and
Alistipes spp. were also overrepresented in CRC patients.
Importantly, the presence of SCFA-producing and bile acid-
metabolizing bacteria was clearly positively related to con-
sumption of meat and negatively related to the intake of fruits
and vegetables again indicating the important role of a western
lifestyle in development of CRC [127].

There is emerging evidence regarding a causal role of cer-
tain bacteria in CRC evolution such as F. nucleatum,
colibactin-producing E. coli and toxigenic Bacteroidis
fragilis. Interestingly, little is known about bacteria and mech-
anisms that protect from CRC development. F. nucleatumwas
one of first bacteria associated with human CRC, shown to be
enriched in tumors [59, 130]. Furthermore, F. nucleatum has
been strongly associated with certain tumor types, such as
microsatellite instable CRC and cancers with BRAF muta-
tions [131, 132]. Mechanistically, it has been shown that the
F. nucleatum FadA antigen is a ligand for E-cadherin on in-
testinal epithelial cells that activates the β-catenin signaling
pathway, thereby promoting uncontrolled cell growth, acqui-
sition of a stem cell-like phenotype of epithelia and loss of cell
polarity [61]. Also, mucosa-associated E. coli are overrepre-
sented in CRC, which correlates with tumor stage and prog-
nosis [133]. Moreover, some E. coli strains harbor a genomic
polyketide synthase (pks) island that encodes for the
genotoxin colibactin capable of inducing DNA damage and
mutations in epithelial cells [134].

Finally, it is increasingly recognized that the microbiome
contributes to the efficacy of cancer therapies. Several recent
papers demonstrated convincingly that bacterial nucleotide
metabolism genes affect efficacy of 5-fluoruracil and
camptothecin antineoplastic therapy [135]. Again,
F. nucleatum promoted colorectal cancer resistance to chemo-
therapy by a complex network of mechanisms including toll-
like receptor signaling, microRNAs and induction of autoph-
agy [136]. The intestinal microbiome and associated intestinal
immune mechanisms seem particularly relevant for response
to checkpoint inhibitors such as anti-PD1 and anti-PDL1 ther-
apies. This was first recognized in experimental models,
wherein response to anti-PD-L1 antibodies was associated
with the presence of Bifidobacterium and oral administration
of Bifidobacterium boosted the efficacy of such therapies
[137]. Gopalakrishnan and coworkers recently demonstrated
that the efficacy of anti-PD1 therapy was strongly affected by
concomitant antibiotic therapy, as well. Mechanistically, the
response was strongly dependent on the presence of the mucin
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degrader A. muciniphila. Response to anti-PD1 therapy in mice
that received the stool from non-responders could be restored by
administration of A. muciniphila and was dependent on
Akkermansia-induced, IL-12-dependent Th1 responses [138].

Conclusion

It is now evident that the human gut microbiome significantly
contributes not only to the maintenance of GI health but also
to disease development. Recent scientific findings support the
view that the gut microbiome might serve as a future diagnos-
tic and therapeutic target for inflammatory and also neoplastic
GI diseases.
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