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Abstract

Ancestral state reconstruction models use genetic data to characterize a group of organ-

isms’ common ancestor. These models have been applied to salmonellosis outbreaks to

estimate the number of transmissions between different animal species that share similar

geographical locations, with animal host as the state. However, as far as we are aware, no

studies have validated these models for outbreak analysis. In this study, salmonellosis out-

breaks were simulated using a stochastic Susceptible-Infected-Recovered model, and the

host population and transmission parameters of these simulated outbreaks were estimated

using Bayesian ancestral state reconstruction models (discrete trait analysis (DTA) and

structured coalescent (SC)). These models were unable to accurately estimate the number

of transmissions between the host populations or the amount of time spent in each host pop-

ulation. The DTA model was inaccurate because it assumed the number of isolates sampled

from each host population was proportional to the number of individuals infected within each

host population. The SC model was inaccurate possibly because it assumed that each host

population’s effective population size was constant over the course of the simulated out-

breaks. This study highlights the need for phylodynamic models that can take into consider-

ation factors that influence the characteristics and behavior of outbreaks, e.g. changing

effective population sizes, variation in infectious periods, intra-population transmissions,

and disproportionate sampling of infected individuals.

Introduction

Ancestral state reconstruction models estimate the ancestral states of organisms based on their

evolutionary history. Outbreaks are “. . .the occurrence of disease in excess of what would nor-

mally be expected in a defined community, geographical area or season” [1]. Ancestral state

reconstruction models have been used to investigate the transmission of infectious agents between
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animal populations over the course of outbreaks, with host population as the state [2]. However,

as far as we are aware, no studies have validated these models for this type of analysis.

The discrete trait analysis (DTA) and structured coalescent (SC) models are ancestral state

reconstruction models. They have been used to predict ancestral migrations [3,4], movement

of agents between hosts [5,6], and factors that influenced these changes, e.g. geographical

changes [7]. These models represent the main Bayesian ancestral reconstruction models, but

variations on these models have been developed to be more computational efficient [8,9] or to

take into consideration within-host diversity [10]. Ancestral state reconstruction predictions

can also be made by creating trees and then predicting ancestral states from tree topography

and sample states [11,12]. However, in this study we focused on two Bayesian models that esti-

mate ancestral states alongside phylogeny.

For outbreaks involving multiple host species the DTA and SC models treat each host pop-

ulation as a discrete trait and can be approximated using Markov chain Monte Carlo methods

[13,14]. The DTA model uses a substitution model to model the transmission between host popu-

lations [13]. The pruning algorithm [15], often used in phylogenetic analysis to account for possi-

ble mutations, is similarly used by the DTA model to integrate all possible migration histories [8].

The SC model assumes that the pathogen associated with each host population has a fixed effective

population size and models the transmission between populations. The DTA model assumes that

the number of offspring an individual pathogen is likely to produce is independent of its host pop-

ulation, whilst the SC model allows for variation between host populations [14]. In other words,

the DTA model assumes that phylogeny is not influenced by transmission between host popula-

tions, whilst the SC model does not assume transmission and phylogeny are independent. Addi-

tionally, the DTA model treats the number of each host type sampled as data, which can lead to

inaccurate transmission estimates when there is sampling bias [16]. For outbreak analysis the

DTA model requires that the proportion of isolates sampled from each host population is propor-

tional to the size of the pathogen population associated with that host, whilst the SC model allows

for variation in these population sizes [8]. Some of these assumptions are applicable to the investi-

gation of outbreaks (e.g. varying effective population size), whilst others are not (e.g. isolate pro-

portionality). For more information regarding these models, including precise mathematical

definitions, please refer to Lemey et al. [13] and Vaughan et al. [14].

Salmonellosis is an intestinal infection caused by non-typhoidal Salmonella strains. Salmo-

nellosis outbreaks vary in size and can involve one or more host populations [17]. Identifying

the amount of time Salmonella spends in a host population over an outbreak and the amount

of transmission between host populations can inform control measures to limit salmonellosis

outbreaks, e.g. if human cases are primarily from exposure to poultry sources then control

measures that limit human exposure to poultry or decrease the amount of Salmonella in poul-

try may be beneficial. However, there is growing evidence that exposure to human sources

contributes more to salmonellosis outbreaks than previously thought [18]. Therefore, methods

and models are required that can approximate the number of cases that are the result of expo-

sure to different animal and/or human sources. The aim of this study was to use simulated out-

breaks to investigate whether the DTA or SC models could be applied to infer transmission

dynamics in outbreaks involving multiple hosts, motivated by non-typhoidal Salmonella.

Methods

Outbreak simulations

The MASTER package [19] in BEAST2 [20] was used to simulate stochastic transmission

dynamics for a pathogen infecting structured populations, including transmission trees. Out-

breaks were generated using a stochastic Susceptible-Infected-Recovered (SIR) model [21],
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intended to simulate the transmission of zoonotic salmonellosis. In such models, the number

of individuals in each epidemiological compartment is described by a whole number, and

changes to these numbers occur instantaneously at random times. We describe the model

using a succinct chemical reaction notation, which should be regarded as isomorphic to a

chemical master equation [19]. In this model, susceptible host individuals become infectious

by exposure to other infected individuals according to the following two reactions:

Si þ Ii!
bii

2Ii ð1Þ

Si þ Ij!
bji

Ii þ Ij ð2Þ

Reaction 1 represents the transmission of the infectious agent from an infected individual

to a susceptible individual of the same host population. Reaction 2 represents the transmission

of the infectious agent from an infected individual to a susceptible individual of another host

population. Here, Si represents a susceptible individual from one host population, Ii represents

an infectious individual from the same host population, Ij represents an infectious individual

from another host population, and βii and βji represents the transmission rate per susceptible

individual per infectious individual.

In this model, infectious individuals also recover or are removed over time:

Ii!
gi Ri ð3Þ

Reaction 3 determines the infectious period for an infectious individual. Here, Ii represents

an infectious individual in one host population, Ri represents a recovered/removed individual

in the same host population, and γi represents the recovery/removal rate per infectious indi-

vidual for this host population. The mean infectious period for a host of type i is 1

gi
.

Simulated outbreaks

We simulated 23 outbreaks using the MASTER package, hereinafter ‘outbreak simulations’.

This created 23 transmission trees consisting of all the transmissions that took place over the

course of each simulated outbreak (Fig 1). These simulations consisted of two host popula-

tions: human and animal. We wanted to compare the simulated outbreaks with a previously

reported salmonellosis outbreak in New Zealand that involved Salmonella enterica serovar

Typhimurium DT160 (herein, DT160) [22]. Therefore, the initial susceptible host population

size, infectious period (γ) and transmission rate (β) values varied between the 23 simulations

but represented possible values for salmonellosis outbreaks in New Zealand (S1 Appendix).

Simulated genetic sequences from outbreaks

One hundred ‘Salmonella’ isolates were randomly sampled from each outbreak simulation,

after stratifying for host population, hereinafter ‘random sampling’. For each outbreak simula-

tion, the transmission tree was simplified to only include nodes common to the 100 isolates

(both steps were accomplished using custom Perl scripts). The sampled transmission trees

were used to simulate genetic data for the 23 simulated outbreaks using the sequence simula-

tion capability of the BEAST 2 package MASTER, hereinafter ‘sequence simulations’. 800

SNPs were simulated in total for the 100 isolates, similar to the 793 core SNPs shared by 109

DT160 isolates [22]. Perl and R scripts were used to analyze the sampled transmission tree and

to calculate the amount of time spent in each host population and quantify the number of

transmissions, later referred to as the ‘known parameters’.

Bayesian ancestral state reconstruction models for investigating Salmonella outbreaks
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Model consistency

To investigate variation in model estimates between different samples (i.e. model consistency),

one of the simulated outbreaks was randomly sampled 10 times after stratifying for host popu-

lation. For each sample, sequence simulations were used to create genetic data.

Sample size

To investigate the effect of different sample sizes on the models’ estimates, one of the simulated

outbreaks was randomly sampled 12 times. The number of isolates sampled systematically

Fig 1. Flow diagram of the methods used to compare the SC and DTA models using various sampling methods. White rectangles

represent the methods used and blue rectangles represent the data produced.

https://doi.org/10.1371/journal.pone.0214169.g001
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ranged from 25 to 300 isolates in 11 increments of 25. For each sample, sequence simulations

were used to create genetic data. The genetic data systematically ranged from 200 to 2400

SNPs in 11 increments of 200, respectively. To determine if sample size affected the extremity

of a model’s estimates, the simulated outbreak chosen had significantly different population

values between host populations and similar transmission values for comparison.

Disproportionate sampling

To investigate the effect of the relative number of isolates from each source on model estimates

(i.e. disproportionate sampling), as expected during the outbreaks, one of the simulated out-

breaks was randomly sampled 10 times with different numbers of animal and human isolates.

For each sample, 100 isolates were analyzed, but the proportion of isolates that were from each

host population were systematically ranged from 5–95% in 10% intervals. For each sample,

sequence simulations were used to create genetic data.

Equal-time sampling

To investigate an alternative sampling method, ‘equal-time sampling’, an in-house Perl script

was used to stratify the isolates from the initial 23 simulated outbreaks by host population,

before randomly sampling an equal number of isolates from each year of the simulated out-

breaks, to a total of 100 isolates. Sequence simulations were used to create genetic data for the

samples.

Equal intra-population transmission and infectious periods

To investigate if different intra-population transmission rates and infectious periods had any

effect on model estimates, twelve additional outbreaks were simulated but with equal intra-

population transmission rates and infectious periods (EPTI) for both host populations, but

inter-population transmission rates and initial susceptible host population sizes that varied.

For each simulation, 100 isolates were sampled using random sampling, and sequence simula-

tions were used to create genetic data.

DTA model

For the DTA model, the genetic data was imported into BEAUti 1.8.3 to create an XML file for

BEAST 1.8.3 [23]. The generalized time reversible (GTR) model was used to model base substi-

tutions [24], the Gaussian Markov random field (GMRF) Bayesian skyride model was used to

allow for changes in the effective population size [25], and a strict molecular clock was used to

estimate the mutation rate, which was calibrated by the tip date. The XML file was run in

BEAST for 10 million steps as a single run with a 10% burn-in.

SC model

For the SC model, the genetic data was imported into BEAUti 2.4 with the MultiTypeTree

package [14] to create an XML file for BEAST 2.4 [20]. The GTR model was used to model

base substitution and a strict molecular clock was used to estimate the mutation rate, which

was calibrated by the tip date. The XML file was run in BEAST for 250 million steps as a single

run with a 10% burn-in. The SC model was run for a larger number of steps than the DTA

model as its population and transmission parameters took longer to converge. BEAST 1.8.3 is

unable to run the SC model, unlike BEAST 2.4. BEAST 2.4 can run GMRF and DTA models

but does not have a BEAUti interface to easily set up these models. BEAST 1.8.3. does have an

interface for these models so was used for the DTA model.

Bayesian ancestral state reconstruction models for investigating Salmonella outbreaks
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Model comparison

The SC and DTA models were used to estimate the amount of time spent in each host population

(population parameters) and the amount of transmissions between the host populations (trans-

mission parameters). However, the models’ raw outputs were not directly comparable, as the SC

model’s implementation explicitly records transmissions along branches, whilst the DTA

approach integrates and marginalizes over these transmissions and therefore does not record

them in its output. Therefore, the relative amount of time (i.e. proportion) spent in each host pop-

ulation and the relative number of inter-population transmissions made up of each transmission

were compared. The performance of the two models were compared using four parameters:

1. The proportion of outbreak simulations that a model included the known parameter within

their 95% highest posterior density (HPD) intervals.

2. The mean squared error between a known parameter and a model’s mean estimates.

3. The size of a model’s 95% HPD intervals.

4. The correlation coefficient between a known parameter and a model’s mean estimates.

DT160 outbreak

The DTA and SC models were used to analyze a previously-described salmonellosis outbreak

in New Zealand caused by DT160 [22]. 109 DT160 isolates from animal (n = 74) and human

(n = 35) host populations over 14 years were investigated using the 793 core SNPs they shared.

Scripts

The in-house scripts used in this study are available from GitHub (https://github.com/

samuelbloomfield/Scripts-for-outbreak-simulations).

Results

Model consistency

There was some variation in the DTA and SC models’ population and transmission mean esti-

mates for the same simulated outbreak that was randomly sampled ten times (Fig 2). The SC

model’s 95% HPD intervals included known population parameters ten-times versus the DTA

model’s zero-times, whilst the DTA model’s 95% HPD intervals included known transmission

parameters nine-times versus the SC model’s five-times.

The outbreak transmission tree was the same for the ten samples, as these samples were

taken from the same simulated outbreak. However, the samples consisted of different animal

and human isolates, such that when the outbreak transmission tree was simplified to only

include nodes and branches common to these isolates, there was some variation in the time

spent in animal and human populations, and the number of transmissions between these pop-

ulations between samples. The known parameters were taken from the ten sampled transmis-

sion trees, not the entire outbreak transmission tree, resulting in slight differences in the

known parameters between the ten samples. This is true for other analyses below that sampled

the same outbreak multiple times. Some of the outbreaks investigated in this outbreak con-

sisted of hundreds of thousands of infected animals and humans (S1 Appendix), leaving large

outbreak transmission trees that required large time periods to calculate the number of trans-

missions and time spend in the populations. The small amount of variation in the sampled

transmission trees and the outbreak transmission tree for this dataset suggests that the sampled

transmission tree parameters are representative of the outbreak transmission tree parameters.
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Sample size

The DTA and SC models were affected by variation in sample size for the same simulated out-

break differently. Increased sample sizes were associated with smaller 95% HPD intervals and

more accurate and extreme mean population estimates by the SC model up to 100 samples.

After this point, increased sample sizes had little effect on the precision, extremity or accuracy

of the model’s mean population estimates (Fig 3). The DTA model’s mean population esti-

mates were more precise than the SC model’s. Sample size had no effect on their accuracy but

decreased the size of their 95% HPD intervals. The accuracy of the SC and DTA models’ mean

transmission estimates and their 95% HPD intervals displayed some variation, but there were

no trends with sample size.

Disproportionate sampling

The DTA and SC models responded to variation in sample proportions for the same simulated

outbreak differently. The DTA model’s mean estimates showed a much stronger positive cor-

relation with the proportion of isolates sampled from each host population than the SC mod-

els’ mean estimates (Fig 4). The DTA model’s mean estimates displayed a sigmoid-like

association with the proportion of isolates sampled from each host population (Fig 5).

Multiple variable simulations

The DTA and SC models showed different associations between known and estimated param-

eters when 100 isolates were randomly sampled from each of the 23 simulated outbreaks. The

Fig 2. The proportion of time spent in the animal (A and E) and human (B and F) host populations, and the proportion of inter-population transmissions made up of

animal-to-human (C and G) and human-to-animal (D and H) transmissions as estimated by the SC (blue: A-D) and DTA (red: E-F) models, for 10 random samples of

the same simulated outbreak. The circles represent the mean, the error bars represent the 95% HPD interval, the black horizontal lines represent the known parameters

for the sampled outbreaks, and the grey horizontal lines represent the known parameters for the entire outbreak.

https://doi.org/10.1371/journal.pone.0214169.g002
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Fig 3. The proportion of time spent in the animal (A and E) and human (B and F) host populations, and the proportion of inter-population transmissions made up of

animal-to-human (C and G) and human-to-animal (D and H) transmissions as estimated by the SC (blue: A-D) and DTA (red: E-F) models versus the number of

isolates sampled from the same outbreak. The circles represent the mean, the error bars represent the 95% HPD interval, the black horizontal lines represent the known

parameters for the sampled outbreaks, and the grey horizontal lines represent the known parameters for the entire outbreak.

https://doi.org/10.1371/journal.pone.0214169.g003

Fig 4. Bar graph of the correlation coefficients between the models’ mean estimates and the proportion of

sampled isolates that are animal or human hosts for the same outbreak that was disproportionately sampled.

https://doi.org/10.1371/journal.pone.0214169.g004
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SC model predicted a larger proportion of known population and transmission parameters

within its 95% HPD interval compared to the DTA model (Fig 6). However, its mean 95%

HPD interval sizes were larger and the DTA model’s mean estimates showed a stronger posi-

tive correlation with the known parameter values than the SC model’s mean estimates. Both

models had similar mean squared errors between the known parameters and the models’

mean estimates. However, the SC model’s mean population estimates were all within the 0.2–

0.8 interval and its mean transmission rates were all within the 0.35–0.65 interval, whilst the

DTA models had mean estimates that lay outside of these ranges (Fig 7).

The phylogenetic trees produced by the DTA and SC models for the 23 simulated outbreaks

poorly reflected the sampled transmission trees (Fig 8; S1 Fig). The DTA model was unable to

detect transmissions along branches in the transmissi on trees. The SC model could identify

transmissions along branches but estimated 34-times more transmissions compared to the

true transmission tree. In the example given, the SC model predicted that ‘Salmonella’ was pre-

dominantly in the animal (red) population, as indicated by the predominantly red branches,

but that coalescent events primarily occurred in the human (blue) population. This was com-

mon for most of the maximum a priori trees produced by the SC model, where the population

that was estimated to have a smaller effective population size would be where the coalescent

events took place, whilst the population with the estimated larger effective population size

would predominate the branches. The phylogenetic trees in Fig 8 represent the most likely

trees estimated using the DTA and SC models for one simulated outbreak, not the variation

amongst each model, as each model estimated thousands of phylogenetic trees.

Fig 5. The proportion of time spent in the animal (A and E) and human (B and F) host populations, and the proportion of inter-population transmissions made up of

animal-to-human (C and G) and human-to-animal (D and H) transmissions as estimated by the SC (blue: A-D) and DTA (red: E-F) models versus the proportion of

sampled isolates that are animal (A, C, E and G) and human (B, D, F and H) for the same outbreak that was disproportionately sampled. The diagonal line represents

accurate parameter estimates of the sampled outbreaks, the dots represent the mean, and the error bars represent the 95% HPD interval.

https://doi.org/10.1371/journal.pone.0214169.g005
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Equal-time sampling

The DTA and SC models gave similar population and transmission estimates for the 23 simu-

lated outbreaks with random (Figs 6 and 7) and equal-time sampling (Figs 9 and 10) of 100 iso-

lates. Random sampling estimated more known parameters within its 95% HPD interval, but

equal-time sampling had smaller mean squared errors between known parameters and the

mean estimates, and smaller 95% HPD intervals. The SC and DTA models also estimated simi-

lar phylogenetic trees for simulated outbreaks that were sampled using random and equal-

time sampling (Fig 11; S1 and S2 Figs). This suggests that neither sampling method was more

suitable for these ancestral state reconstruction models.

Equal intra-population transmission rates and infectious periods

The DTA and SC models provided more accurate estimates of population parameters for the

12 simulated outbreaks with equal intra-population transmission rates and infectious periods

(EPTI) (Figs 12 and 13) than the 23 simulations where these parameters varied (Figs 6 and 7),

with smaller mean squared errors, a higher proportion of known parameter within their 95%

Fig 6. The proportion of outbreak simulations that the models included the known parameter within their 95% highest posterior density (HPD) intervals (A); the

correlation coefficient between known parameters and the models’ mean estimates (B); the mean squared error between known parameters and the models’ mean

estimates (C); and the size of the models’ 95% HPD intervals (D), for the population and transmission estimates made by the DTA (red) and SC (blue) models for 23

randomly-sampled simulated outbreaks that 100 isolates were randomly sampled from.

https://doi.org/10.1371/journal.pone.0214169.g006
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HPD intervals, and mean estimates that were more positively correlated with the known

parameters. The DTA model’s mean population estimates displayed a sigmoid shape, similar

to the simulated outbreak that was disproportionately sampled (Fig 5). On the other hand, the

DTA and SC models gave less accurate transmission estimates for the 12 outbreaks with equal

intra-population transmission rates and infectious periods between host populations than for

the 23 simulations where these parameters varied, with larger mean squared errors, a lower

proportion of known parameter within their 95% HPD intervals, and mean estimates that

were less positively correlated or negative correlated with the known parameters.

The phylogenetic trees estimated for the 12 EPTI outbreaks (Fig 14) were like those of pre-

vious simulated outbreaks (Fig 8; S1–S3 Figs). They also demonstrated that the DTA model

was unable to estimate ancestral branch states that were a different host population to daughter

branches and tips. The SC model could estimate the state of ancestral branches that differed to

the tips, but often estimated these branches inaccurately.

Host sampling effect on the models’ estimates

To determine the effect of host sampling on the SC and DTA models’ estimates, the correlation

coefficient between the proportion of samples isolated from each host population and the

mean estimates for the simulated outbreaks were calculated (Fig 15; S4–S6 Figs). The DTA

model’s mean population and transmission estimates were more positively correlated with the

proportion of samples isolated from each population, than the SC model’s. The DTA model’s

mean estimates displayed similar correlation coefficients for the 12 EPTI simulations and the

23 simulated outbreaks that were sampled randomly and equally over time, whilst the SC mod-

el’s estimates gave different correlation coefficients for these datasets.

Fig 7. The proportion of time spent in the animal (A and E) and human (B and F) host populations, and the proportion of inter-population transmissions made up of

animal-to-human (C and G) and human-to-animal (D and H) transmissions as estimated by the SC (blue: A-D) and DTA (red: E-F) models versus the true parameters

for 23 simulated outbreaks that 100 isolates were randomly sampled from. The diagonal line represents accurate parameter estimates of the sampled outbreaks, the dots

represent the mean, and the error bars represent the 95% HPD interval.

https://doi.org/10.1371/journal.pone.0214169.g007
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To determine if the difference in sampling fraction could account for the DTA model’s esti-

mates for the simulated outbreaks, the correlation coefficient between the proportion of sam-

ples isolated from each host and the known parameters were calculated (Fig 16; S7–S9 Figs).

The known population parameters for the 12 EPTI simulated outbreaks and the sampling pro-

portions were highly correlated, accounting for the more accurate estimates of these known

parameters by the DTA model (Fig 13) compared to the known transmission parameters and

other outbreak datasets where there was less correlation (Figs 7, 10 and 13).

DT160 outbreak

The SC and DTA models both predicted that DT160 spent most of the time in the animal host

population over the course of the DT160 outbreak in New Zealand (Fig 17). However, the SC

Fig 8. Sampled transmission tree (A), maximum clade credibility tree produced by the DTA model (B) and maximum
a posteriori tree produced by the SC model (C), for a representative of the 23 simulated outbreaks that 100 isolates were

randomly sampled from. The blue areas represent time spent in the human population and the red areas represent

time spent in the animal population.

https://doi.org/10.1371/journal.pone.0214169.g008

Fig 9. The proportion of outbreak simulations that the models included the known parameter within their 95% highest posterior density (HPD) intervals (A); the

correlation coefficient between known parameters and the models’ mean estimates (B); the mean squared errors between known parameters and the models’ mean

estimates (C), and the size of the models’ 95% HPD intervals (D), for the population and transmission estimates made by the DTA (red) and SC (blue) models for 23

simulated outbreaks that 100 isolates were sampled equally over time from.

https://doi.org/10.1371/journal.pone.0214169.g009
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model predicted that there were relatively equal amounts of transmission between the animal

and human host populations, whilst the DTA model predicted that there was a large amount

of animal-to-human transmission and relatively less human-to-animal transmission. The phy-

logenetic trees estimated for the DT160 outbreak also displayed larger intervals between coa-

lescent events later in the outbreak compared to the outbreaks simulated in this study (Fig 18).

Discussion

The DTA and SC models are ancestral state reconstruction models that were designed to esti-

mate the ancestral state of a group of organisms based on their evolutionary history [13,14]. In

this study we demonstrated using simulated outbreaks and a previously described salmonello-

sis outbreak that neither of these models could accurately estimate known population and

transmission parameters for these outbreaks.

The DTA model assumes that the proportion of samples from each host population is pro-

portional to its relative size [8]. This is a problem for outbreaks involving multiple host popula-

tions, as the host populations may be sampled at different rates, resulting in samples

disproportional to the number of individuals infected within each host population. The simu-

lated outbreaks in this study were stratified by host population before random sampling in

efforts to meet this assumption. However, differing intra-population transmission rates and

infectious periods between the host populations resulted in inter-population transmission

rates and length of times spent in host populations disproportionate to the number of individ-

uals infected within each host population and thus the proportion of each population sampled.

This may explain why the DTA model consistently over-estimated the length of time in the

Fig 10. The proportion of time spent in the animal (A and E) and human (B and F) host populations, and the proportion of inter-population transmissions made up of

animal-to-human (C and G) and human-to-animal (D and H) transmissions as estimated by the SC (blue: A-D) and DTA (red: E-F) models versus the true parameters

for 23 simulated outbreaks that 100 isolates were sampled equally over time from. The diagonal line represents accurate estimates of the sampled outbreaks, the dots

represent the mean, and the error bars represent the 95% HPD interval.

https://doi.org/10.1371/journal.pone.0214169.g010
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Fig 11. Sampled transmission tree (A and D), maximum clade credibility tree produced by the DTA model (B and E) and maximum a posteriori tree produced by the

SC model (C and F), for a representative of the 23 simulated outbreaks that 100 isolates were sampled randomly (A-C) and equally over time (D-F). The blue areas

represent time spent in the human population and the red areas represent time spent in the animal population.

https://doi.org/10.1371/journal.pone.0214169.g011
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animal host population and the number of animal-to-human transmissions for the initial 23

simulated outbreaks, as the human host populations of these outbreaks were simulated to have

longer infectious periods than the animal host populations. This resulted in longer periods

spent in the human host population and a larger number of human-to-animal transmissions

relative to the number of humans sampled.

The DTA model appeared to estimate population parameters more accurately when the

parameter was directly proportional to the number of isolates from each host population sam-

pled. In these instances, the population estimates and simulated outbreak parameters shared a

sigmoid-like relationship due to the model’s ancestral branch estimates: the DTA model usu-

ally predicts that all the ancestral branches are one host population, until the majority of the

tips are another host population, where all the ancestral branches switch [22]. The correct pop-

ulation parameters were also only estimated when simulating outbreaks with equal intra-pop-

ulation transmission rates and infectious periods, parameters that usually differ between

Salmonella host populations [26,27]. However, even in these instances the DTA model inaccu-

rately estimated ancestral host population states and transmission parameters.

Fig 12. The proportion of outbreak simulations that the models included the known parameter within their 95% highest posterior density (HPD) intervals (A); the

correlation coefficients between known parameters and the models’ mean estimates (B); the mean squared error between known parameters and the models’ mean

estimates (C); and the size of the models’ 95% HPD intervals (D), for the population and transmission estimates made by the DTA (red) and SC (blue) models for 12

EPTI simulated outbreaks that 100 isolates were randomly sampled from.

https://doi.org/10.1371/journal.pone.0214169.g012
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The SC model gave similar estimates for all the simulated outbreaks. It was poor at estimat-

ing simulated outbreaks known parameters, only accurately estimating them when they were

within the range that it consistently estimated. The SC model’s inaccurate estimates are possi-

bly due to the model’s assumption that the effective population size of the host populations

were consistent throughout the outbreak [20], which does not apply to salmonellosis outbreaks

whose effective population size varies over the course of the outbreak [22]. There may be other

reasons why the SC model was unable to detect a signal, but it is difficult to test for these with-

out first accounting for the model’s effective population size assumption.

The inability of the SC and DTA models to accurately estimate salmonellosis outbreak parame-

ters highlights the need for outbreak-specific models. These models would need to be able to take

into consideration variable sampling between host populations, like the SC model, and changes in

the effective population size, like the DTA model. In addition, they would need to be able to take

into consideration variation in infectious periods and intra-population transmission rates.

The MASTER package of BEAST2 allowed many salmonellosis outbreaks to be simulated

using the stochastic SIR model. The simulated outbreaks contained a large amount of variation

in the amount of time spent in the animal and human host populations, but less variation in

inter-population transmissions due to only simulating two host populations. Therefore,

unequal transmission values were only simulated using one very high and one very low inter-

population transmission value. This in part explains why the SC model was more likely to pro-

vide estimates that matched known simulation parameters because it always gave similar mean

estimates around the 0.35–0.65 range, which most of the known transmission parameters for

the simulated outbreaks were within. Further work with multiple host populations may help

better understand these models’ application to salmonellosis outbreaks.

Fig 13. The proportion of time spent in the animal (A and E) and human (B and F) host populations, and the proportion of inter-population transmissions made up of

animal-to-human (C and G) and human-to-animal (D and H) transmissions as estimated by the SC (blue: A-D) and DTA (red: E-F) models versus the true parameters

for 12 EPTI simulated outbreaks that 100 isolates were randomly sampled from. The diagonal line represents accurate estimates of the sampled outbreaks, the dots

represent the mean, and the error bars represent the 95% HPD interval.

https://doi.org/10.1371/journal.pone.0214169.g013
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In addition, the simulated outbreaks contained constant transmission rates and infectious

periods, but external factors (e.g. quarantining of infected hosts) can vary these factors over

the course of outbreaks. The SC model assumes a consistent rate of transmission over the

study period, but the DTA model may be able to detect changes. Further work involving simu-

lated outbreaks where the transmission rates and infectious periods vary are required to study

how these models are affected by changes in these factors.

For the simulated outbreaks in this study there were no measurement errors, i.e. sequencing

errors or elapsed time between isolate collection and recording. Measurement errors like these

can affect phylogenetic estimates and possibly the population and transmission parameters

measured in this study. However, both models failed to make accurate estimates without these

errors, so their effects were not analyzed.

Fig 14. Sampled transmission tree (A), maximum clade credibility tree produced by the DTA model (B) and

maximum a posteriori tree produced by the SC model (C), for a representative EPTI simulated outbreak that 100

isolates were randomly sampled from. The blue areas represent time spent in the human population and the red areas

represent time spent in the animal population.

https://doi.org/10.1371/journal.pone.0214169.g014

Fig 15. Bar graph of the correlation coefficients between the SC and DTA models’ mean estimates and the proportion of isolates sampled from each host

population for 12 EPTI simulated outbreaks that 100 isolates were randomly sampled from, and 23 simulated outbreaks that 100 isolates were sampled

randomly and equally over time.

https://doi.org/10.1371/journal.pone.0214169.g015

Fig 16. Bar graph of the correlation coefficients between the proportion of isolates sampled from each host population and the known population and

transmission parameters for 12 EPTI simulated outbreaks that 100 isolates were randomly sampled from, and 23 simulated outbreaks that 100 isolates were

sampled randomly and equally over time.

https://doi.org/10.1371/journal.pone.0214169.g016
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In this study we did not select more than one isolate from infected animals and most

infected animals were not sampled at all. This was intentionally undertaken as the salmonello-

sis outbreaks of interest often involve a large number of animals, most of whom will not be

sampled [2,22]. For these outbreaks, investigators are interested in transmission between host

populations rather than individuals. de Maio et al. [10] have developed a structured coalescent

Fig 17. Estimates of the proportion of time spend in the animal (A) and human (B) host populations, and the proportion of inter-population transmissions made up

of animal-to-human (C) and human-to-animal (D) transmissions for the DT160 outbreak, as estimated by the SC (blue) and DTA (red) models on 109 isolates. The

circles represent the mean and the error bars represent the 95% HPD interval.

https://doi.org/10.1371/journal.pone.0214169.g017

Bayesian ancestral state reconstruction models for investigating Salmonella outbreaks

PLOS ONE | https://doi.org/10.1371/journal.pone.0214169 July 22, 2019 20 / 25

https://doi.org/10.1371/journal.pone.0214169.g017
https://doi.org/10.1371/journal.pone.0214169


Fig 18. Maximum clade credibility tree produced by the DTA model (A) and maximum a posteriori tree produced by the SC

model (B), based on 109 DT160 isolates.

https://doi.org/10.1371/journal.pone.0214169.g018
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model for smaller outbreaks that can help take into consideration multiple samples obtained

from animals to predict transmission between individuals and undetected cases, but that was

outside the scope of this study.

The DTA and SC models’ estimates of the DT160 outbreak underline some of the limita-

tions of this study. The DTA model estimated that DT160 spent most of its time in the animal

host population and that there was a larger amount of animal-to-human transmission than

human-to-animal transmission, which is to be expected as the DTA model is affected by sam-

ple size and a larger number of animal isolates were analyzed than human isolates in the

DT160 study. The SC model estimated similar amounts of animal-to-human transmission

than human-to-animal transmission, which is also to be expected as our study shows it usually

gives similar transmission rates between two host populations. However, the SC model esti-

mated that DT160 spent over 90% of its time in the animal host population and less than 10%

of its time in the human host population, outside the 20–80% range estimated for simulated

outbreaks, and both models produced phylogenetic trees with larger distances between coales-

cent events towards the later part of the outbreak than simulated outbreaks. The effective pop-

ulation size affects the timing of coalescent events for randomly sampled individuals [28]. This

suggests that the DT160 outbreak had a much larger effective population size than any of the

simulated outbreaks in this study. It also indicates that the SC model’s estimates maybe influ-

enced by branch length. Simulations with larger effective population sizes are required to test

this.

In conclusion, our comparison of applicability of the SC and DTA models to salmonellosis

outbreaks between the known parameters of simulated outbreaks and the models’ estimates

suggest neither model is appropriate for this analysis. Our findings highlight the need for out-

break-specific models that can also take into consideration intra-population transmission

rates, infectious periods, disproportionate sampling and changes in the effective population

size.
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S1 Fig. Randomly sampled simulated trees and estimations. Sampled transmission trees,

maximum clade credibility trees produced by the DTA model and maximum a posteriori trees

produced by the SC model, for simulated outbreaks 1–23 (A-W, respectively) that 100 isolates

were randomly sampled from. The blue areas represent time spent in the human population

and the red areas represent time spent in the animal population.

(PNG)

S2 Fig. Equal-time sampled simulation trees and estimations. Sampled transmission trees,

maximum clade credibility trees produced by the DTA model and maximum a posteriori trees

produced by the SC model, for simulated outbreaks 1–23 (A-W, respectively) that 100 isolates

were sampled equally over time. The blue areas represent time spent in the human population

and the red areas represent time spent in the animal population.

(PNG)

S3 Fig. EPTI simulation trees and estimations. Sampled transmission trees, maximum clade

credibility trees produced by the DTA model and maximum a posteriori trees produced by the

SC model, for EPTI simulated outbreaks 24–35 (A-L, respectively) that 100 isolates were ran-

domly sampled from. The blue areas represent time spent in the human population and the
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red areas represent time spent in the animal population.

(PNG)

S4 Fig. Relationship between model estimates and sampling proportions for EPTI out-

breaks. The proportion of time spent in the animal (A and E) and human (B and F) host popu-

lations, and the proportion of inter-population transmissions made up of animal-to-human (C

and G) and human-to-animal (D and H) transmissions as estimated by the SC (blue: A-D) and

DTA (red: E-F) models versus the proportion of samples made up of animal (A, C, E and G)

and human (B, D, F and H) host populations for 12 EPTI simulated outbreaks that 100 isolates

were randomly sampled from. The dots represent the mean, and the error bars represent the

95% HPD interval.

(PNG)

S5 Fig. Relationship between sampling and model estimated for simulated outbreaks sam-

pled randomly. The proportion of time spent in the animal (A and E) and human (B and F)

host populations, and the proportion of inter-population transmissions made up of animal-to-

human (C and G) and human-to-animal (D and H) transmissions as estimated by the SC

(blue: A-D) and DTA (red: E-F) models versus the proportion of samples made up of animal

(A, C, E and G) and human (B, D, F and H) host populations for 23 simulated outbreaks that

100 isolates were randomly sampled from. The dots represent the mean, and the error bars

represent the 95% HPD interval.

(PNG)

S6 Fig. Relationship between sampling and model estimates for simulated outbreaks sam-

pled equally over time. Scatterplots of the proportion of time spent in the animal (A and E)

and human (B and F) host populations, and the proportion of inter-population transmissions

made up of animal-to-human (C and G) and human-to-animal (D and H) transmissions as

estimated by the SC (blue: A-D) and DTA (red: E-F) models versus the proportion of samples

made up of animal (A, C, E and G) and human (B, D, F and H) host populations for 23 simu-

lated outbreaks that 100 isolates were sampled equally over time from. The dots represent the

mean, and the error bars represent the 95% HPD interval.

(PNG)

S7 Fig. Relationship between sampling proportions and true estimates for EPTI outbreaks.

The proportion of samples made up of animal (A and C) and human (B and D) host popula-

tions, versus the known population (A and B) and transmission (C and D) parameters for 12

EPTI simulated outbreaks that 100 isolates were randomly sampled from.

(PNG)

S8 Fig. Relationship between sampling proportions and true estimates for simulated out-

breaks sampled randomly. The proportion of samples made up of animal (A and C) and human

(B and D) host populations, versus the known population (A and B) and transmission (C and D)

parameters for 23 simulated outbreaks that 100 isolates were randomly sampled from.

(PNG)

S9 Fig. Relationship between sampling proportions and true estimates for simulated out-

breaks sampled equally over time. The proportion of samples made up of animal (A and C)

and human (B and D) host populations, versus the known population (A and B) and transmis-

sion (C and D) parameters for 23 simulated outbreaks that 100 isolates were sampled equally

over time from.

(PNG)
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