
Exploring the property space of periodic cellular
structures based on crystal networks
Thomas S. Lumpea and Tino Stankovica,1

aDepartment of Mechanical and Process Engineering, Engineering Design and Computing Laboratory, ETH Zurich, 8092 Zurich, Switzerland

Edited by Julia R. Greer, California Institute of Technology, Pasadena, CA, and accepted by Editorial Board Member John A. Rogers December 10, 2020
(received for review February 26, 2020)

The properties of periodic cellular structures strongly depend on
the regular spatial arrangement of their constituent base materials
and can be controlled by changing the topology and geometry of
the repeating unit cell. Recent advances in three-dimensional (3D)
fabrication technologies more and more expand the limits of fab-
ricable real-world architected materials and strengthen the need
of novel microstructural topologies for applications across all
length scales and fields in both fundamental science and engineer-
ing practice. Here, we systematically explore, interpret, and ana-
lyze publicly available crystallographic network topologies from a
structural point of view and provide a ready-to-use unit cell cata-
log with more than 17,000 unique entries in total. We show that
molecular crystal networks with atoms connected by chemical
bonds can be interpreted as cellular structures with nodes con-
nected by mechanical bars. By this, we identify new structures
with extremal properties as well as known structures such as the
octet-truss or the Kelvin cell and show how crystallographic sym-
metries are related to the mechanical properties of the structures.
Our work provides inspiration for the discovery of novel cellular
structures and paves the way for computational methods to ex-
plore and design microstructures with unprecedented properties,
bridging the gap between microscopic crystal chemistry and
macroscopic structural engineering.

cellular structures | crystal networks | extremal materials |
numerical homogenization

Crystallographers were among the first to study the organizing
principles behind the formation of patterns and distinct

network topologies in solid materials and to relate them to their
overall macroscopic properties (1, 2). Similar to these crystallo-
graphic networks, the properties of periodic cellular structures
can be designed by controlling the architecture of the repeating
unit cell (3). This results in the purposeful design of cellular
structures with advanced macroscopic mechanical properties
such as negative Poisson’s ratios (4, 5), excellent strength-to-
weight ratios (6, 7), and controlled instabilities (8, 9). While
finding novel microstructures has proven essential for the de-
velopment of future applications and technologies (10, 11), many
architected cellular structures in engineering (12, 13), funda-
mental science (14–16), and advanced manufacturing (17, 18)
are based on a small selection of well-studied designs. Finding
genuine novelty in cellular structures is inherently difficult due to
the numerous possible topological and geometrical configura-
tions and their complex mechanical and physical interrelations.
To address these difficulties, recent computational database-
driven methods (19, 20) support the design of cellular struc-
tures by generating parametrized unit cells from initial datasets
of different topologies. These initial topologies are often still
based on well-known structures from literature, but are further
modified by computational methods such as search and inter-
polation algorithms or topology optimization to populate the
design space more extensively (19, 20). However, the discovery
of novel structures necessitates that the formalization of the
underlying search space possesses this intrinsic novelty as well.
Pure topology optimization approaches, which can provide this

novelty, are often computationally very expensive, especially in
the three-dimensional (3D) case, and exhibit nonuniqueness and
a strong starting-point sensitivity of the solutions (21). This
makes the results highly sensitive toward external constraints,
where alternative solutions with similar properties but different
topologies could drastically improve the overall quality of the
results. Hence, formalizing prior knowledge and variety to con-
trol and increase the range of viable solutions or to find alter-
native configurations could be highly beneficial for both
database-driven methods and topology optimization approaches.
To facilitate the design of novel microstructural architectures

and to complement existing computational methods, in this work
we systematically explore, interpret, and analyze the incredibly
rich collection of crystallographic periodic network topologies
from a structural point of view. We provide a ready-to-use unit
cell catalog with 17,087 unique entries in total, offering a source
of knowledge and inspiration for engineers and scientists by
substantially extending the limited set of well-known unit cells
from literature with crystal-network-based topologies. Our cat-
alog and the results in this paper are based on the two publicly
accessible databases Reticular Chemistry Structure Resource
(RCSR) (22, 23) and Euclidean Patterns in Non-Euclidean Til-
ings (EPINET) (24, 25). Due to the generality of our approach, it
is readily applicable to the analysis of other crystallographic
databases or the generation of completely new structures based
on the underlying mathematical principles. To generate our
catalog, we apply an integrated design and simulation method-
ology based on numerical homogenization, summarized in
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Fig. 1A. We explore the resulting mechanical property space and
show how common geometrical features relate to the structures
at the extremes of the mapped spaces. We further identify both
novel structures with extremal properties and well-known
structures from literature such as the octet-truss or the Kelvin
cell and show how crystallographic symmetries relate to their me-
chanical properties. To make our work directly accessible for future
applications, we provide the full text catalog along with visualiza-
tions of all structures and 360° surface plots of the Young’s mod-
ulus, respectively (26, 27). Moreover, our catalog includes a variety
of structures that form the basis for fundamental, interdisciplinary
research, including the design of scaffolds for bone tissue regen-
eration (28), microstructure-based high-capacity lithium-ion bat-
teries (29), or bioinspired robust lattices (30), as well as a large
selection of novel structures with equivalent mechanical properties,
which can aid further developments or spark innovation across
many disciplines in both science and engineering.

Crystal Networks as Cellular Structures
In crystal chemistry, crystalline solids or crystals are solid ma-
terials with regular periodic microstructures. Their spatial ar-
rangement is governed by the atomic forces between atoms,
resulting in the formation of molecular networks. In theory,
these molecular networks extend infinitely, and the representa-
tion of the intrinsic organizing principle of this microstructure is
called the associated crystal network, or simply net (31). Due to

the periodicity of crystal networks, their spatial realization can be
fully described by the smallest possible set of constituent ele-
ments, the unit cell. Since this generative principle of a minimum
repeatable unit cell is present in both crystallographic structures
and architected cellular structures, we can establish an analogy
between the two fields. Hence, following the crystallographic
network representation of atoms connected by different bonds, a
crystal network can likewise be interpreted in a structural engi-
neering context as a space-filling macroscopic cellular structure
with nodes connected by solid bars (3). This analogy is sche-
matically shown in Fig. 1B, which relates the bimetallic Prussian
Blue-like α-polonium (left) and its corresponding cubic net
(right) (adapted from ref. 31).
The periodicity of an infinite crystal network allows for a

compact encoding of its structural features based on the overall
geometry of the unit cell and the position of the nodes and edges
in the unit cell. The geometry of a 3D unit cell is specified by one
of the 14 translational symmetry preserving Bravais lattices,
which are spanned by three noncollinear base vectors describing
the shape and the size of the unit cell. The spatial realization of a
crystal network in the Euclidean space, i.e., the position of nodes
and the edges connecting the nodes, is directly linked to the
nodal positions of the atoms in the unit cell and the chemical
bonds between them, and usually reflects the embedding with the
highest symmetry possible. In the simplest case, the embedding is
obtained by joining the nearest-neighbor nodes to form the
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Fig. 1. (A) Overview of the method. In the first step, we obtain the crystallographic data of 17,087 unique crystal networks from the two publicly available
databases RCSR and EPINET. We use the program SYSTRE (32) to obtain the parametrized unit cells with explicit nodal positions and bar connectivities. Next, a
numerical homogenization approach with periodic boundary conditions is used to compute the effective properties of all unit cells at the same relative
density. Finally, we visualize the property range of all structures and identify structures with interesting or extremal properties. (B) The chemical description of
a minimum unit of bimetallic Prussian Blue-like α-polonium (Left) and its corresponding 3D network (Right), where Fe and M atoms are interpreted as nodes
and C–N bonds are interpreted as bars connecting the nodes. Reprinted from ref. 31. Copyright (2005), with permission from Elsevier.
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edges, which corresponds to a sphere packing with ideally equal
edge lengths. For more complex structures, the maximum sym-
metry embedding might be of lower symmetry, and equal edge
lengths are not always possible. The sets of symmetry operations
that constitute the final realizations of the nets are summarized

in 230 space groups in 3D and are categorized with respect to
point-symmetry operations and the underlying crystallographic
systems. Since all possible configurations of periodic structures in
the Euclidean space conform to one of the space groups, crys-
tallography provides us with a comprehensive and concise
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Fig. 2. Effective mechanical properties of all 17,087 structures in the catalog and selected examples. (A) Effective Young’s modulus in the three main di-
rections of the global x, y, z coordinate system and the values projected on the yz plane, the xz plane, and the xy plane, respectively. The insets e1–e4 show
unit cells of structures that contain geometrical and topological patterns representative of the respective region in the plot. For simplicity, the positions are
only depicted in one of the projection planes. The three colored transparent planes indicate regions with the same properties in two directions. (B) Effective
shear modulus in the three main directions of the global coordinate system and the values projected on the yz plane, the xz plane, and the xy plane, re-
spectively. (C) Axonometric view of 2 × 2 × 2 unit cells of the structures e1–e4 and g1–g2. (D) Unit cells of well-known structures from literature that are also
found in the catalog. Their mechanical properties are indicated by the cross-markers in A and C. For simplicity, the markers are only shown in the xy projection
plane. (E–H) Examples of complex structure from literature, where similar structures are found in the catalog. (E) Reproduced from ref. 43, which is licensed under
CC BY 4.0. (F) Reproduced by permission from ref. 46. Springer Nature: Nature Materials, Copyright 2016. (G) From ref. 47. Reprinted with permission from AAAS.
(H) Reprinted from ref. 21. Copyright (2000), with permission from Elsevier.
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mathematical description that we can use to construct and design
cellular structures. In the this work, we use the program SYS-
TRE (32) with the relaxed barycentric placement method (33) to
compute the realizations of the structures in our catalog.
The two publicly accessible databases used in this work, the

RCSR database (22) and the EPINET database (23), centralize
crystallographic data of numerous materials and compounds and
further provide information about the structure of the underlying
nets. We evaluate in total 17,087 unique nets that represent the
spatial arrangement of molecules found in real materials and
compounds, but also hypothetical nets that have not been ex-
perimentally observed yet. To establish a link between the names
of the structures in our work and their respective topological
features, we provide a descriptive name for each structure in the
form of cub_Z12.0_E19, which includes the crystal system (tri-
clinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal,
or cubic) specified by the first three letters, the average con-
nectivity Za as an important parameter to categorize the topol-
ogy of a structure, and a unique identifier that consists of the
letter E or R and an ordinal number, which links the structures
to the two original databases and facilitates traceability.

The Mechanical Property Space of Cellular Structures in the
Catalog
We compute the linear-elastic effective material properties of all
structures in the catalog using a numerical homogenization ap-
proach (34). In 3D, six independent load cases are required to
determine the homogenized effective stiffness matrix CH. To
compare the mechanical properties of different structures, the
dimensions of a unit cell are uniformly scaled at a constant bar
radius r = 0.1 mm such that a relative density of ρ = 0.01 is
obtained. A solid base material with the Young’s modulus
Es = 1 MPa and the Poisson’s ratio νs = 0.3 is assumed. We
verify the homogenization framework by comparison to analyti-
cal results from literature and experimental results from uniaxial
compression tests on selected structures (SI Appendix, Fig. S1).
To estimate the property range of the cellular structures in the
catalog and to identify topologies with extreme mechanical be-
havior, we compute and visualize the homogenized effective
Young’s moduli, shear moduli, and Poisson’s ratios of all struc-
tures. The text-based unit cell catalog (26) includes geometrical
and mechanical information of all structures. The additional
dataset in ref. 25 further includes images of all structures and the
respective 360° elastic surfaces of the orientation-dependent
Young’s modulus. More details can be found in Methods and
in SI Appendix.
Fig. 2 A and B show the effective Young’s modulus E and the

effective shear modulus G on a logarithmic scale in the three
main directions of the global Cartesian coordinate system x, y, z,
and the properties projected onto the xy plane, the yz plane, and
the xz plane, respectively. The range of properties in the three
directions spans several orders of magnitude between 10−8 and
10−3. We use the three transparent bisecting planes to indicate
regions of equal properties in two of the three main directions.
Hence, the intersection of these three planes is a line that con-
tains structures with the same Young’s modulus in all three di-
rections, which is characteristic for cubic and isotropic material
behavior. Most structures that we analyze are found on or close
to the three bisecting planes and their intersection line, implying
that at least two of the three directions are directly linked by
structural symmetries. The red dashed–dotted lines indicate the
Voigt bounds, which represent the theoretical maximum Young’s
modulus and shear modulus. As a function of the base materials’
elastic moduli and the relative densities (EVoigt = Espρ and
GVoigt = Gspρ), they represent the most general bounds for cel-
lular structures (35). A more detailed discussion on the theo-
retical bounds can be found in SI Appendix.

The insets e1 to e4 in Fig. 2A and the insets g1 and g2 in
Fig. 2B show the unit cells of representative structures located
near the boundaries of the property space. Fig. 2C shows the
same structures in a tessellation of 2 × 2 × 2 unit cells. The
structures shown in this work do not necessarily represent the
structures with the most extreme values found in the catalog but
structures in the same regions of interest with similar properties
that are better suited to outline the underlying topological and
geometrical patterns. For simplicity, the locations of the data
points of the structures discussed in Fig. 2 A and B are indicated
only on one of the three projection planes, and the exact values
are provided in SI Appendix.
The insets e1 and e2 show examples of structures with two

frequently found patterns that result in large Young’s moduli in
the three main coordinate directions x, y, z. The structure
cub_Z06.0_E1 in e1 consists of straight bars along the three di-
rections, which is intuitively expected as the simplest pattern for
high unidirectional stiffness. The structure cub_Z07.2_R972 in
e2 also has a relatively high stiffness but is significantly more
complex with a higher average connectivity at the nodes of
Za = 7.2. The average connectivity describes the average number
of bars connected at a node in a structure and can be directly
related to the mechanical properties. In general, a connectivity
of Za ≥ 6 is a necessary, but not sufficient condition for the ri-
gidity of periodic beam structures (36). Rigid structures are as-
sociated with stretch-dominated behavior, whereas nonrigid
structures show bending-dominated behavior. However, the
sufficiency condition for rigidity in ref. 34 is only applicable to
the special class of similarly situated structures. Hence, to assess
the rigidity of all structures in the catalog and to make them
comparable, we derive scaling relationships between the axial
stiffness in the main coordinate directions and the relative
density of the form E=Es ∼ ρn. The scaling exponent n indicates
stretch- (n = 1) or bending-dominated (n = 2) behavior, respec-
tively (37, 38). A detailed discussion about the rigidity of
frameworks and the density scaling is included in SI Appendix.
For the structure cub_Z07.2_R972, the scaling exponent is
n = 1.0 and confirms the rigid behavior in the main coordinate
directions.
At the lower end of the material property spectrum, the

structure cub_Z03.0_R2234 in e3 is representative of structures
that are extremely compliant in all three directions, where a low
average connectivity of Za < 6 and n = 2.0 suggest bending-
dominated behavior. Further, the inset e4 shows a structure
with strong anisotropic behavior (hex_Z04.3_R529), which is
located close to the boundary of the projected property space.
The combination of compliant elements such as honeycomb cells
(as seen in the tessellation in Fig. 2C) and stiff elements such as
straight bars enables the decoupling of the elastic properties in
different spatial directions and is often found in the boundary
regions of the property space. This stiffness anisotropy is also
visible in the 360° plots of the elastic surface of the Young’s
modulus, which are provided for all structures in ref. 25. We
observe that the directions of the maximum stiffness of the
structures do not always coincide with the x, y, z directions of the
coordinate system, which is for example the case for structures
with diagonal bars oriented at 45° with respect to the main axes.
These patterns are often found among structures with high shear
stiffness such as the structure cub_Z07.4_R679 in inset g1 in
Fig. 2B, as the diagonal bars directly stiffen the structures in the
main shear directions. In contrast to that, structures with low
shear stiffness are often characterized by many intertwined
members with different orientations and a low average connec-
tivity, which locally produce high bending loads. The inset g2
shows a structure representative for architectures in this region
(cub_Z03.6_E9066). A detailed discussion about the stiffness
anisotropy of the structures can be found in SI Appendix.
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Related Structures from Literature
Some of the examples from the catalog show structures whose
features are well-known in the field of cellular materials (12,
39–42). Fig. 2D shows four examples of such structures. The
mechanical properties of stretch-dominated structures such as
the octet-truss (inset d1, cub_Z12.0_E19) and the reinforced
body-centered cubic cell (d2, cub_Z14.0_E38) are investigated in
many studies and are used in the design of stiff and light struc-
tures (12, 39). Likewise, bending-dominated structures with lower
stiffness such as the body-centered cubic cell (d3, cub_Z08.0_E3) and
the Tetrakaidecahedron (d4, cub_Z04.0_E970), also known as the
Kelvin cell, can be found in the catalog (40, 41). The cross-markers in
Fig. 2 A and C indicate the effective Young’s and shear moduli of
these four structures, which are the same in the three main directions
due to their cubic symmetry.
Fig. 2 E–G show examples of more complex structures from

literature and the related structures found in our catalog, re-
spectively. The first structure in Fig. 2E is a triply periodic
minimal surface or gyroid structure, which is among others de-
scribed in ref. 43. The gyroid structure has a high
surface-to-volume ratio, a high specific strength, and a high pore
connectivity, which makes it especially suitable for biomedical
applications. This geometry is also found in an idealized 3D
graphene bulk structure (44). The bottom image in Fig. 2E shows
2 × 2 × 2 unit cells of the structure cub_Z04.5_E14462. The
structure resembles the gyroid structure shown in the upper
image, but the solid surfaces are discretized with four-connected
and five-connected bars. Since the structures in the EPINET
database are based on periodic surfaces, triply periodic minimal
surfaces are included as a subclass and are frequently found in
the catalog. The discretized structure from the catalog can be
interpreted as a hierarchical realization of the initially solid-shell
structure, with the bars and the gyroid as the two levels of hi-
erarchy with different characteristic length scales. Hierarchical
structures often occur in nature, for example in bone structures,
and sparked considerable interest in structural engineering re-
search due to their enhanced mechanical properties (45). Fig. 2F
(Top) shows an example from ref. 46, where a bending-
dominated structure at the higher hierarchy level is discretized
by smaller bars, forming stretch-dominated structures at the
lower hierarchy level. The bottom image of Fig. 2F depicts the
structure cub_Z06.0_E12702, which resembles the structure
from ref. 46 and is defined by a bending-dominated diamond unit
cell at the higher hierarchy level. At the lower hierarchy level,
each part of the diamond cell is discretized by smaller bars with a
connectivity of six and stretch-dominated behavior. A hierar-
chical system found in nature is shown at the top of Fig. 2G as
the skeletal system of Euplectella sp. The Euplectella sp. structure
is composed of horizontal, vertical, and diagonal struts arranged
in a square checkerboard pattern at the millimeter scale (47).
The structure tet_Z04.3_E11423 from the catalog viewed in the z
direction strongly resembles this pattern and shows that the
crystallography-based encoding of the structures not only describes
the topology of microscopic molecules but is also able to capture
evolutionary patterns found in nature at much bigger length scales.
A recent work by ref. 30 also points out that a structure based on
Euplectella sp and similar to tet_Z04.3_E11423 can be exploited for
the design of mechanically robust structures. Fig. 2H (Top) shows a
different type of hierarchical structure whose two-dimensional (2D)
realization is the result of an inverse homogenization problem
proposed in ref. 21. The structure has a large bulk modulus with a
low shear modulus and combines a hexagonal microstructure at the
higher hierarchy level with parallel laminatelike bars at the lower
hierarchy level. A 3D realization of this distinct pattern is found in
our catalog in the structure cub_Z04.0_E13519. This structure is
originally a hierarchical gyroid like the example in Fig. 2E. How-
ever, the laminate pattern becomes visible when the structure is

viewed in an isometric projection that aligns with the 45° direction
of the shear plane. Although the laminate pattern in this example is
only a 2D projection of the multiple layers of the 3D gyroid
structure, it nonetheless originates from the application of crys-
tallographic symmetries and tiling and shows that the crystallo-
graphic organizing principles can be used to complement the
existing computational approaches to optimize the properties of
microstructures.

Poisson’s Ratio
Fig. 3A shows the Poisson’s ratios νzx and νzy of all structures in
the catalog (other directions are provided in SI Appendix). The
inset at the top right in Fig. 3A shows the range between
−0.2≤ ν≤ 1.3, in which about 91% of all structures in the catalog
are located. Furthermore, many structures lie on or close to the
two diagonal lines νzy = −νzx or νzy = νzx, or on the lines νzx = 0
and νzy = 0. To highlight the influence of the space-group-related
symmetry, the structures are clustered according to their crystal
system. On the microscopic material level, Neumann’s principle
states that the symmetry of physical properties is directly linked
to the point-group symmetry of the respective crystal (48).
Hence, the crystal symmetry reduces the number of independent
material constants according to the crystal system. While triclinic
materials are fully anisotropic with 21 independent constants,
this number is reduced to 3 for cubic materials. The cubic sym-
metry has the highest possible symmetry and includes the case of
isotropic materials with two independent constants, where two of
the three constants are coupled. In general, anisotropic materials
have no bounds on the Poisson’s ratio (49), which is why the most
extreme values are found in structures with the lowest symme-
tries. This finding is consistent with literature, where extreme
elastic mechanical properties are associated with strong material
anisotropy (50). Conversely, isotropic structures that represent
structures with the highest symmetry are bounded by −1≤ ν≤ 0.5
as imposed by the thermodynamic stability criterion, i.e., the
positive definiteness of the stiffness tensor. These limits are valid
for all structures with at least cubic symmetry and only one in-
dependent value of the Poisson’s ratio ν = νzy = νzx (yellow dots
in Fig. 3A). Since the catalog contains in total only three struc-
tures with triclinic symmetry with Poisson’s ratios smaller than 1,
their individual markers are not visible in Fig. 3A.
Fig. 3A (Insets) show examples of structures with extreme

deformation behavior under a compressive deformation in the z
direction. The structure ort_Z04.0_R193 in the inset n1 expands
in the y direction (νzy = 6.99) and contracts in the x direction
(νzx = −6.01). This behavior is enabled by slanted vertical bars
that are coupled to slanted horizontal bars. This creates scis-
sorlike structures, as highlighted in the top view and front view in
Fig. 3B. These coupled slanted columns occur in most of the
monoclinic structures with extreme values along the line
νzy = −νzx and are also found in the structures with the most
extreme properties, mon_Z04.0_E8038 and mon_Z04.3_E4603,
which are shown in the insets n4 and n5. The structure
ort_Z03.8_E4453 in inset n2 expands in the y direction
(νzy = 9.09) with a relatively small contraction in the x direction
(νzx = −0.16). Fig. 3B shows that rhombic arrangements of bars
account for the expansion in the y direction in this structure,
while horizontal straight bars prevent large deformations in the x
direction. Like the previously discussed decoupled stiffness, the
combination of stretch-dominated elements such as straight bars
and bending-dominated elements such as rhombic or scissorlike
arrangements enables the decoupling of compliant deformation
modes in anisotropic structures. The inset n3 shows the structure
tet_Z03.8_E5841, which contracts in the x direction and in the y
direction simultaneously. This structure is partly auxetic with
Poisson’s ratios of νzx = νzy = −3.33. The main part of the unit
cell of the structure consists of two coiled chains in the shape of a
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double helix. The top view of the structure n3 with 2 × 2 × 2 unit
cells in Fig. 3B reveals the well-known reentrant pattern that
causes the auxetic behavior (51). However, the structure is an-
isotropic and its auxetic behavior only appears in two distinct
directions.
Since structures with higher symmetry, that is with cubic or

isotropic behavior, are of specific interest for researchers and
engineers, we use the Zener index Z = 2C44=(C11 − C12) (52)
to quantify the degree of anisotropy in our structures. It re-
lates the three independent cubic elastic stiffness coefficients
and defines the ratio of the maximal and minimal shear
modulus of the material. Thus, Z = 1 indicates fully isotropic
behavior. Fig. 3C shows the Poisson’s ratio ν and the Zener
ratio for all structures with cubic symmetry, where all possibly
isotropic structures lie within the bounds of −1≤ ν≤ 0.5. In
addition, no structures with negative Poisson’s ratios are lo-
cated on or reasonably close to the isotropy line of Z = 1. All

structures that can be classified as isotropic have Poisson’s
ratios of ν≥ 0.15. However, the catalog contains auxetic
structures with cubic symmetry. One example of a novel aux-
etic structure is the structure cub_Z04.1_E13435 with a Pois-
son’s ratio of ν = −0.26, shown in the inset z1. In the front view
of the structure with 2 × 2 × 2 unit cells in Fig. 3D, different
patterns that are typical of auxetic structures (51) are identi-
fied: the reentrant star, the 3D reentrant triangular structure,
and the reentrant pattern. Even though these patterns are
frequently found and utilized in literature for the design of
cubic auxetic materials, none of the structures from our cat-
alog approaches very low values as reported for example by
Chen et al. (20). We attribute this to the fact that in contrast to
literature, where extreme values are mostly achieved via
complex optimization and search frameworks, our structures
are simply derived from crystal networks without any further
optimization.

z2

10 mm

B

CA

E

F G

D

Fig. 3. (A) Poisson’s ratios νzx , νzy of all 17,087 structures in the catalog and a detailed view of the range −0.2≤ ν≤ 1.3. The highlighted regions visualize the
range of properties. The colors of the dots and the regions indicate the different crystal systems. The insets n1–n3 show unit cells of structures that contain
geometrical and topological patterns representative of the respective region. The insets n4 and n5 show the structures mon_Z04.0_E8038 and
mon_Z04.3_E4603 with the maximum and minimum Poisson’s ratios. (B) Different views of multiple unit cells of the structures in the insets n1–n3. The dark
lines highlight patterns that are related to the respective mechanical behavior of the structures. (C) Poisson’s ratio and Zener anisotropy value of all 641
structures with cubic symmetry. A Z value close to 1 indicates isotropic behavior. The inset z1 shows an auxetic structure with cubic symmetry. The inset z2
shows a structure with a Zener value close to 1 and a Poisson’s ratio close to 0.5, which is identified as a possible extremal pentamode material. (D) Axo-
nometric view and front view of 2 × 2 × 2 unit cells of the auxetic structure cub_Z04.1_E13435. Dark lines highlight different well-known patterns that cause
auxetic behavior. (E) Image of the first manufactured pentamode metamaterial and its unit cell based on the diamond structure. The biconical cross-sections
of the bars with very small diameters close to the nodes drastically increase the bulk-to-shear modulus ratio. Reprinted from ref. 14, with permission of AIP
Publishing. (F) An image of 2 × 2 × 2 unit cells of the structure cub_Z03.6_R487 with biconical bars. For comparison, the dimensions of a,d,D are chosen
according to ref. 55. (G) Effective Young’s modulus, shear modulus, and bulk modulus of the structure cub_Z03.6_R487 for different values of d. The solid lines
indicate scaling relations of B∝d and G∝d3 (no fits). The maximum value of B=G'670 indicates pentamode behavior.
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Extremal Structures
We further search for structures with extremal properties for
which the effective stiffness tensor C has one or multiple ei-
genvalues that are significantly larger than the others (53). The
eigenvectors associated with the very small or the relatively large
eigenvalues describe the sets of strains under which the struc-
tures behave compliant or rigid, respectively. Especially prom-
inent in literature are pentamode structures with five compliant
modes and only one rigid mode, which makes them attractive for
applications such as elastomechanical cloaking (54). These
structures are only rigid under hydrostatic pressure, resulting in a
very large bulk modulus B. Ideally, the shear modulus G becomes
zero, causing the ratio B=G to become infinitely large. This im-
plies a Poisson’s ratio of ν = 3−2(G=B)

2(G=B)+6 = 0.5 and is characteristic
for isotropic fluids. Hence, these materials are often referred to
as metafluids (14). The previous equation enforces a large ratio
B=G for isotropic metafluids as characterized by a Zener index
close to 1. The inset at the top right of Fig. 3C shows this range
of properties in detail. An exemplary structure that qualifies as a
quasiisotropic pentamode structure with Z = 1.05 and ν = 0.496
is the cub_Z03.6_R487 net shown in the inset z2, which describes
the molecular arrangement of sodium platinum bronze,
NaxPt3O4. The six eigenvalues of the compliance matrix are
[9.9 × 10−6,  9.9 × 10−6,  9.9 × 10−6,  1.9 × 10−5,  1.9 × 10−5,  3.3 × 10−3],
where the last eigenvalue is two to three orders of magnitude
larger than all other values. The shear modulus G ≈ 9.86 × 10−6
and the bulk modulus B ≈ 1.11 × 10−3 yield a ratio of B=G ≈ 113.
The eigenvector e ≈ [−0.58, − 0.58, − 0.58, 0.0 , 0.0, 0.0] associ-
ated with the highest eigenvalue represents the three normal
stresses and the three shear stresses and confirms that the single
rigid mode indeed corresponds to the case of hydrostatic pres-
sure. A similar example from literature in Fig. 3E shows the
diamond-shaped unit cell as the first manufactured and experi-
mentally validated pentamode metamaterial (14). The biconical
shape with a small radius of the bars at the nodes further re-
duces the shear stiffness of the structure and enables values of
B=G> 104. To compare the scalability of the pentamode prop-
erties of the cub_Z03.6_R487 structure with the results from ref.
55, we replace the cylindrical bars with biconical bars (Fig. 3F)
and vary the smaller diameter at the nodes d. Fig. 3G shows the
effective Young’s modulus, shear modulus, and bulk modulus of
the cub_Z03.6_R487 structure, obtained by finite-elements
simulations using the commercial software package Abaqus
6.14–1 for different values of d on a double-logarithmic scale
(details can be found in SI Appendix). The results show that the
shear modulus and the bulk modulus, like in ref. 55, approxi-
mately scale with G∝ d3 and B∝ d, as indicated by the solid lines.
This yields a ratio of B=G ≈ 670 for the smallest d = 0.225mm,
which is also similar to the results presented in ref. 55 for the
structures based on the diamond unit cell. Even though a de-
tailed analysis as in refs. 14, 55 is beyond the scope of this work,
this example again shows how the knowledge-based, explorative
selection of base cells from our catalog can support researchers
to identify and design structures with architected or extremal
properties. In general, finding these structures is always a trade-
off between efficient numerical modeling to explore the vast

design space of cellular structures and comprehensive modeling
to fully capture and exploit their complex mechanical and
physical behavior. With this work, we lean toward the explorative
side of material design and provide a vast number of candidate
structures for further exploitation via database-driven design,
optimization, and advanced manufacturing methods.

Conclusion
In summary, we explore the range of mechanical properties of
cellular structures, which we obtain by interpreting the spatial
arrangement of molecular crystal networks in the context of
structural engineering. Our findings are based on the evaluation
of 17,087 unique unit cells, which we provide as a ready-to-use
catalog, including their geometrical and mechanical description,
and visualizations of both. We show that the intrinsic organizing
principles of microscopic nets provide a basis for finding well-
known and novel cellular structures with tailored properties. We
further show that extreme properties often originate from re-
petitive patterns based on simple geometrical features, which can
be related to the underlying crystallographic symmetries. Fi-
nally, our work shows that crystallographic knowledge pro-
vides a rich source of inspiration for the discovery of novel
cellular structures and creates search spaces whose explora-
tion can motivate the design of architected structures with
unprecedented properties for future applications across many
research fields and length scales.

Methods
The network descriptions in both crystallographic databases, RCSR and EPI-
NET, are given in a simplified network notation based on lattice unit cells and
crystallographic space groups. The space groups provide a comprehensive
mathematical description of the symmetries in crystal networks and are
categorized with respect to point-symmetry operations and the underlying
crystallographic system. To obtain the explicit, unique description of all
nodal positions and bar connectivities, we use the software SYSTRE (Sym-
metry Structure Recognition) (32). SYSTRE uses the relaxed barycentric
placement method (33) to compute cells with the ideal symmetry placement
of nodes in fractional coordinates and a respective tiling, which are then
cropped and converted to Cartesian coordinates (details are provided in SI
Appendix). The global Cartesian coordinate system orientation is selected
for convenience such that the three axes x, y, z coincide with what are the
main crystallographic directions of a primitive cubic cell. Following this ap-
proach, our catalog of unit cell descriptions is created based on the decoding
of a total of 2,730 + 14,532 − 135 − 40 = 17,087 entries from the RCSR da-
tabase and the EPINET database, excluding double entries and structures
with very small members that cause numerical issues. We apply a numerical
homogenization approach (34) based on an Euler–Bernoulli finite-element
beam model to all 17,087 unique catalog entries to compute the effective
elastic properties of the equivalent cellular structures in form of the sym-

metric stiffness matrix CH and the compliance matrix SH = (CH)−1. For com-
parability, all structures are scaled to a relative density of ~ρ = 0.01 at a
constant bar radius of r = 0.1mm. More details about the implementation
can be found in SI Appendix. The datasets generated and analyzed during
the current study are available in the ETH Zurich Research Collection re-
pository (26, 27).

Data Availability. Data have been deposited in the ETHZ Research Collection
at https://doi.org/10.3929/ethz-b-000457598 and https://doi.org/10.3929/ethz-
b-000457595. All other study data are included in the article and/or supporting
information.
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