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Abstract: Food analysis is a challenging analytical problem, often addressed using sophisticated
laboratory methods that produce large data sets. Linear and non-linear multivariate methods
can be used to process these types of datasets and to answer questions such as whether product
origin is accurately labeled or whether a product is safe to eat. In this review, we present the
application of non-linear methods such as artificial neural networks, support vector machines,
self-organizing maps, and multi-layer artificial neural networks in the field of chemometrics related
to food analysis. We discuss criteria to determine when non-linear methods are better suited for
use instead of traditional methods. The principles of algorithms are described, and examples are
presented for solving the problems of exploratory analysis, classification, and prediction.

Keywords: food analysis; chemometrics; non-linear methods; artificial neural networks (ANN);
self-organizing maps (SOM); support vector machine (SVM)

1. Introduction

According to the Food and Agriculture Organization of the United Nations (FAO) [1], food safety
refers to handling, preparing, and storing food in a way to best reduce the risk of individuals
becoming sick from foodborne illnesses. This practice is very important for countries that export their
products, and as such, food safety is part of regulations in many countries [2]. In both developed
and developing countries, government institutions are responsible for the inspection of products,
i.e., protecting the public’s health by ensuring the safety of food. Examples of these institutions
include the Brazilian Health Regulation Agency (ANVISA) and the Ministry of Agriculture, Livestock,
and Food Supply (MAPA) in Brazil, while the United States have the United States Department of
Agriculture (USDA) and United States Food and Drug Administration (USFDA). These government
bodies are tasked with enforcing required standards of nutritious food, animal feed, animal health,
plant protection, clear information on the product origin, and content/labelling of food and various
food related products [3–5]. Major problems that have been identified by these departments are
related to adulteration and food frauds. To detect and quantify these crimes, laboratories have
been using classical and instrumental methods for identification and quantification of chemical
compounds. Modern instrumentation can generate complex data by spectroscopic, microscopic,
and chromatographic methods that can be used to gain a better understanding of food safety. However,
extracting essential information from these data in their raw form often is too complex for the human
brain to process.
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Multivariate methods can help extract relevant qualitative or quantitative information from
complex data, and these methods can be used in food analysis. The use of non-linear methods
is becoming commonplace for researchers building models for classification, pattern recognition,
optimization, and prediction. The advantage of non-linear methods can be highlighted by their
capacity to handle datasets that exhibit the following characteristics [6]:

• non-linearity, allowing a better fit for the data;
• noise insensitivity, providing accurate prediction in the presence of data uncertainty and

measurement errors;
• high parallelism, implying fast processing and hardware failure tolerance;
• generalization, enabling application of the model to unknown data.

Non-linear methods are also not affected by limitations of Beer–Lambert law [7] that occur with
analytical instruments and chemicals, such as changes in refractive index at high analyte concentration,
shifts in chemical equilibria as a function of concentration, scattering of light, fluorescence or
phosphorescence of the sample, and nonlinear detector response [8]. Thus, the application of
adequate multivariate methods for the analysis of complex datasets can solve demanding analytical
problems in the field of food safety.

This review presents a retrospective of the studies carried out from 2008 to 2018 that make use of
non-linear methods as a research tool in the field of food analysis. The goal of this review is to show
how non-linear methods have solved problems of classification and prediction, as well as to discuss
the advantages and disadvantages of these methods with respect to traditional multivariate techniques.
We recognize a need for more widespread knowledge of application of non-linear methods and have
attempted to help fill the vacuum with this review.

1.1. Artificial Intelligence and Machine Learning from a Chemometrics Perspective

Artificial intelligence research involves building computer programs designed to behave or mimic
human brain functions such as talking, playing soccer, and planning. Within the field of artificial
intelligence, a very widespread area known as machine learning has developed, which involves the
applications of different algorithms that are able to learn and improve from experience. Machine learning
is divided into two types: supervised and unsupervised [9]. In supervised learning, the goal is to
predict the value of an output variable based on several input variables; in unsupervised learning,
the goal is to describe the associations and patterns among a set of input variables without an output
variable. Machine learning methods for data evaluation and interpretation can be used in many fields,
and often have different names depending on the area of study. For example, when applying machine
learning in psychology, the discipline is called psychometrics [10,11], in economics, econometrics [12],
and in chemistry, chemometrics [13] (Figure 1).

The discipline of chemometrics can be performed by both linear and non-linear methods.
Linear methods include principal component analysis (PCA), hierarchical cluster analysis (HCA),
principal component regression (PCR), partial least squares regression (PLS), soft independent modeling
of class analogy (SIMCA), linear discriminant analysis (LDA), and partial least squares discriminant
analysis (PLS-DA). Non-linear methods include artificial neural networks (ANN), support vector
machine (SVM), and self-organizing map (SOM). New non-linear methods are constantly being
developed, and existing methods are constantly being modified. Herein, we briefly describe three
different groups of non-linear methods (artificial neural networks, self-organized maps, and support
vector machine) on which this review will focus. A detailed explanation of the theory and application
of different types of machine learning algorithms in food testing is provided in the reference list.
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Figure 1. Machine learning (ML) is subset of Artificial intelligence (AI) and Chemometrics is machine
learning used in chemistry.

1.1.1. Artificial Neural Networks (ANN)

An artificial neural network (ANN) is a non-linear computational model attempting to simulate
human brain structure and decision making [14]. There are many types of neural network, such as
the convolutional neural network (CNN), recursive neural network (RNN), and feed forward neural
network (FFNN). The simplest form of ANNs is the FFNN, which consists of one or more hidden layers
of perceptrons (neurons) (Figure 2) [15]. Each perceptron has an activation function which computes
an output signal depending on the weighted input received. Perceptrons from one layer are connected
to perceptrons in the next layer and the output signal flows from one layer to the next without any
feedback connections [16,17]. The connection between the perceptrons is characterized by different
variables. These are a weight and bias values associated with each node as well as the transfer function
that determines the state of a node based on the weight and bias parameters [18]. FFNN requires
supervised training by taking input of example data sets and desired output results that are fed to the
network multiple times. Each time the weights of the activation function are adjusted so that the error
in the output is minimized.
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1.1.2. Self-Organizing Maps (SOMs)

The concept of self-organizing maps (SOMs), sometimes referred to as Kohonen maps or Kohonen
networks, was developed by Teuvo Kohonen. SOM networks are based on an unsupervised training
algorithm that consists of input nodes and a grid of computational nodes (neurons) [19]. Each input
node is connected to every computational node (Figure 3).Molecules 2020, 25, x FOR PEER REVIEW 4 of 58 
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Figure 3. Schematic illustration of the structure of a SOM with two input neurons and 3×3 Kohonen neurons.

These neurons compete among themselves for activation as the one that most closely resembles
the input vector. If the input data exhibits some similarity across the input classes, the neurons will
organize themselves showing patterns of similarity in a grid. SOMs are used to transform large
multi-dimensional datasets into a lower-dimensional display that better represents similarities within
a dataset. SOM analysis requires several parameters to be specified by the user. The main parameters
are number of nodes (SOM grid size), topology of the map, map shapes, initialization, and training
algorithms. According to Tian et al. [20], it is possible to use the following equation to define the
number of nodes:

M = 5
√

N where “N” is the number of samples in the dataset and “M” is the number of neurons.
The topology of map can be quadrangular, rectangular, or hexagonal and map shapes can be planar,
cylinder and toroid. There are different ways to do the initialization and training. Initialization can be
done in a random or linear manner. Sequential or batch algorithms can be used during the training
phase [21].

1.1.3. Support Vector Machines (SVMs)

In classification problems, support vector machines (SVMs) are used in determining separation
functions, while for prediction problems they can be used to carry out functional estimation. The output
of an SVM is the best separating hyperplane that categorizes input data [22]. As seen in Figure 4,
support vectors are data points closest to the hyperplane that separates the two classes.

Maximum margin is defined by doubling the minimum distance from support vector points to
the hyperplane. Training SVMs requires supervised learning that uses an iterative training algorithm
to minimize the error of the output. To build a good SVM model with low error rate, a proper kernel
function must be selected along with the optimal kernel parameters. There are many kernel functions
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that can be taken into consideration such as linear, quadratic, and radial basis functions. The most
common one is the radial basis function (RBF). This function requires two parameters: gamma and cost.
The gamma parameter controls the shape of the separating hyperplane [23] while the cost factor allows
for a tradeoff between calibration error and model complexity [24].Molecules 2020, 25, x FOR PEER REVIEW 5 of 58 
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1.2. Input Data

Non-linear models can be built from simple multi-element analysis such as chromatography,
spectroscopy, mass spectrometry, thermal analysis, electrochemical analysis, microscopic and diffraction
scattering techniques to study food analysis. These data are represented as a matrix consisting of rows
and columns, where the rows represent samples and the columns represent variables (Figure 5).Molecules 2020, 25, x FOR PEER REVIEW 6 of 58 
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The variables may represent the number of chromatographic peaks, biological measurements,
or spectroscopic measurements. The variables depend on the instrumentation used for data acquisition
and can be from more than one instrument type. Chemometric methods such as PCA are commonly
used to reduce a dataset before applying non-linear methods, which helps with selection of important
variables to measure and improve accuracy of the model, reduce overfitting, and decrease training time.

1.3. How to Test Whether Dataset is Linear or Non-Linear?

While literature recommendations can help with determining the linearity of a dataset,
no official guideline exists for selecting between linear and nonlinear methods to fit these datasets.
Regression analysis is used to determine whether a relationship between two or more variables can be
represented by a straight line with small residuals (errors) exhibiting random behavior. Many statistical
tests can be used for making quantitative and qualitative decisions about residuals from a regression
analysis, such as the Durbin–Watson test [25], Breusch–Pagan test [26], Goldfeld–Quandt test [27],
Shapiro–Wilk test [28], Kolmogorov–Smirnov test [29], and residual plots [30,31]. If adequate fit cannot
be obtained using a linear method, the relationship between input and output data is deemed not
linear, and non-linear regression can be used.

In classification problems, however, a linear relationship between input and output data is
less important than confirming whether data can be separated by a linear classifier. Generally,
food analysis data can be separated by linear classifiers such as PLS-DA, SIMCA, and LDA.
In some cases, classes may not be separable by a linear boundary used by these models and non-linear
methods are recommended for capturing non-linear patterns of the dataset. Methods, such as SOM,
SVMs, and FFNN, are particularly suitable for modelling non-linear boundaries between samples
belonging to different groups.

Therefore, to determine whether certain data is non-linear and whether a non-linear model can be
used for modeling, the following actions are a good guide for making the decision [32–34]:

- make a histogram graph of the raw data;
- create probability plots to identify the data distribution;
- perform distribution tests to identify the distribution probability that the data follows;
- check the goodness of fit test results for the distribution tests.

If the error and goodness of fit test results show high accuracy and the relationship among
variables appears as a straight line, then it implies that the dataset is linear in nature.

After applying these steps, along with the specific knowledge of the area being studied and the
behavior of the data, it is possible to determine whether the nonlinear model is more appropriate than
the linear one for a study.

1.4. Identifying Food Analysis with Non-Linear Methods

References used for this review were obtained by in-depth search of three distinct online accessible
databases: Science Direct, SciFinder, and Web of Science. Although each database engine has a different
interface for performing corresponding searches, the main search term “food analysis” was used
in combination with terms for different types of machine learning techniques; namely, “Kohonen”,
“self-organizing maps”, “neural networks”, and “support vector machine”. Research papers that did
not relate to our search topic were discarded as well as papers not written in English. Review papers
were also discarded order to avoid circular referencing. These criteria produced a list of a total of
233 references used for this review (Figure 6).

The references were then divided into two groups for studying classification and prediction
problems. Using food grouping posted by National Institutes of Health as a guideline [35], the foods
were organized into seven different groups: grains, vegetables, fruits, protein, dairy, oils, and others
(e.g., alcohol, spices, added sugars).
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2. Application of Non-Linear Methods on Food Groups

Food analysis problems can be grouped into prediction and classification problems. A classification
problem is when a sample is assigned to one group from a set of possible groups (classes) based on a
series of experimentally measured indices. In classification problems, the output variables are usually
binary categories, such as “good” or “bad”. On the other hand, in a prediction problem the output
variable is a quantity express by a number, such as “2.08” or “0.01” and “8”. Regression analysis
is one of the non-linear methods used to study prediction problems. According to Wold et al. [36],
regression analysis is statistical method for estimating the relationship between two or more variables
of interest. In chemometrics, non-linear regression methods have been used by many authors to
examine the influence of one or more independent variables on a dependent variable. In the field of
food analysis, the independent variables are represented by measured data obtained from different
analytical techniques while dependent variables are represented by the property of interest, e.g.,
sugar content, concentration of herbicide, classification of geographical origin of food, quantification
of microbial spoilage, additives, pH, firmness, and soluble solids in foods. Non-linear models such as
neural networks can be used for prediction or classification.

2.1. Classification

Most of the papers reported their findings as a measure of accuracy, which in the context of
classification is defined as the percentage of the correctly classified data points within a dataset.
However, a high accuracy rate does not necessarily imply a good classification model [37–39]. In this
accuracy paradox, some models with lower accuracy may have better predictive ability compared
to models with higher accuracy. Specifically, this can occur when training data set is not balanced,
where one class of data represents large majority of the training input. Accuracy of a classification
model can also be reported as misclassification rate. There are two types of misclassification: Type I
when a model identifies a point as not belonging to a class A when it actually does belong to class A
(also known as false negative) and Type II when a model identifies a point to belong to class A when it
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actually does not belong to class A (also known as false positive) [40]. Overall accuracy describes the
average of true positive rate and true negative rate [41,42]. In the context of classification, prediction
refers to the use of a classifier model for determining the class that an unlabeled object likely belongs
to [43].

Sensitivity, specificity, efficiency and correct classification rate (CCR) are terms used to describe
the performance of class modeling techniques. Sensitivity describes the fraction of correctly identified
objects from a modeled class, while specificity describes the ability to accurately detect/reject objects
from the other classes. Efficiency of the model, in this scenario, represents the geometric mean of the
sensitivity and specificity [44]. CCR represents a ratio of correctly classified samples to total number of
samples in the data set used during the testing or cross validation of a classifier model [45].

2.1.1. Vegetables

Visible and short-wave near-infrared (Vis/SW NIR) diffuse reflectance spectroscopy is a
non-destructive and fast technique that can be used for gathering sample data about food products.
One use is classification of tomatoes by different genotypes. Using LS-SVM, Xie et al. [46] achieved a
100% classification accuracy when using the whole spectral region. While a 100% correct classification
can also be obtained using a discriminant analysis method, LS-SVM performed faster with the dataset
made up of greater varieties of tomatoes. When selecting only the most relevant wavelengths,
overall classification decreased to 96.8% but was deemed as an acceptable classification accuracy.

The electronic nose (E-nose) is an instrument designed to recognize samples by olfaction mimicking
the way humans sense smell [47]. It can be used to classify freshly squeezed tomato juice based on
different storage times of the tomatoes for tracing product quality. Hong et al. [48] showed that BPNN
outperformed SVM with validation set accuracies of 97.0% for BPNN and 94.2% for SVM. They also
showed that a semi-supervised Cluster-then-Label approach based on spectral clustering can provide
classification accuracy of 98.7%.

The quality control of potato chips can be complex due to oil residues, various additives,
and seasonings. Using NIR spectroscopy, Ni et al. [49] have established that LS-SVM model was able
to clearly predict four parameters (fat, moisture, acid, and peroxide values of the extracted oil) for
qualitative and quantitative measurements. Comparing different methods for classification of potatoes
based on sugar levels showed that ANN did not perform as well as linear methods such as LDA and
PLS-DA. These results suggest that an improvement in classification accuracy could be accomplished
by increasing the number of samples and using SVM [50].

Identification of contamination by food borne pathogens in packaged vegetables is important for
food quality control. Escherichia coli (E. coli) was taken as the target microorganism and E-Nose was
used for analysis of volatile metabolites from the headspace of packaged alfalfa sprouts. Data generated
by the E-Nose sensor was then successfully classified using SOM algorithm, showing different subgroups
with different number of E. coli [51]. The limitation of E-Nose method, however, is the requirement of
E. coli counts higher than 105 colony-forming units per gram (CFU/g).

A classification model for traceability of geographical origin of Boletus edulis known as
“porcini mushrooms” was investigated by Li et Al. [52]. Mushrooms were collected from nine regions
of Yunnan Province in China. Mid-level fusion (a method that utilizes feature extraction or variable
selection prior to multivariate analysis [53]) was performed on data from FT-MIR spectroscopy and
thirteen elements determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES).
Thus, thirteen subsets were generated for data analysis. Grid search (GS) and genetic algorithm
(GA) techniques were used for the optimization of the radial basis function used in the SVM model.
Classification accuracies obtained, for both GS-SVM and GA-SVM, were 81.4% for calibration and
90.9% for validation datasets. Yao et Al. [54] obtained even better classification accuracies of 99.1% for
training and 100% for test sets, using SVM to classify data from FT-IR and ultraviolet-visible absorption
(UV-vis) spectroscopies coupled with data fusion. Fu et al. [42] investigated use of NIR coupled with
interval-combination one-versus-one least squares support vector machine (IC-OVO-LS-SVM) for
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classifying Chinese Ganoderma lucidum mushroom by origin. Total classification accuracy reported by
this method was 93.2%, while average sensitivity and specificity were 93.1% and 99.7%. This indicates
that NIR can potentially be used with machine learning algorithms for classification in food industry.

Multilayer perceptron artificial neural networks (MLP-ANNs) were applied to data generated by
inductively coupled plasma optical emission spectrometry (ICP-OES) for classification of geographical
origin of Spanish paprika. Samples from La Vera (Extremadura) and Murcia origins were analyzed
and classification accuracy of 99 ± 2% was reported with the MLP-ANN technique [55].

Postharvest physiological deterioration (PPD) is one of the major problems in quality of cassava
roots which are used for human consumption as well as animal feed. Several genotypes of cassava
roots were screened for chemical and enzymatic composition during PPD. The classification of fresh
samples and those at stage 11 of PPD was performed by Urraota et al. [56] using various methods such
as ANN, K-nearest neighbors (KNN), and SVM. Results showed that SVM method with radial kernel
had the best classification accuracy compared against other chemometric methods.

Table 1 summarizes results from the articles describing chemometric applications along with
statistical parameters used to compare the different methods and applications for the study of
geographical origin and quality control of vegetables.

Table 1. Literature related to the use of chemometrics in classification of vegetables.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Classification of
Mushroom origin IC-OVO-LS-SVM 1800

Accuracy = 93.2%
Sensitivity = 93.1%
Specificity = 99.7%

[42]

Classification of
Tomato Genotypes

LS-SVM, DA,
SIMCA 283 Accuracy:

100% for all methods [46]

Classification of
tomato juice freshness

SVM, BPNN,
Cluster-then Label 150

Accuracy:
SVM = 94.2%

BPNN = 97.0%
Cluster-then-Label = 98.7%

[48]

Quality of processed
potato chips LS-SVM 80

RMSECV:
Fat Content = 0.201

Moisture Content = 0.065
Acid value = 0.068
Peroxide = 0.369

[49]

Classification of
potatoes based on

sugar levels

ANN, LDA,
PLS-DA 990

Accuracy:
ANN = 78.0%

LDA = 79%
PSLDA = 81%

[50]

Identification of
foodborne pathogens

contamination in
packaged fresh

vegetable

SOM 120 Accuracy = 97.5% [51]

Classification model
for geographical

traceability of
mushrooms

SVM 65 Accuracy = 90.91% [52]

Discrimination of
Boletus mushrooms by

geographical origin
SVM 332

Accuracy:
training = 99.1%
testing = 100%

[54]

Classification of
paprika by

geographical origin
MLP-ANN 2016 Sensitivity = 99%

Specificity = 99% [55]

Classification of
cassava roots ANN, KNN, SVM no clear

information
not shown but referenced as
supplementary information [56]
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2.1.2. Fruits

Discriminating red bayberries on presence of bruises is used for food quality assurance, consistency,
and consumer confidence. Food images were captured by a digital camera and fractal analysis software
used to determine fractal parameters while a color histogram tool was used to capture RGB intensity
values from color images. PCA was used for converting fractal spectral data to a lower dimensionality.
Using SVM to process the data, classification accuracy of 100% was reported for fractal parameters
while 85.3% was reported for RGB intensity values [57].

Characterizing and detecting the non-visible mechanical damage of blueberries with time evolution
can help to discard damaged berries, leading to packages of higher quality that can be stored for up to
one year in a freezer [58]. Reflectance, transmittance, and interactance imaging spectroscopy were used
to generate samples from 737 blueberries. Using multi-layer perceptron with back propagation ANN,
classification accuracy of 77.8% was obtained with reflectance spectroscopy, while 100% accuracy was
obtained with transmittance spectroscopy. The study also showed that, except for the first 12 h after the
impact, good blueberries were easier to classify than damaged ones. In the first 12 h after the impact,
classification accuracy of good blueberries was 56.3%, while classification accuracy of damaged blueberries
was 88.4%. Accuracies for classifying blueberries 1 day and 2 days after the impact were 95.2% and 92.1%
for good berries, while classification of damaged blueberries was lower at 55.8% and 74.4%.

Electronic Tongue (E-Tongue) data processing has been used for discrimination between 100%
and 10% orange juice. Each class of orange juice consisted of 108 samples for a total of 216 analyses.
Comparison of random forest (RF) classification against two non-linear techniques, BPNN and SVM,
showed that all three techniques gave the same prediction accuracy of 100% [41]. A study conducted
by Qiu et al. [59] showed that data from E-Tongue delivered a higher accuracy in classification of
processed strawberry juices compared to E-Nose. However, grouping the two methods together
delivered 100% accuracy with RF or SVM algorithms. The study also showed RF having slight edge
over SVM when using E-Nose datasets.

Bunch withering disorder is one of the greatest problems facing the production of Mazafati
variety of date fruits in Iran. Because no visual signs of the withering disease exist at the onset of
infection, NIR spectroscopy was used as a nondestructive method for discrimination between healthy
and diseased dates [60]. Three different methods were used on data samples to differentiate between
healthy and diseased dates. Classification accuracies reported for these methods were 82% for SIMCA,
93% for PLS-DA, and 86% PCA-ANN.

Geographical origin is known to have a great impact on the quality of chayote fruit, Sechium edule
(S. edule). A study was conducted to investigate how mineral composition of the fruit could be used as
a discriminating factor to determine geographical origin of S. edule in Argentina. After microwave
digestion, major and trace element composition was determined using ICP-OES [61]. LDA, KNN,
PLS-DA, and SVM were applied for classification of a 92-sample data set. Discrimination accuracy
results obtained for each of the methods were 89.1% for LDA, 84.7% for KNN, 82% for PLS-DA,
and 87% for SVM, showing that LDA displayed the highest ability for predicting the geographical origin
of the samples. In a separate study, SVM, LDA, KNN, PLS-DA, and RF were compared for prediction
of the origin of lemon juice from 4 different Argentinean provinces [62]. Trace element composition
of 25 elements in 74 samples was determined by Inductively Coupled Plasma Mass Spectrometry
(ICP-MS). Applying repeated 10-fold cross-validation to optimize each of the classification methods,
the results showed that SVM held highest mean accuracy of 76.2% followed by 71% for RF while LDA,
KNN, and PLS-DA held the same mean accuracy of 66.7%. RF and SVM also showed 98% and 93%
accuracy in determining the geographical origins of grape seeds based on determination of 29 trace
elements from Mendoza province in Argentina [63].

A comparison study was performed by Lubinska-Szczygieł et al. [64] on Kaffir (Citrus hystrix)
and Key (Citrus aurantifolia) limes to determine their botanical origin. Dataset samples were produced
using two-dimensional GC with time-of-flight MS (GCxGC-TOF-MS). Classification accuracy of four
different methods were compared, namely: SVM, classification tree (CT), naïve Bayes (NB), and RF
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classifications with two-fold cross-validation. The results showed that SVM, NB, and RF statistical
models performed with 100% classification accuracy while a CT model performed at 87.5%.

Mineral content of mangoes from uniform genetics (Lippens variety) cultivated in the Gomera
Island (Canary Islands) was used for discrimination based on cultivation practices (organic vs.
non-organic). Classification of two types of agricultural crops was done by applying LDA and SVM on
the samples. The results showed that, while 73.2% classification accuracy is possibly by LDA method,
SVM can increase the accuracy up to 93.1%. These findings indicate that, with non-linear boundaries
between the classes, ANN is a better classification method than LDA [65].

A low-cost android electronic nose was developed for detection of different types of fruit. Odor
patterns were correctly differentiated 100% of the time by kernel extreme learning machine (KELM),
producing more accurate results compared to SVM, KNN, LS-SVM, and extreme learning machine
(ELM) [66].

Geographical origin classification of Jujube (Ziziphus jujuba Mill) fruit was done by evaluating
total sugar, acid, phenolic content, and antioxidant activity. Using PCA, LDA, LS-SVM, and BP-ANN
classifier models for discrimination of NIR spectra, the results showed that LS-SVM achieved the best
results for classification of jujubes [67]. LS-SVM also displayed 100% accuracy in discrimination of
Vis/NIR spectroscopy data combined with image processing to detect crack defects of fresh jujube
fruit [68]. Munera et al. [69] described a method of using Vis/NIR hyperspectral imaging to determine
three stages of persimmon fruit ripeness. Comparison of SVM, LDA, and quadratic discriminant
analysis (QDA) showed that at least 94% classification accuracy of the three stages of ripeness was
possible by all three methods. The best overall classification of 95.1%, however, was obtained with QDA.

Fresh peaches rapidly deteriorate at ambient summer temperatures. While storage at low
temperatures can prolong the shelf life of the fruit, chilling injuries can occur that affect taste quality.
A system to detect chilling injury of peaches was developed by pairing hyperspectral reflectance
imaging with PLS-DA, ANN, and SVM classifiers [70]. All models obtained high accuracies in a
two-class classification set between chilled and non-chilled peaches with ANN and PLS-DA achieving
100% accuracy.

Digital image feature extraction from segmented gray image of grapes illuminated with fluorescent
light can be used to discriminate between grapes that were treated with pesticides and untreated
grapes. 100% accuracy was achieved by using a linear kernel SVM classifier, showing that image-based
processing classification is a good nondestructive method for determining grape pesticide exposure [71].

Most metabolomic studies that deal with classification are focused on two class problems.
Multiclass study conducted for classification of 14 raspberry cultivars with varying levels of mold
susceptibility, showed poor performance of SVM compared to RF and penalized discriminant analysis
(PDA), indicating that SVM algorithms may not be a good method for multiclass classification [72].

Looking to find new methods for real time non-destructive food classification, Zheng et al. [73]
explored the use of ELM compared to different chemometric techniques for differentiation between
strawberries and other types of fruit. The results showed that SVM achieved 96% accuracy compared
to 95.3% for BP-ANN, 95% for ELM, 85% for PLS-DA, and 67% for KNN. These results indicate that
SVM had better performance than ELM. Gómez-Meire et al. [74] discussed a comparison among
different machine learning techniques, such as SVM, RF, KNN, and NB to find a classification model
able to precisely differentiate between existing grape varieties. The authors provided details of the
cross-validation method employed (10-fold cross-validation) and of how the training and test sets
were defined.

Table 2 summarizes results from the articles describing chemometric applications along with
statistical parameters used to compare the different methods and applications for the study of
geographical origin, adulteration, ripeness, and quality control parameters of fruits.
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Table 2. Literature related to the use of chemometrics in classification of fruit.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Orange juice
adulteration BPNN, SVM 108

Accuracy:
BPNN = 100%
SVM = 100%

[41]

Classification of
bayberries based on
presence of bruises

PC-SVM, SVM 112

Fractal parameters accuracy:
SVM-F = 100%

PC-SVM = 100%
RGB parameters accuracy:

SVM = 85.29%

[57]

Classification of
blueberry damage with

time evolution
MP-ANN 737

Sound blueberry accuracy:
Reflectance method = 94.7%

Transmittance method = 94.7%
Interactance method = 85.5%
Damaged blueberry accuracy:
Reflectance method = 77.8%

Transmittance method = 100%
Interactance method = 100%

[58]

Discrimination of
strawberry juice RF, SVM 20 samples × 5

groups

Accuracy:
RF:

e-nose data = 96%
e-tongue data = 100%

fusion of E-nose
and E-tongue data = 100%

SVM:
e-nose data = 84%

e-tongue data = 100%
fusion of E-nose

and E-tongue data = 88%

[59]

Detection of infection
in date fruit

SIMCA, PLS-DA,
PCA-ANN 408

Accuracy:
SIMCA = 82%
PLS-DA = 93%

PCA_ANN = 86%

[60]

Geographical origin of
chayote fruit

LDA, KNN,
PLS-DA, SVM 92

Accuracy:
LDA = 89.1%
KNN = 84.7%
PLS-DA = 82%

SVM = 87%

[61]

Geographical origin of
lemon juice

LDA, KNN,
PLS-DA, RF, SVM 74

Mean accuracy:
LDA = 66.7%
KNN = 66.7%

PLS-DA = 66.7%
RF = 71%

SVM = 76.2%

[62]

Determining
geographical origins of

grape seeds
RF, SVM 408

Accuracy:
RF = 98%

SVM = 93%
[63]

Botanical origin of
limes CT, NB, RF, SVM

no clear indication
of number of

samples

Accuracy:
CT = 87.5%
NB = 100%
RF = 100%

SVM = 100%

[64]

Discrimination
between organic and
non-organic mangoes

LDA, SVM 130
Accuracy:

LDA = 73.2%
SVM = 93.1%

[65]
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Table 2. Cont.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Classification of fruit
by type

KNN, LS-SVM,
SVM, ELM, KELM 400

Accuracy:
KNN = 93.75

LS-SVM = 97.5%
SVM = 97.5%
ELM = 97.5%

KELM = 100%

[66]

Geographical origin
classification of Jujube LS-SVM, BP-ANN 97

Accuracy:
LS-SVM = 93.8%
BP-ANN = 81.2%

[67]

Detection of crack
defect in jujube fruit LS-SVM 176 Accuracy:

LS-SVM = 100% [68]

Classification of
persimmon ripeness LDA, QDA, SVM 90

Overall accuracy ± standard
deviation:

LDA = 90.2 ± 7.6
QDA = 95.1 ± 4.1
SVM = 90.3 ± 9.7

[69]

Classification of chilled
and non-chilled

peaches

PLS-DA, ANN,
SVM 330

Accuracy:
PLS-DA = 100%

ANN = 100%
SVM = 96.55%

[70]

Discrimination
between grapes treated

with pesticides and
untreated grapes

SVM 72 Accuracy:
SVM = 100% [71]

Classification of 14
different cultivars of a

single raspberry
species

RF, PDA, PLS, SVM

Classification error:
PTR-MS data:

RF = 0.187
PDA = 0.282
PLS = 0.299
SVM = 0.257
GC-MS data:
RF = 0.213

PDA = 0.202
PLS = 0.266
SVM = 0.223

[72]

Differentiation
between strawberries

and other types of fruit

KNN, PLS-DA,
ELM, BP-ANN,

SVM
983

Accuracy:
KNN = 67%

PLS-DA = 85%
ELM = 95%

BP-ANN = 95.3%
SVM = 96%

[73]

Differentiation
between existing grape

varieties

SVM, RF, KNN,
MLP, NB 42

mean kappa coefficient:
SVM

F-value = 10.347, df = 7,
p-value = 6.56E - 9

RF
F-value = 2.607, df = 7,

p-value = 0.019
KNN

F-value = 1.854, df = 7,
p-value = 0.09

MLP
F-value = 3.614, df = 7,

p-value = 0.0022
NB

F-value = 2.104, df = 7,
p-value = 0.054

[74]
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2.1.3. Grains

Advancements in technology allow for food crops to be genetically modified (GM) to increase
resistance to pests. However, because not all consumers are comfortable eating GM foods,
rapid and non-destructive methods to discriminate between GM and non-GM products are needed.
Using terahertz spectroscopy (THz) imaging for discrimination of rice transgenic seeds from
non-transgenic counterparts, Liu et al. [75] showed that highly accurate prediction models could be
created with 96.7% accuracy reported when using RF and 90% when using SVM. An earlier study also
showed that with a multispectral imaging (MSI) system, up to 100% classification accuracy could be
achieved with LS-SVM and PCA-BPNN models [76].

Sample preparation methods can influence the accuracy of classification. Applying four different
preparation methods, namely rice powder pellet with boric acid (RPPBA), rice powder pellet (RPP),
rice grain pellet (RGP), and rice grain (RG), Yang et al. [77] correctly classified 20 kinds of rice
based on their geographical origin by applying PCA and SVM analysis on data samples generated
from laser-induced breakdown spectroscopy (LIBS). Accuracies observed were 92.7% for RPPBA,
95.7% for RPP, 98.8% for RGP, and 99.2% for RG. Data generated by Raman spectroscopy can also be
used for classification of rice grain by geographical origin. A classification accuracy of above 90% has
been reported by Feng et al. [78], with SVM but requiring more computer resources than KNN.

SVM classifier coupled with data generated from ICP-MS was used to determine concentrations of
19 different trace elements in rice. The study showed that classification between organic and non-organic
rice with 98% certainty is possible with this method. Additionally, 96% certainty was accomplished
by determining concentrations of only two trace elements, Ca and Cd [79]. Product adulteration is
commonly encountered in the food industry but can be detected using this approach. By mixing
together pure white rice from Korea and China, adulterated samples were created with various ratios
of cross contamination. The results of the study showed that it is possible to discriminate between pure
Korean or pure Chinese rice and adulterated samples with as little as 5% contamination. This accuracy
was achieved by utilizing RF and SVM on mass spectra from 330 samples of 30 cultivars of Korean and
Chinese white rice [80].

Different states of fungal spoilage on brown rice can be monitored by integration of hyperspectral
imaging with SOM. This novel method clearly visualized different classes of fungal growth on
brown rice [81]. In a study aimed at differentiating between Lupinus albus and Lupinus angustifolius,
SOM proved a reliable method for clustering species and cultivars as well as discovering some new
genetic similarities between the two lupin seeds [82].

Taking measurements of 8 experimental indices from 255 durum wheat samples from Sicily,
Marini et al. [83] attempted to build a model for reliable classification of durum wheat. Because the
classes of the indices slightly overlap, non-linear methods yielded better results compared to the linear
methods. MLF-ANN and counter propagation artificial neural network (CP-ANN) resulted in 72.7%
and 81.8% correct classification, while linear and quadratic models topped out at a 53%. Collecting
data by NIR hyperspectral imaging combined with a quadratic SVM classification tool with a radial
basis function (RBF) Gaussian kernel was also shown to be a reliable method for inspecting food safety
and quality control [84]. Detection of impurities and contaminants in various types of cereal cultures
as well as animal feed can be higher than 95% using this approach. Classification accuracies of 98.9%
and 100% were observed using BPNN and LS-SVM methods among six brands of instant noodles
using 360 spectra generated by Vis/NIR spectroscopy [85].

Developing a fast and non-destructive method to test for viability of corn seeds in pre- and
post-harvest stages is crucial in industrial sorting applications. Using hyperspectral imaging data
from a sample size of 600 corn seeds, classification accuracies for corn seed viability using three
different chemometric techniques were 97.1% for LDA, 87.9% for PLS-DA, and 100% for SVM [86].
Classifying coated maize kernels on different corn varieties can be done by using NIRS to collect
samples. By applying SIMCA, Biomimetic Pattern Recognition (BPR) and SVM chemometric tools
Jia et al. [87] showed that at 97.5% classification accuracy, SIMCA outperformed SVM and BPR even
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though the latter two achieved accuracy above 90%. In a separate study, discriminating between
400 normal and 400 frost-damaged maze kernel samples, prediction accuracies obtained were 94%
using SVM, 97.3% using BPR, and 89.5% using Mahalanobis distance (MD) [88]. Parameters such as
environmental and cultivation conditions, climate, etc., can deteriorate classification accuracy of models
for discrimination of maize seeds when attempting to classify the same type of seed from year to year.
To mitigate this problem, Guo et al. [89] suggested periodic updating of the classification algorithm.
Using data from hyperspectral images coupled with LS-SVM that achieved 100% classification accuracy
on the initial dataset, deterioration of the accuracy of the model over a span of three years was observed
to fall in the rage between 53% and 25% for newer samples. While keeping the classification model
updated, the study showed that classification accuracy can be maintained at above 87% accuracy,
with most samples reaching above 90% accuracy.

In a classification study of five different cultivars of caraway spice, Ghasemi-Varnamkhasti et al. [90]
demonstrated that SVM can produce accuracy of 97.9 ± 3.8% and performs better than the LDA model
used on the same sample set.

Table 3 summarizes results from the articles describing chemometric applications along with
statistical parameters used to compare the different methods and applications for the study of
geographical origin, adulteration, discrimination of transgenic and non-transgenic seeds, and quality
control parameters of grains.

Table 3. Literature related to the use of chemometrics in classification of grains.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Discrimination of rice
transgenic and

non-transgenic seeds
RF, SVM 200

Accuracy:
RF = 96.7%
SVM = 90%

[75]

Discrimination of rice
transgenic and

non-transgenic seeds

PLSDA, LS-SVM,
PCA-BPNN 400

Accuracy:
PLDA = 98%

LS-SVM = 100%
PCA-BPNN = 100%

[76]

Rice classification by
Geographical origin PCA-SVM 2000 Accuracy:

99.2% [77]

Classification of rice
grain by geographical

origin
KNN, SVM 42 Accuracy:

Above 90% [78]

Discrimination
between organic and

non-organic rice
SVM 50

Accuracy = 96%
Specificity = 100%
Sensitivity = 88%

[79]

Adulteration detection
in rice RF, SVM 330

Predictive performance at 5%
adulteration:

RF
Accuracy = 0.8
Sensitivity = 0.8
Specificity = 0.8

Positive prediction value = 0.8
Negative prediction value = 0.8

SVM
Accuracy = 0.9
Sensitivity = 1

Specificity = 0.8
Positive prediction value = 0.83
Negative prediction value = 1

[80]
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Table 3. Cont.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Classification of fungal
growth on brown rice SOM 210 No clear metric provided [81]

Discrimination
between two species of

lupin
SOM No clear number

provided No clear metric provided [82]

Classification of
durum wheat

MLF-ANN,
CP-ANN 255

Predictive ability:
MLF-ANN = 72.7%
CP-ANN = 81.8%

[83]

Classification of
impurities from

different origins in
cereals

SVM 112 various classification rates in
range 95% to 98.28% [84]

Detection of impurities
and contaminants in

various types of cereal
cultures

BPNN, SVM 360
Accuracy:

BPNN = 98.9%
LS-SVM = 100%

[85]

Classifying viability of
corn seeds in pre- and

post-harvest stages

LDA, PLS-DA,
SVM 600

Accuracy:
LDA = 97.1

PLS-DA = 87.9%
SVM = 100%

[86]

Classification of coated
maize kernels SIMCA, BPR, SVM 40

Accuracy:
SIMCA = 97.5%
BPR = 91.25%
SVM = 90%

[87]

Detection of damage
and viability

assessment of maize
seed

MD, BPR, SVM 800

Accuracy:
MD = 89.5%
BPR = 97.3%
SVM = 97.3%

[88]

Yearly model updating
for classification of

maize seeds
LS-SVM 800

Accuracy:
Initial = 100%

Over time with model updating
= 87% to 90%

[89]

Classification of
caraway cultivars LDA, SVM 3208

Accuracy:
LDA = 96.74 ± 4.36%
SVM = 97.92 ± 3.82%

[90]

2.1.4. Protein

Meat processing is one of the largest food processing industries worldwide. Reliable quality
control methods are of utmost importance in maintaining high product quality. Generating data
samples by Vis/NIR in the range of 400 nm to 1000 nm and NIR in the range of 900 nm to
1700 nm, adulterated minced meat from beef, pork, and chicken can be identified in comparison
to unadulterated meat. Using SVM, the overall classification accuracy between the adulterated and
unadulterated meats was 96% and 95% for Vis/NIR and NIR [91].

Adulterants added to meat products are a big problem in meat industry. Pork adulteration
in veal sausages can be screened by combining NIR with SVM. Methods for laboratory
testing, industrial measurement, and on-site analysis were compared by Schmutzler et al. [92].
Meat adulteration was tested in 10% step increments from 100% veal to 50% each veal and pork.
Classification of 100% was reported in all tests from 20% to 50% adulteration. At 10% adulteration,
a 91.7% classification accuracy was reported in industrial setup when measuring contamination
through a plastic package, while an unsatisfactory classification accuracy of 83.3% was recorded using
handheld spectrometer in the on-site setup. A method that uses spectral imaging coupled with SVM
correctly classified 95.3% of 110 freshly ground samples of pure beef and beef samples adulterated
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with horse meat. The results also indicated that change of meat color due to storage can significantly
affect the performance of this method [93].

Artisan and industrial pork sausages from Brazil were classified in an experiment based on
their moisture, protein, fat, nitrite, sodium, and calcium levels. With ANN architecture of six input,
five hidden, and two output neurons, a 100% correct classification was accomplished for both classes
of pork sausage [94].

Suckling lamb meat can be differentiated according to their rearing system by applying FT-IR
spectroscopy to fat samples. Selected features identified either by PCA or SVM were fed into an
ANN resulting in 100% correct classification of perirenal fat while PCA extracted features fed to ANN
resulted in 9% error in classification of omental fat samples [95].

Combining hyperspectral imaging with SVM techniques has been shown to be a reliable
method with 98.2% accuracy for discriminating between organic and conventional raised salmon [96],
Applying SVM with data gathered from high resolution 13C NMR can be used to predict the farm of
origin of farmed salmon [97]. Good performance was also noted when combining Vis/NIR hyperspectral
imaging technique with LS-SVM to differentiate between fresh, cold-stored, and frozen-thawed carp
fish. The highest CCR of 94.3% was obtained with LS-SVM and probabilistic neural network (PNN) in
tandem with first derivative pretreatment. A slightly lower CCR of 91.4% was obtained by a simpler
model using LS-SVM and first derivative pre-processing [45]. Raman spectroscopy was used for the
classification of caviar in a set of 95 samples containing three different types, in which features such
as type and purity were used for classification yielding 93.6% accuracy with multi layered BPNN
classification algorithm [98].

Selling meat that has been previously frozen without proper labeling is considered a form of
adulteration. A novel method for rapidly differentiating between fresh, previously frozen, and spoiled
pork meat utilizes ANN with a three-layer non-linear perceptron applied to data generated from
an E-nose based on ultra-fast gas chromatography (UFGC). This method produces classification
accuracies of 80%, 85%, and 90% for fresh, frozen then thawed, and spoiled meat, respectively [99].
Li et al. [100] used adaptive boosting orthogonal linear discriminant analysis (AdaBoost-OLDA)
machine learning algorithm compared to SVM in an attempt to sense pork meat freshness using a
light scattering technique. 100% correct classification was achieved with AdaBoost-OLDA, while SVM
algorithm produced classification accuracies of 93.3% for calibration and 96.7% for prediction datasets.
AdaBoost also delivered better classification results compared to BP-ANN when determining freshness
of pork meat based on total volatile basic nitrogen content [101].

Veterinary drugs such as tetracycline are often found in poultry products due to their use to
promote growth and health of industry animals. Residual pharmaceuticals, however, can cause
health problems for humans and affect meat quality. Xiao et al. [102] developed a method using
synchronous fluorescence spectrometry with SVM to discriminate duck meat with excess tetracycline
residues, achieving a 95.7% classification accuracy. Looking to find new methods for real time
non-destructive food classification, Zheng et al. [73] explored the use of NIR spectroscopy with different
chemometric techniques to differentiate between three classes of fresh minced meats, namely chicken,
pork, and turkey. The results showed that ELM achieved 97.8% accuracy compared to 97.7% for
PLS-DA, 95.8% for SVM, 95.7% for BP-ANN, and 92.3% for KNN.

Raman micro-spectroscopy combined with SVM was shown to be a reliable and quick method
to detect food-borne pathogens. By accessing a Raman spectra database with 19 spices and multiple
steps of classification models, an accuracy range from 90.6% to 99.6% in differentiating between
Gram-positive and Gram-negative bacteria and bacterial genus can be reached [103].

Table 4 summarizes results from the articles describing chemometric applications along with
statistical parameters used to compare the different methods and applications for the study of adulteration,
discrimination of organic and conventionally raised fish, and quality control parameters of proteins.
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Table 4. Literature related to the use of chemometrics in classification of protein.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Discrimination of fresh
from cold-stored and
frozen-thawed fish

LS-SVM, PNN,
CCR 120

Accuracy:
PNN = 94.29%

LS-SVM = 91.43%
[45]

Classification of
minced meats

ELM, PLS-DA,
SVM, BP-ANN,

KNN
60

Accuracy:
ELM = 97.8%

PLS-DA = 97.7%
SVM = 95.8%
ANN = 95.7%
KNN = 92.3%

[73]

Identification of
adulterated minced

meat
SVM 1697

Accuracy:
SVM with Vis-NIR data = 96%

SVM with NIR data = 95%
[91]

Meat Adulteration SVM 84

Accuracy:
20% and above adulteration

on all setups
SVM = 100%

10% adulteration
Industrial setup SVM = 91.7%

On site setup SVM = 83.3%

[92]

Meat Adulteration SVM 110 Accuracy:
SVM = 95.3% [93]

Discrimination
between artisan and

industrial pork
sausages

ANN 90 Accuracy:
ANN = 100% [94]

Classification of
suckling lamb meat ANN 106

Accuracy on perirenal fat
sample:

ANN = 100%
Misclassification of omental

sample:
ANN = 9–13%

[95]

Discrimination
between organic and
conventionally raised

salmon

SVM 160 Accuracy:
SVM = 98.2% [96]

Classification of
farmed salmon by

farm origin
SVM 59

Accuracy:
SVM with GC data =

96.61–100%
SVM with NMR data =

96.6–100%

[97]

Classification of caviar
purity BPNN 95 Accuracy:

BPNN = 93.6% [98]

Differentiating
between fresh,

previously frozen, and
spoiled pork

ANN 1008

Accuracy:
ANN fresh sample = 80%

ANN frozen then thawed =
85%

ANN spoiled meat = 90%

[99]
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Table 4. Cont.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Determining freshness
of the meat

AdaBoost–OLDA,
LDA, SVM 90

Accuracy:
LDA = 90%

SVM = 96.67%
AdaBoost–OLDA = 100%

[100]

Determining freshness
of the meat

AdaBoost–OLDA,
BP-ANN 77

AdaBoost–OLDA:
Rp = 0.8325

RMSEP = 6.9439
BP-ANN:

Rp = 0.7946
RMSEP = 6.4343

[101]

Classification of
Tetracycline Residue in

Duck Meat
SVM 70 Accuracy:

SVM = 95.7% [102]

Identification of
meat-associated

pathogens
4622

Accuracy:
SVM across hierarchical

cluster analysis ranges from
90.6% to 99.6%

[103]

2.1.5. Oils

Edible oils are part of daily diet for humans which makes assessing the quality and authenticity
of oils an important issue for the food industry. Combining GC-MS with SVM to analyze the fatty acid
composition of 6 different kinds of edible oils resulted in misclassifications of 8.5% for training and
3.0% for test sets [104]. Using SVM and PLS on data generated by FTIR resulted in 100% accuracy for
classification of canola, sunflower, corn, and soybean oils [105] as well as distinguishing between pure
olive oil and non-olive oil [106,107].

Having an insufficient number of training samples can render machine learning algorithms such
as SVM ineffective. However, in some cases, such as swill-cooked dirty oils, the accumulation of
adequate data sets is not possible. To overcome that problem, Zhou et al. [108] proposed the use of
graph based semi-supervised support vector machine (GS3VM) in an attempt to discriminate between
edible and swill-cooked dirty oils. Using data generated by NIR from 100 edible and 99 swill-cooked
dirty oils, prediction accuracy by GS3VM method was reported to be 96% for unlabeled and 98% for
labeled samples.

Removing variance from sample data as well as optimizing SVM meta-parameters to prevent
overfitting can improve the accuracy of SVMs, albeit a time-consuming process. In theory these
would be regularization parameter which controls the tradeoff between margin maximization and
error minimization and kernel width meta-parameter for the RBF kernel function. To mitigate this,
Devos et al. [109] have proposed a method for simultaneous SVM meta-parameter optimization
and data preprocessing. The method based on parallel generic algorithm (GENOPT-SVM) was
applied to classification of olive oil from the Ligurian region of Italy and olive oils from other Italian
regions. The results show classification accuracy improvement from 85.1% to 87.8%, based on an NIR
spectral data set and from 74.7% to 82.7% using FTIR spectra. By applying CP-ANN on MS data,
prediction accuracy of 84% was obtained for Ligurian olive oil and 76% for non-Ligurian olive oil [110].
However, these accuracies were still lower than the prediction accuracy by NIST’s MS Search program,
which is a non-machine learning method, indicating that CP-ANN is highly dependent on features of
the training set. An improvement over CP-ANN accuracy was obtained by analyzing GC-MS data with
MLP-ANN, resulting in a classification accuracy of 90.1% and a prediction accuracy of 81.1% [111].

Combining LS-SVM with genetic algorithm (GA) and applying it to data generated from THz
spectroscopy, Liu et al. [112] obtained 96.3% prediction accuracy in an effort to classifying olive oils from
four different regions. Zheng et al. [73] explored the use of NIR with different chemometric techniques
to differentiate between authenticated extra virgin olive oils (EVOO) from four different countries of
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origin: Greece, Italy, Portugal, and Spain, achieving 97.4% accuracy using ELM compared to 95.1% for
SVM, 93.1% for PLS-DA, 90.5% for BP-ANN, and 83.3% for KNN. UV-vis spectra can be clustered by
SOMs to classify different types of olive oil, which can be used as quality control for discrimination
of pure EVOO against refined olive oil and refined olive-pomace oil. Torrecilla et al. [113] obtained a
misclassification under 1.3% with SOM based on lag-k autocorrelation coefficients grouping 120 signals
into five classes. In a study comparing several different techniques for storage time classification
of EVOO, Sanaeifar et al. [114] obtained 100% accuracy with Bayesian network (BN) while ANN with
one hidden layer produced accuracy of 97.5% and SVM with a polynomial kernel function achieved
accuracy of and 96.3%.

A rapid detection method based on ion mobility spectrometry is available for determining
adulteration of sesame oil. Prediction accuracy of 94.2% was reported by applying recursive SVM
to discriminate between pure sesame oil and four other types of edible oils [115]. Making use of
GC-MS and applying a one-class SVM classifier, the same team reported 100% accuracy in building
an authentication model for pure sesame oil [116]. In food quality inspection, a reliable method was
developed by Deng et al. [117] to identify different brands of sesame oil in which 100% accuracy
was reported when combining SVM with a novel Multiclass Forward Feature Selection algorithm
(SVM-MFFS) to analyze data obtained by Vis/NIR.

NIR spectroscopy has shown to be a successful nondestructive method for discrimination of
transgenic and non-transgenic soybean oils. By applying SVM Discriminant Analysis, 100% of the
samples were correctly classified during the training stage for both types of soybean oils, while 90%
and 100% accuracies were reported in validation runs for transgenic and non-transgenic oils [118].
No classification error was reported when using SVM in a study designed for testing the use of FTIR for
classification of three varieties of rapeseed oil crop [119]. The authentication of Rosa damascena essential
oil composition can be done with the use of E-Nose and SVM analysis. A classification accuracy of 99%
was reported by Gorji-Chakespari et al. [120] when discriminating between three rose genotypes.

Quality of sandalwood oil from the same species is dependent on geographical origin.
SOM techniques applied to NIR spectra showed the ability to correctly differentiate between
sandalwood oils from three different geographical regions in India [121].

Table 5 summarizes results from the articles describing chemometric applications along with
statistical parameters used to compare the different methods and applications for the study of
adulteration, geographical origin, and quality control parameters of oils.

Table 5. Literature related to the use of chemometrics in classification of oils.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Classification of olive
oil by geographical

location

ELM, SVM,
PLS-DA, BP-ANN,

KNN
60

Accuracy:
ELM = 97.4%
SVM = 95.1%

PLS-DA = 93.1%
BP-ANN = 90.5%

KNN = 83.3%

[73]

Classification of edible
vegetable oils SVM 66

Misclassification rate:
Training set = 8.5%

Test set = 3%
[104]

Classification of edible
oils SVM-DA, PLS-DA 103

Accuracy:
SVM-DA = 100%
PLS-DA = 100%

[105]

Classification of
blended olive oil SVM 146

Accuracy:
Olive oil sample = 100%

Vegetable oil sample = 92%
[106]
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Table 5. Cont.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Differentiating olive oil
from other edible

vegetable oils
SVM 127 Accuracy:

SVM = 98% [107]

Discrimination
between edible oil and

swill-cooked dirty
GS3VM 199

Accuracy:
Labeled samples = 96%

Unlabeled samples = 98%
[108]

Classification of Italian
olive oil GENOPT-SVM 910

Accuracy:
NIR dataset = 87.8%
FTIR dataset = 82.7%

[109]

Classification of Italian
olive oil CP-ANN 220

Accuracy:
Ligurian sample = 84%

Non-Ligurian sample = 76%
[110]

Classification of
Ligurian and

non-Ligurian olive oil
MLP-ANN 914 Recognition rate = 90.1%

Prediction rate = 81.1% [111]

Discrimination of
geographical origin of
extra virgin olive oils

LS-SVM, BPNN 320

Accuracy:
Calibration set

LS-SVM = 100%
BPNN = 100%
Prediction set

LS-SVM = 96.25%
BPNN = 86.25%

[112]

Detection of
adulterations in extra

virgin olive
SOM 120 Misclassification:

Less than 1.3% [113]

Storage time
classification of olive

oil
BN, ANN, SVM 393

Accuracy:
BN = 100%

ANN = 97.5%
SVM = 96.3%

[114]

Detection of
adulteration of sesame

oil
R-SVM 210

Accuracy at above 10%
adulteration:

R-SVM = 94.2%
[115]

Detection of
adulteration of sesame

oil
SVM 80 Accuracy:

SVM = 100% [116]

Identification of
different brands of

sesame oil
SVM-MFFS 120 Accuracy:

SVM-MFFS = 100% [117]

Discrimination of
transgenic and
non-transgenic

soybean oils

SVM-DA 80
Accuracy:

Transgenic sample = 90%
Non transgenic sample = 100%

[118]

Classification of three
varieties of rapeseed

oil crop
SVM 120 Accuracy:

SVM = 100% [119]

Authentication of Rosa
damascena essential oil

composition
SVM 210 Accuracy:

SVM = 99% [120]

Classification of
sandalwood oils from

three different
geographical regions

SOM 49 Accuracy:
SOM = 100% [121]

2.1.6. Dairy

Determining freshness of milk and dairy products is of great interest to the industrial and scientific
communities. Bougrini et al. [122] assessed the use of multisensor E-Nose and voltammetric E-Tongue
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by trying to determine the number of storage days for pasteurized milk. A total of 150 samples
were generated using five different milk brands, and data taken for pasteurized samples over five
storage days (refrigerated at constant temperature of 4 ◦C) yielded 53.3% classification accuracy for
E-nose and 58.7% for E-Tongue. However, perfect classification was obtained when performing
mid-level of abstraction data fusion from both E-Nose and E-Tongue, coupling with SVM while using
a leave-one-out cross-validation method.

Trace mineral composition can be used for determining authenticity of organic milk.
Concentrations of 14 mineral elements in 98 samples of milk from northern Spain were measured by
ICP-MS. Making use of an optimized multilayer feed-forward artificial neural network (MLF-ANN),
a classification model was developed to discriminate between organic and non-organic milk within a
5% margin of error [123]. However, using trace elements for authentication of milk is highly dependent
on geographical origin of the samples, indicating that different prediction models need to be developed
for different geographical locations.

Concentrations of illegal adulterants such as water, neutralizers, melamine, etc., can be detected
and measured by NIR spectroscopy. From 800 milk samples consisting of 287 raw cow milk samples
and 526 adulterated milk samples, Zhang et al. [124] proposed methods for identifying raw and
adulterated milk by using pattern recognition methods of improved SVM (I-SVM). This method yields
above 94% correct classification at or above a 5% level of adulteration.

Automated microbiological quality evaluation of pasteurized vanilla cream can be performed
non-invasively by using FTIR spectroscopy. During pasteurization treatment, microbiological stability
of vanilla cream can be compromised, resulting in germination of surviving bacterial spores. One study
combined FTIR spectroscopy measurements of samples in addition to sensory evaluation and
microbiological determination of aerobic plate count (APC) to form two classes where microbiological
data was converted to log (colony-forming units) per gram of cream (log CFU/g): class 1 (accept,
APC < 4.5 log CFU/g) and class 2 (reject, APC ≥ 4.5 log CFU/g) [125]. Using SVM classification model
with a second-degree polynomial kernel function in tandem with FTIR, spectral fingerprints generated
correct classification accuracy of 93.5% for training data sets and 99.2% for the testing data set.

The illegal practice of adding various types of agent, such as detergents, to raw milk to reduce
the microbial population poses a serious threat to human health. Detergent powder in raw milk
can be detected using an E-Nose based on eight metal oxide semiconductor sensors (MOS) [126].
Adulterated and pure samples of milk were distinguished with 90% accuracy by using SVM with
RBF kernel.

Breast milk is an extremely complex sample matrix. For example, composition of breast milk can
vary depending on whether a mother is feeding male or female infant. Fatty acids, phospholipids,
and tryptophan are found in greater concentrations in mothers feeding female infants while carotenoids
and saccharides are more pronounced in milk from mothers having a male infant [127]. One study
shows that Raman spectroscopy in tandem with SVM with a second-order polynomial kernel function
can distinguish between the two classes of milk with 86% accuracy, 58% sensitivity, and 88% specificity.
Contamination of breast milk with polychlorinated biphenyls (PCB), which tend to accumulate in
matrixes with high lipid content, poses a health concern to the newborn children [128]. In one study,
193 samples of breast milk from 10 different towns and cities throughout Brazil were analyzed by
GC-ECD. A SOM neural network was used to obtain information about variation of PCB contamination
in different regions, evaluating proximity to industrial centers, rivers, and the sea as well as whether
the mother was breastfeeding for the first time.

Table 6 summarizes results from the articles describing chemometric applications along with
statistical parameters used to compare the different methods and applications for the study of
adulteration and quality evaluation of dairy food products.
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Table 6. Literature related to the use of chemometrics in classification of dairy food.

Sample/Application
Description

Chemometric
Method(s)

Number of Samples
(Total) Statistical Parameters Ref Num

Determining the
number of storage

days for pasteurized
milk

SVM 150
Accuracy:

Colaimo sample = 96.67%
Saiss sample = 100%

[122]

Determining
authenticity of organic

milk
MLF-ANN 98 Error:

MLF-ANN = around 5% [123]

Determination of
illegal adulterants in

milk
SVM 800

Accuracy at or above 5%
adulteration:
SVM = 94%

[124]

Quality evaluation of
pasteurized vanilla

cream
SVM 97

Accuracy:
SVM training data = 93.5%
SVM testing data = 99.2%

[125]

Detecting detergent
powder in raw milk SVM 16 samples × 6 group Accuracy:

SVM = 90% [126]

Distinguish between
the two classes breast

of milk
SVM 190

Accuracy:
SVM = 86%
Specificity:
SVM = 88%
Sensitivity:

55%

[127]

Identification of breast
milk by environmental
conditions of the living

place

SOM 193 Successful visual separation
of samples [128]

2.1.7. Others

Authenticity of food products is extensively demanded by the consumers and quality control
agencies all over the world. Zhu et al. [129] showed how LS-SVM, SVM, BP-ANN, LDA, and KNN
were adopted to correctly classify pure and adulterated honey samples. Attempting to perform
authentication for the protected designation of origin (PDO) of Galician honey, Latorre et al. [130]
developed a method using NIR spectroscopy and various chemometric techniques including MLF-ANN.
The data set consisted of 30 honey samples, 15 of which were genuine Galician honey and 15
were trademark commercial and industrially managed honeys from Galician areas. MLF-ANN
performed at 100% sensitivity and 93.3% specificity. SIMCA performed at 93.3% sensitivity and
100% specificity, indicating a better rejection of non-genuine honey samples compared to MLF-ANN.
Using GCxGC-TOF-MS to analyze profiles of volatile compounds in honey, Stanimirova et al. [131]
applied various techniques such as LDA, SIMCA, and SVM for study of honeys based on their
geographical origin. The sample set consisted of 374 honeys collected over two years from Corsican
and non-Corsican regions. The results showed that SVM had the best performance compared to other
methods with 91.5% efficiency, 93.2% sensitivity, and 87.2% specificity. However, the classification
model would need to be updated at regular intervals, because variations in samples from year to year
would render the model inaccurate in the long run. Applying SVM with RBF kernel to data generated
by E-Nose, E-Tongue, NIR, and MIR, Gan et al. [132] concluded that sensor and spectral analysis
could be used for classification of botanical origin of honeys as well as detection of honey adulteration.
Classification of Brazilian honey by region based on composition of 42 trace elements was investigated
by Batista et al. [133], showing that selection of a subset of variables is necessary in order to achieve
good results. Comparing MLP-ANN, SVM, and RF classification, the optimal results for classification
of honey from the region of São Paulo state compared with honey from other Brazilian regions were
recorded when 5 trace elements were used resulting in accuracies of 66.3% for SVM, 79.3% for RF,
and 82.8% for MLP-ANN. Moreover, 100% geographical classification of Moroccan and French honeys
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was achieved using voltammetric E-Tongue coupled with SVM using a leave-one-out cross validation
process [134].

Authenticity evaluation of organic Brazilian coffee was performed by determining concentrations
of elements using MLP-ANN, SVM, and NB classifiers. MLP-ANN and SVM achieved 96.3% accuracy
while NB achieved 98.2% accuracy for discriminating between organic and non-organic coffee [135].
Elemental analysis can also be used for determination of geographical origin of Mexican roasted coffee
beans. ICP-OES was used for sample analysis, while LDA and MLP-ANN were used for classification.
MLP-ANN achieved a prediction ability of 93% and specificity of 98% while the corresponding metrics
for LDA were 81% and 94% [136]. In a separate study designed for classification of arabica coffee by
genotypic and geographical origin, Link et al. [137] used RBF-ANN to obtain 100% correct geographic
classification and 94.4% genotypic classification. Bona et al. [138] used SVM to produced 100% accuracy
for geographical classification of different genotypes of arabica coffee. Looking to find new methods
for real time non-destructive food classification, Zheng et al. [73] explored the performance of ELM
with standard chemometric techniques in an attempt to differentiate between arabica and robusta
coffee species. The results showed that ELM and PLS-DA achieved 100% accuracy compared to 97.5%
for SVM, 98.2% for KNN, and 97.5% for BP-ANN.

Machine learning tools have proven to be particularly successful in classification of teas.
Several studies achieved 100% accuracy when attempting to classify 3 or more groups of teas
using various methods such as BP-MLP-ANN [139], PLS-SOM [140], and probabilistic ANN [141].
Green teas can come in many different assortments attributed to plant varieties and processing
methods. 320 images of green tea were captured using multi-spectral imaging and classification
accuracies of two LS-SVM classifiers, one with linear kernel and one with RBF kernel, were
compared. Achieving 100% classification accuracy, RBF-LS-SVM classifier outperformed LS-SVM
which achieved 82.1% accuracy [142]. In an experiment designed to classify Iron Buddha tea by storage
period, Xiong et al. [143] showed that when applying LS-SVM and BPNN to data generated by MSI,
classification accuracies of 95% and 97.5% are possible for the two methods, respectively. Fuzzy SVM
classifier was applied to images taken by a three-charge-coupled device (3-CCD) digital camera by
Wang et al. [144] for differentiation between green, oolong, and black tea from China. Because three
classes of teas were being classified and SVM classifiers are originally designed to solve two class
problems, winner-takes-all method was used to break down three classes into multiple two-class tasks.
Overall classification of 97.8% was obtained using this method.

Mineral element content of PDO wine vinegars from three Spanish regions were used to classify
vinegars by their geographical origin. ICP-OES was used to establish content of different elements
from 25 vinegar samples. Comparison between SVM and LDA classifiers indicated that SVM
is a better method that produced 80% classification accuracy while LDA achieved accuracy of
73% [145]. Chinese vinegar samples were used for comparison of RF algorithms against BPNN and
SVM. Experiments were performed for three different classification types: different vinegar class
grades, vinegar material, and aromatic V-brand which was a small multiclass data set of twelve
different Chinese aromatic vinegars. The studies produced statistically complex and unbalanced
data sets with classes containing different numbers of samples. For the vinegar-grade class studies,
prediction accuracies were 66% for both BPNN and SVM, while RF yielded 98%. BPNN, SVM, and RF
achieved 97%, 89.9% and 99% vinegar-material prediction accuracies and 89.0%, 18.9% and 100% for
aromatic V-brand. The results showed that RF model outperformed BPNN and SVM for unbalanced,
multiclass, and small sample datasets [41]. In other studies, however, SVM classification algorithm
proved more reliable. Prediction accuracy by SVM in classification of three types of Spanish PDO
vinegar was between 92% and 100% [146]. Above 85% accuracy was reported for identification of
mature, aromatic, and rice vinegar when using LS-SVM with RBF kernel [147], while 100% accuracy
was reported when classifying sherry vinegar by different aging times [148].

Classification of wine by geographical origin is used for authentication and quality control of
products. Trace element concentrations found in wine can be used for this type of investigation.
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Contents of 17 elements from 64 Spanish white wine samples from four different regions were
analyzed by ICP-OES and 100% prediction accuracy was reported using SVM [149]. 272 samples
of bottled Slovenian wines were analyzed by ICP-MS and ICP-OES to establish their multielement
content. Experimental results showed that CP-ANN model with two layers of neurons performed
at 82% accuracy, which the authors considered to be satisfactory due to the small size of Slovenian
wine regions [150]. Using Fourier transform ANN, 92.9% accuracy was reported when discriminating
against different PDO of wine analyzed by E-Tongue [151]. Gas chromatography (GC) was used for
classification of six autochthonous white grape varieties by analyzing volatile aroma compounds from
Spanish Galician white wines. Classification capabilities of SVM, RF, MLP-ANN, KNN, and NB were
compared on 42 different wine samples. The results showed 100% classification accuracy by RF when
all family compounds were used, while MLP-ANN was the best classifier when the amount of available
information was reduced [74].

Various machine learning techniques have been investigated for beer quality control. ANN was
employed with 100% accuracy in discriminating between good and bad quality of beer based on
different features such as alcohol and percentage of carbonation [152]. Similarities and differences
in Brazilian Pilsner beers were compared using SOM, and 20 beer brands could be grouped into
6 sets based on the composition of their volatile fractions [153]. Classification of beers based on their
geographical origin using SVM showed 99.3% overall prediction ability in distinguishing between
beers from Germany, Portugal, and Spain [154].

Chemical information found in metal composition of the orujo distillates was used for development
of a system for discrimination between alcoholic distillates with certified brand of origin (CBO) and
those without CBO. In comparison between methods, classification accuracy of PNN exceeds that of
other techniques such as SVM, resulting in classification accuracies of 98.6 ± 3.1% and 98.0 ± 4.5% for
COB and non-COB distillates [155]. Classification of white and rested tequilas was done using SVM on
a sample set consisting of 80 bottles with 39 white and 42 rested types classified into 4 sets of white and
4 sets of rested tequilas for a total of 8 groups. Based on these classifications, 14 adulterated samples
were correctly identified as fake products [156]. Pérez-Caballero et al. [157], reported classification
accuracies of above 94% in differentiating between white, rested, aged, and extra-aged tequilas using
RF and SVM. Making use of the ensemble of MLP, SVM and NB, Rodrigues et al. [158] were able to
classify Brazilian rum by aging time and wood type used during the aging process. By co-averaging
the individual classifiers, accuracies of 100% was achieved for the wood type and 85.7% for aging time.

Classification of raw and processed rhubarb was investigated by Liu et al. [159] by evaluating
metabolomic profile of data generated by LC-QTOF-MS. The study showed that PLS-SVM exhibited
prediction accuracy of 94.7± 7.7%, indicating that this method could be applied for general classification
of processed herbal products. A study for classification of three different Indigowoad root samples
Radix Isatidis (RI), Rhizoma et Radix Baphicacanthis Cusia (RRBC), and simulated adulterated samples
was conducted by Ni et al. [160]. Three pretreatment methods, namely GA-PLS, successive projections
algorithm (SPA), and wavelet transform (WT), were compared for selection of the best wavelength
variables for NIR spectroscopy. The study also compared methods for each of these pretreatment
methods, showing that LS-SVM produced CCRs of 91.0% and 97.2% with GA-PLS and SPA methods,
while for a WT pretreatment method Radial Basis Function Artificial Neural Networks (RBF-ANN)
and KNN produced CCRs of 97.3% and 98.2%. Fourier transform NIR spectroscopy coupled with SVM
was shown to be an excellent technique in classification of cocoa beans. 100% correct classification
was reported by Teye et al. [161] in an experiment designed to classify fermented, unfermented,
and adulterated cocoa beans. SVM also produced results with 91.8% accuracy in classification of
fermented, dried, and unpeeled cocoa beans using Raman spectroscopy [162].

Assuring geographical origin of food is important for both authenticity and quality of products.
Many studies have used machine learning classifiers in assessing geographical origin of food products.
Ion concentrations and pH values were used for verification of geological origin from 145 samples
of bottled mineral water. CP-ANN with supervised learning algorithm was used for prediction of
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mineral water samples based on four lithological classes, including magmatic rocks, metamorphic
rocks, biogenic-chemical sediments, and clastic sediments. Prediction accuracies of 85% and 65%
were reported based on recall ability and leave-one-out cross validation algorithms [163]. Fifty-four
samples of yerba mate beverage from Argentina, Brazil, Paraguay, and Uruguay were analyzed for
trace elements by ICP-OES in an experiment designed to classify the beverage by the country of origin.
100% correct classification for all samples was accomplished using SVM discriminant analysis [164].
100% classification of Cortex moutan root samples from three different provinces was accomplished
by KNN, outperforming LS-SVM and BP-ANN classifiers that produced 94% and 92% prediction
accuracies [165]. Tracing the origin of Marsdenia tenacissima samples was explored in a study conducted
by Li et al. [166]. 27 elements from 128 samples were analyzed with SVM achieving classification
accuracies of 98.9% and 100% for training and testing. Similar accuracy of 97% and 93% was reported
using PLS-DA and 94% and 90% was reported using SVM classifier for determining the geographical
origin of medicinal herbs A. membranaceus and P. albiflora [167].

Table 7 summarizes results from the articles describing chemometric applications along with
statistical parameters used to compare the different methods and applications for the study of
adulteration, geographical origin, and quality evaluation of other food groups.

Table 7. Literature related to the use of chemometrics in classification of other food groups.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Recognition of Chinese
vinegar BPNN, SVM, RF 432

Accuracy: BPNN = 87.74%
SVM = 66.51%

RF = 99.8%
[41]

Differentiation
between arabica and
robusta coffee species

ELM, PLS-DA,
SVM, KNN,

BP-ANN
56

Accuracy:ELM = 100%
PLS-DA = 100%

SVM = 97.5%
KNN = 98.2%

BP-ANN = 97.5%

[73]

Assuring the
authenticity of

northwest Spain white
wine

RF, MLP-ANN 42

Performance:
RF 100% accuracy with full

feature sets
MLP-ANN best when using

reduced feature set

[74]

Authentication of
honey by geographical

origin

LS-SVM, SVM,
BP-ANN 135

BP-ANN
Specificity = 90%

Sensitivity = 90.5%
Accuracy = 90.2%

SVMSpecificity = 85%
Sensitivity = 85.7%
Accuracy = 85.4%

LS-SVM
Specificity = 100%
Sensitivity = 91.3%
Accuracy = 95.1%

[129]

Authentication of
Galician honey MLF-ANN, SIMCA 30

MLF-ANN
Sensitivity = 100%
Specificity = 93.3%

SIMCA:
Sensitivity = 93.3%
Specificity = 100%

[130]
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Table 7. Cont.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Tracing the
geographical origin of

honeys
LDA, SIMCA, SVM 374

LDA:
Sensitivity = 86.4%
Specificity = 82.1%

SIMCA:
Sensitivity = 93.2%
Specificity = 45.2%

SVM:
Sensitivity = 93.2%
Specificity = 87.2%

[131]

Classification of
botanical origin and

adulteration detection
of raw honey

SVM 259 No clear metric [132]

Classification of
Brazilian honey by

region

MLP-ANN, SVM,
RF

57 samples and 42
chemical elements

Accuracy:
MLP-ANN = 82.8%

SVM = 66.3%
RF = 79.3%

[133]

Geographical
classification of

Moroccan and French
honeys

SVM 47 Accuracy:
SVM = 100% [134]

Controlling the
authenticity of organic

coffee

SVM, MLP-ANN,
NB 54

Accuracy:
SVM = 96.3%

MLP-ANN = 96.3%
NB = 98.2%

[135]

Characterization of
Mexican coffee LDA, MLP-ANN 51

MLP-ANN
Prediction ability = 93%

Specificity = 98%
LDA

Prediction ability = 81%
Specificity = 94%

[136]

Classification of
arabica coffee by
genotypic and

geographical origin

RBF-ANN 90

Accuracy:
RBF-ANN

Geographic = 100%
Genotypic = 94.4%

[137]

Geographical
classification of

different genotypes of
arabica coffee

SVM 74 Accuracy:
SVM = 100% [138]

Differentiation of tea
varieties BP-MLP-ANN 90

BP-MLP-ANN:
Sensitivity = 100%
Specificity = 100%

[139]

Classification of
Chinese tea varieties PLS-SOM no clear number

Accuracy:

PLS-SOM = 100%
[140]

Classification of teas ANN 30 Accuracy:
ANN = 100% [141]

Classification of green
teas

RBF-LS-SVM,
LS-SVM 320

Accuracy:
RBF-LS-SVM = 100%

SVM = 82.1%
[142]

Classification of Iron
Buddha tea by storage

period
LS-SVM, BPNN 180

Accuracy:
LS-SVM = 95%
BPNN = 97.5%

[143]
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Table 7. Cont.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

differentiation between
green, oolong, and

black tea
SVM 300

Accuracy:

SVM = 97.8%
[144]

Characterization of
Andalusian wine

vinegars
LDA, SVM 28

Accuracy:

LDA = 73%
SVM = 80%

[145]

Authentication of
Spanish PDO wine

vinegars
SVM 79 Accuracy:

SVM = 92.9 - 100% [146]

Identification of
mature, aromatic, and

rice vinegar
LS-SVM 95 Accuracy:

LS-SVM = 85% -100% [147]

Classification of sherry
vinegar by different

aging times
LS-SVM 57 Accuracy:

LS-SVM = 100% [148]

Classification of
Spanish white wines

by geographical
location

SVM 64 Accuracy:
SVM = 100% [149]

Classification of
Slovenian wines by

geographical regions
CP-ANN 272 Accuracy:

CP-ANN = 82% [150]

Discrimination of
different wine

Denominación de
Origen

ANN 71 Accuracy:
ANN = 92.9% [151]

Classification of beer
quality ANN 70 Accuracy:

ANN = 100% [152]

Classification of beer
brands based on the
composition of their

volatile fractions

SOM 60 SOM successful grouping of
20 brands into 6 sets [153]

Classification of beers
based on their

geographical origin
using

SVM 68 Prediction ability:
SVM = 99.3% [154]

Classification of orujo
distillate alcoholic

samples according to
their certified brand of

origin

PNN, SVM 115

Recognition ability:
CBO distillate
PNN = 98.6%
SVM = 100%

Non CBO distillate
PNN = 98.0%
SVM = 100%

Prediction ability:
CBO distillate
PNN = 87.7%
SVM = 77.9%

Non CBO distillate
PNN = 86.1%
SVM = 71.7%

[155]
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Table 7. Cont.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Classification of white
and rested tequilas SVM 80 Accuracy:

SVM = 100% [156]

Classification to
differentiate white,
rested, aged and

extra-aged tequila

SVM, SVM-RFE 170

Accuracy:
SVM on White tequila = 100%
SVM on Rested tequila = 89%
SVM on Aged tequila = 94%

SVM-RFE = 94%

[157]

Classification of
Brazilian rum by aging

time and wood type
used during the aging

process

MLP, SVM, NB 150

Wood type recognition
accuracy:

MLP = 99.04%
SVM = 99.04%
NB = 97.14%

Ensemble = 100%
Recognition of aging time

accuracy:
MLP = 69.52%
SVM = 78.38%
NB = 68.57%

Ensemble = 85.71%

[158]

Classification of raw
and processed rhubarb PLS-SVM 73 Accuracy:

PLS-SVM = 94.7%± 7.7%, [159]

Classification of three
different Indigowoad

root samples

RBF-ANN,
LS-SVM, KNN 75

Best average correct
classification ratios:
RBF-ANN = 97.3%
LS-SVM = 97.2%

KNN = 98.2%

[160]

Classification of cocoa
beans SVM 132 Accuracy:

SVM = 100% [161]

Classification of
fermented,

unfermented, and
adulterated cocoa

beans

SVM 500 Accuracy:
91.8% [162]

verification of the
geographical origin of

commercially sold
mineral water

CP-ANN 145

Correct prediction rate:
CP-ANN recall ability = 85%
CP-ANN leave-one-out cross

validation = 65%

[163]

Classification of yerba
mate beverage by
country of origin

SVM 54 Accuracy:
SVM = 100% [164]

Classification of Cortex
mouton root samples
from three different

provinces

KNN, LS-SVM,
BP-ANN 77

Accuracy:
KNN = 100%

LS-SVM = 94%
BP-ANN = 92%

[165]

Determining the
geographical origin of

the medicinal plant
Marsdenia tenacissima

SVM 128
Accuracy:

SVM training = 98.9%
SVM testing = 100%

[166]

Determining the
geographical origin of

medicinal herbs
PLS-DA, SVM 85

Accuracy:
A. membranaceus sample

PLS-DA = 97%
SVM = 94%

P. albiflora sample
PLS-DA = 93%

SVM = 90%

[167]
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2.1.8. Critical Issues Found with Non-Linear Classification Models in Food Analysis Studies

Classification studies of food products discussed in this review were performed with varying
degree of success, using several different linear and non-linear methods. The trend that emerged
from the results of these studies is that, in majority of cases, non-linear methods provided better
and faster results, compared to linear methods. Among the non-linear methods that were explored,
such as different types of ANNs (BP-ANN, FF-ANN, CP-ANN, etc.), Kohonen SOM, and SVM,
the SVM classifier has been the most commonly used. The popularity of SVM is inherent in the need
to differentiate between two classes, i.e., a binary classification problem, and SVMs were originally
developed for that specific purpose. Other advantages of SVMs over other techniques include the
ability to select different parameters for kernel functions [168] as well as the capability to handle both
linear and non-linear data [169].

Dataset sample size is one of the biggest issues that arises when using non-linear methods for
classification problems. A sufficiently large set of data points is required to train machine learning
models such as ANNs, SOM, or SVMs. Having a larger number of samples to generate even
bigger datasets for training and testing purposes, would be ideal when using non-linear methods
for classification. Unfortunately, many studies reviewed here did not use large enough datasets for
training of the non-linear algorithms. Rady et al. [170] acknowledged this issue with their own dataset
where ANN did not perform as well as LDA and PLS-DA.

In some cases, accuracy of classification models can greatly be impacted by the time frame over
which the data was collected. As noted by Hu et al. [58], the ability to differentiate between sound
and damaged berries was greatly impacted by the passage of time after the initial mechanical impact.
Variation in samples over a prolonged period of time can cause degradation of the classification
model [131], thus requiring periodic updates and retraining these models.

Unbalanced datasets are a common issue encountered in many real-world applications as well
as instances in which data between classes overlaps, meaning that classes are not linearly separable.
To account for this problem, models can utilize pre-sampling methods [171,172] such as oversampling
minority classes, undersampling majority classes, random oversampling, dynamic sampling [173],
AdaBoost [174], etc.

Sample selection must be considered when designing a classifier. If a dataset contains too much
redundant and irrelevant information, then a classifier algorithm may not produce accurate results.
Feature subset selection is critical when training machine learning classifiers [175]. In food classification,
this technique is especially useful when using trace elements in food to determine geographical origin
of the products such as in the study conducted by Batista et al. [133] where results showed that a subset
of 5 trace elements yielded better results than using all 42 investigated trace elements.

Very few papers have mentioned or made use of a validation procedure, such as testing the
robustness of a model by using external samples or adding some noise to the data. In addition,
most papers did not discuss addition of a misclassification penalty when optimizing classification
performance [176].

2.2. Prediction

Several examples of applications of non-linear models as tools for prediction analysis in
food-related problems have been reported in the literature. Unfortunately, most articles did not
discuss the assumptions for the use of nonlinear models. In general, the authors compared linear
models such as PLS with different types of neural networks (which are inherently non-linear models)
and SVMs in terms of predictive capability and statistical measures for goodness-of-fit. The predictive
capability can be evaluated by the mean squared error (MSE) or the root mean square error (RMSE).
These statistical parameters represent error of prediction and can be derived from the residuals to
check the prediction performance of a specific model. When comparing two models, the one with
lower MSE is considered to be better. In an ideal scenario MSE would be approaching zero. The RMSE
is derived from MSE. It is the standard deviation of the residual. This metrics is a measure of how
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spread out these residuals are. In an ideal case there would be enough data points to create two
independent datasets where one would be used for calibration of the model and the second would
be used for validation. It is possible to calculate two kind of RMSE that came from calibration and
validation datasets. The first one is the root mean square error for cross-validation (RMSECV) and
this validation procedure is known as internal validation. The latter is the root mean square error for
validation/prediction (RMSEP) and it is known as external validation. There are other measures of
predictive capability that some authors have been using such as relative standard deviation (RSD)
of the prediction values, residual predictive deviation (RPD), relative prediction error in percentage
(RE%), relative absolute error (RAE), and root relative absolute error. All these metrics represent
predictive capability of a model.

The statistical measures for goodness-of-fit of a model describes how well it fits a dataset. It can
be represented by different statistical parameters. In this Section, the goodness-of-fit are described
by coefficient of determination (R2), coefficient of correlation (R), and the root mean square error for
calibration dataset (RMSEC). The first metric represents the proportion of the variance in the dependent
variable that is explained from independent variable. The second one measures the strength and the
direction of a linear relationship between two variables. The last one is RMSEC for calibration dataset.
In the below mentioned papers, all these statistical parameters are primarily used for evaluating the
accuracy of measurement in food analysis. Generally, a model with a good prediction ability should
have large R or R2, and small RMSEC, RMSECV, RMSEP, RSD, RPD, RE%, RAE, and root relative
absolute error. Detailed mathematical descriptions for all these metrics can be found in the book
‘Multivariate Calibration’ by Martens et al. [177].

2.2.1. Vegetables

Content of bioactive compounds in food can be used as a method for sorting and grading of
crops. The use of multispectral imaging combined with chemometric methods for determining
content of lycopene and phenolic compounds in intact tomatoes was investigated by Liu et al. [178].
Their findings indicated that the BPNN prediction model is superior to LS-SVM, with R2 of 0.938 and
RPD of 4.6 for lycopene while (R2) of 0.97 and RPD of 9.3 were observed for total phenolics content.

Niu et al. [179] describe a method to determine the quantity of glucose and fructose in lotus root
powder. The optimal model was obtained by LS-SVM, which gave the best result when compared
with other methods like PLSR and BP-ANN. Rady et al. [50] have developed a prediction model for
evaluation of sugar content in potatoes using PLSR. In a separate study, the BP-ANN considerably
improved the prediction performance of color change and moisture distribution in carrot slices during
hot air dehydration when compared with PLS and LS-SVM [180]. All these works described the
method of cross-validation employed, with the leave-one-out being the most common. The description
of training, test, and calibration sets was detailed as well.

On the other hand, several works lacked the information or had very few details about
the cross-validation methods applied and how the training, test, and calibration sets were built.
Some studies applied different regression models [181–186], and although the researchers present
excellent results, the capability of the models to predict new samples is unclear due to lack of
deep discussion about using the data with respect to cross-validation methods, validation process,
and training, test, and calibration split methods employed.

Table 8 summarizes results from the articles describing chemometric applications with statistical
parameters that were discussed for prediction of vegetables.
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Table 8. Literature related to the use of chemometrics in prediction of properties of vegetables.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total)

Statistical
Parameters Ref Num

Predicting the content
of bioactive

compounds in intact
tomato fruit

PLS, LS-SVM,
BP-ANN* 162

RMSEC = 0.112
RMSEP = 0.308

R2
P = 0.965

R2
C = 0.998

RPD = 9.335

[178]

Quantitative analysis
of glucose and fructose

in lotus root powder

PLSR, BP-ANN,
LS-SVM*

Glucose = 76
Fructose = 77

Glucose
RMSEC = 0.107%
RMSEP = 0.115%

rc = 0.9827
rp = 0.9765

RPD = 4.599
Fructose

RMSEC = 0.543%
RMSEP = 0.812%

rc = 0.9243
rp = 0.8286

RPD = 1.785

[179]

Determination of color
change and moisture
distribution in carrot

slices

PLS, LS-SVM,
BP-ANN* 700

RMSEP = 1.482%
R2

P = 0.991
RPD = 11.378

[180]

Determination of
aminocarb and

carbaryl in vegetable
and water samples

LS, PLS*, PCR,
BP-ANN,

RBF-ANN,
PC-RBF-ANN

20

relative prediction
errors (%RPET):

PLS = 5.0
PC-RBF-ANN = 4.8

[181]

Modeling the drying
kinetics of green bell

pepper in a heat pump
BP-ANN

RMSE = 5.5E-05
R2

P = 0.99828 [184]

Chemometric methods
for rapid detection of

sucrose adulteration in
tomato paste

PLS, LS-SVM*,
BP-ANN 50

RMSEP = 0.445%
R2

P = 0.966
RPD = 5.014

[185]

Rapid detection of
Escherichia coli

contamination in
packaged fresh spinach

PCA, BP-ANN* 150
MSE = 0.038

R2
P = 0.97 [186]

* indicates the best model from which statistical parameters are displayed in this table.

2.2.2. Fruits

Several authors have used different non-linear methods to study fruits. Wei et al. [170] and
Li et al. [187] determined sugar content, pH, and firmness of pears by comparison of different linear
and non-linear regression analysis. The comparison was realized in terms of coefficient of correlation,
coefficient of determination, and RMSEP. In both works, LS-SVM was superior to the PLS method in
predicting sugar, pH, and firmness in pears. Das et al. [188] tested three different kernel models to
construct SVM models for calculation of convective heat transfer coefficient to investigate pear drying
performance. The accuracy of the models was checked by RMSE, relative absolute error, and root
relative absolute error. The normalized polynomial kernel performed better than other SVM kernel
models for estimating the convective heat transfer coefficient values.

Several studies used comparisons of linear and non-linear models to quantify quality properties
of different fruits. For instance, Conesa et al. [189], Guo et al. [67,190], Cao et al. [191],
and Malegori et al. [192] used spectroscopy for evaluation of soluble solids and other properties
of fruits. All these studies indicated that non-linear methods produced best quantitative prediction



Molecules 2020, 25, 3025 33 of 55

results. Therefore, spectroscopic techniques in conjunction with non-linear models can be a very useful
and promising alternative to the traditional laboratory techniques for monitoring properties of fruits.
Sanaeifar et al. [193] were able to determine total soluble solids and other quality properties of banana
in different shelf-life stages by application of a low-cost electronic nose with measurement technique.
The dataset was analyzed with linear and non-linear methods to predict these properties.

Firmness is another quality attribute of fruits studied by researchers, where non-linear methods
and linear models have been used. Firmness is related to the maturity of the fruit and can be an indicator
of product’s shelf life, and as such is a key factor for consumers when purchasing fruit in deciding
whether the product is fresh and of high quality. Zhu et al. [194] applied linear and non-linear methods
calibration to establish firmness of peaches using PLS and SVM approaches. In this study, the linear
method with variable selection by competitive adaptive reweighted sampling (CARS) algorithm
showed better results than SVM model. Another work where PLS showed better results than SVM in
determining firmness was conducted by Xue et al. [195] to analyze Chinese pear-leaved crabapple.

Other comparisons of linear and non-linear regression aimed at checking the quality attributes of
fruit, include mechanical properties [196], astringency [197], browning levels [198], total anthocyanin
content [199], antioxidant activity [199], and food additives [200]. Taking into account the lessons
drawn from the above mentioned papers on fruit analysis, all of these studies in followed the good
practice suggested by Marini [201], to start by determining whether linear models give good results and
then switching to non-linear methods to compare the results. Linear and non-linear methods were used
to find the best fit without considering the nature of the data. Some authors such as Niu et al. [179] and
Mariani et al. [202] have discussed the intrinsic non-linearity in the data as well. Niu et al. evaluated
glucose and fructose in lotus root powder based on FT-NIR spectroscopy and concluded that LS-SVM
model is better than linear models because non-linearity in the spectral data or in the chemical nature
of glucose and fructose in lotus root powder was apparent. On the other hand, Xue et al. found that
PLS model is better than SVM for determining firmness in Chinese pear-leaved crabapple for the
first day and the fourth day of the shelf life. However, with the extension of shelf life both linear
and non-linear models did not work anymore. This indicates that glucose and fructose are changing
during fruit ripening process and the dataset is showing this process. Mariani determined soluble
solid content in fruit by NIR and concluded that LS-SVM was able to find the non-linear relationships
between soluble solid content and the NIR data.

Table 9 summarizes results from the articles describing chemometric applications with statistical
parameters that were discussed in regression of fruits.

Table 9. Literature related to the use of chemometrics in prediction of properties of fruit.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

A comparative study
for the quantitative

determination of
soluble solids content

PLS, LS-SVM* 480

rc = 0.9286
rp = 0.9164

RMSEC = 0.2113
RMSEP = 0.2506

[187]

Investigation of Pear
Drying Performance by

Different Methods
SVM 378 RMSEP = 0.3351 [188]

An Electrochemical
Impedance

Spectroscopy System
for Monitoring

Pineapple Waste
Saccharification

PLS, BP-ANN* 200
RMSEP = 1.206

R2
P = 0.970 [189]
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Table 9. Cont.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Evaluation of chemical
components and

properties of the jujube
fruit

PCA, LDA,
LS-SVM*, BP-ANN 97

rc = 0.910
RMSEC = 0.10

rp = 0.904
RMSEP = 0.26

[67]

Determination of
soluble solids content

of ‘Fuji’ apple
ICA-SVM 160 rp = 0.9455

RMSEP(%) = 0.3691 [190]

Soluble solids content
and pH prediction and

varieties
discrimination of

grapes

Genetic Algorithm
(GA) 439

Prediction rate = 96.58%
R2

P = 0.9781 [191]

Evaluation of acerola
fruit quality, PLS, SVM* 117

RMSEP = 0.16
R2

P = 0.72
RMSEC = 0.11

R2
C = 0.78

[192]

Prediction of banana
quality properties PLS, MLR, SVR* #

RMSEP = 0.1523
R2

P = 0.7607
RMSEC = 0.0722

R2
C = 0.9518

[193]

Study on the
quantitative

measurement of
firmness distribution

maps at the pixel level
inside peach pulp

PLSR 200 RMSEP = 5.176
RMSEC = 4.465 [194]

Study of Malus
Asiatica Nakai’s
firmness during

different shelf lives

PLS*, PCR,
LS-SVM 240 RMSEP = 0.5856

rp = 0.7494 [195]

Prediction of
mechanical properties

of blueberry
SNV 429

rp = 0.91
rc = 0.91

RMSEP = 0.0325
RMSEC = 0.0482

[196]

Prediction of the level
of astringency in

persimmon

PLSR*, SVM,
LS-SVM 130 R2

P = 0.904
RMSEP = 0.705

[197]

Rapid detection of
browning levels of

lychee pericarp

PLSR, BP-ANN,
RBF-SV* 360

RMSEP (%) = 0.83%
R2

P = 0.948
RMSEC (%) = 0.80%

R2
C = 0.946

[198]

chemometrics for
predicting total

anthocyanin content
and antioxidant

activity of mulberry
fruit

PLSR, LS-SVM* 180

R2
P = 0.995

RPD = 14.255
RMSEC = 0.049

RMSECV = 0.159

[199]

The prediction of food
additives in the fruit

juice

SVM, RF*, ELM*,
PLSR 120

RF:
RMSEP = 0.3377

R2
P = 0.9105

RMSEC = 0.2727
R2

C = 0.9246
ELM:

RMSEP = 0.1358
R2

P = 0.9141
RMSEC = 0.1776

R2
C = 0.9783

[200]

* indicates the best model from which statistical parameters are displayed in this table.
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2.2.3. Grains

Grains are important sources of many nutrients, including fiber, B vitamins (thiamin,
riboflavin, niacin, and folate), carbohydrates, protein, and minerals (iron, magnesium and selenium).
Peng et al. [203] compared linear and non-linear methods, in terms of RMSEP, to build models with
NIR spectra of corn to determine moisture, oil, protein, and starch contents. In this work, the authors
used the linear PLS method and a non-linear method called ELM. They proposed an extension of
ELM algorithm by linear and nonlinear functions to describe the regression relationship between
concentrations of these substance and NIR spectra. The results showed that non-linear methods
outperform the linear method. Other authors used non-linear methods to study rice [204–207].
Abbasi-Tarighat et al. [204] applied spectrophotometric method to the simultaneous determination of
Mn2+ and Fe3+ in different kinds of food including rice, with data analysis by radial basis function
networks (RBFNs) and FFNNs. The results showed that the proposed method is simple, provides a
wider linear range, and lower RSD%.

Zhang et al. [208] used THz spectroscopy and compared the results obtained by SVM and PLS
models to simultaneously determine amino acid mixtures in cereal using different preprocessing.
In this work, SVM models can be considered as the best method for data preprocessing because results
obtained showed lower RMSECV and RMSEP and higher R2 for majority of amino acids mixtures.
Das et al. [188] compared different linear and non-linear models to monitor changes in sucrose,
reducing sugar, and total sugar content due to water-deficit stress in rice by spectroscopic analysis
using ANN, multivariate adaptive regression splines (MARS), random forest regression (RFR), SVM,
multiple linear regression (MLR), and PLSR. The best results were obtained with non-linear models for
all three of these properties with respect to R2, RMSEC, and RMSEP. The relationship of sugars with
spectral data was better described by non-linear methods, which is consistent with other previous
results in the literature [209,210]. Fu et al. [211] used LS-SVM on data obtained by fourier transform
near infrared (FT-NIR) spectroscopy for the analysis of a toxic additive, maleic acid, in cassava starch.
The findings from this study indicate that these methods allow for rapid evaluation and can be used
for other applications such as untargeted analysis.

Table 10 summarizes results from the articles describing chemometric applications with statistical
parameters that were discussed in the prediction of grains.

Table 10. Literature related to the use of chemometrics in prediction of properties of grains.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Combination of
activation functions in

extreme learning
machines for
multivariate
calibration

CELM 215 RMSEP = 0.2780 [203]

Method to the
simultaneous

determination of
Mn2+and Fe3+infoods,

vegetable and water
sample

RB-ANN*,
BP-ANN 39 R2

P = 0.9997
RMSEP = 0.74

[204]

Prediction of
2-acetyl-1-pyrroline
content in grains of
Thai Jasmine rice

PLS # RMSECV = 0.091
Q2 = 0.8470 [205]
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Table 10. Cont.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Predict components of
starch and protein in

rice
PLS, LS-SVM* 320 (starch)320

(protein)

Starch:
rp = 0.946

RMSEP = 0.198
Protein:

rp = 0.974
RMSEP = 0.071

[206]

Quantitative
monitoring of sucrose,

reducing sugar and
total sugar dynamics
for phenotyping of
water-deficit stress

tolerance in rice

BP-ANN, MLR,
PLS, SVMR* and

others
144 R2

P = 0.99
RMSEP = 2.45

[207]

Simultaneous
determination of

amino acid mixtures in
cereal

PLS, SVM* 32

RMSECV(%) = 0.7303
R2

CV = 0.8618

RMSEP(%) = 0.9018
R2

P = 0.9732

[208]

Optimizing the tuning
parameters of least

squares support vector
machines regression

for NIR spectra

LS-SVM 420
RMSEP = 9.99

R2
P = 0.91 [209]

Screening and
quantification of maleic
acid in cassava starch

LS-SVM 165 RMSECV(%) = 0.208
RMSEP(%) = 0.192 [211]

* indicates the best model from which statistical parameters are displayed in this table.

2.2.4. Protein

Widely varying methods have been proposed and employed for the evaluation of freshness or
incipient spoilage in food that are high in protein. Li et al. [212] used BPNN and SVM to build prediction
models of yolk index with a dataset obtained by electronic nose. The SVM model with reduction of
dataset by independent component analysis (ICA) showed better results than BPNN. Many authors
have studied fish with non-linear methods and instrumental analysis. Papadapoulos et al. [213] have
used BPNN for the determination of chlorinated compounds in fish. Xu et al. [214] have used PLSR
and epsilon-support vector regression to create a technique for rapid and accurate determination of fish
caloric density. In both studies, relatively small datasets used for training and testing could represent a
generalization problem of the techniques. Vis/NIR hyperspectral imaging technique can also be used for
determining freshness of grass carp fish fillets by measurement of total volatile basic nitrogen (TVB-N)
content. LS-SVM model was shown to give better performance than PLS regression with R2 of 0.92 and
0.91 and RMSEP of 2.35% and 2.75% for the two methods, respectively. The method produced even
better results when using SPA to select nine optimal wavelengths achieving R2 of 0.91 and RMSEP of
2.78% [215].

Papadopoulou et al. [216] have used SVM to perform a sensory and microbiological quality assessment
of beef fillets. Clear information was presented with regards to data selection and cross-validation technique,
with some discussion about overfitting. Similarly, Prevolnik et al. [217] have used ANN to predict pork
drip loss from pH and color measurements of near infrared spectra, describing clearly how the set training
and testing sets were selected as well as the method applied for cross-validation.

Table 11 summarizes results from the articles describing chemometric applications with statistical
parameters that were discussed in the prediction of protein.
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Table 11. Literature related to the use of chemometrics in prediction of properties of protein.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Prediction of egg
storage time and yolk

index

BP-ANN,
ICA-SVM* 140

RMSEC = 0.0112
RMSEP = 0.0255

R2
P = 0.9707

R2
C = 0.9730

[212]

Determination of
chlorinated

compounds in fish
BP-ANN 27 RMSEC = 0.0240

RMSEP = 0.0358 [213]

Determination of fish
caloric density

PLSR*,
epsilon-SVR 151

nRMSEC = 7.501%
nRMSEP = 6.871%

nRMSECV = 7.821%
rc = 0.874
rp = 0.908
rcv = 0.862

[214]

Determination of
TVB-N content for

freshness evaluation of
grass carp

LS-SVM*, PLSR 120

RMSEC = 1.987%
RMSEP = 2.346%

RMSECV = 2.2355%
R2

P = 0.916
R2

C = 0.934
R2

CV = 0.921

[215]

Sensory and
microbiological quality

assessment of beef
fillets

SVM 177
Prediction rate = 89%

R2
P = 0.86

R2
C = 0.96

[216]

An attempt to predict
pork drip loss from pH

and colour
measurements or near
infrared spectra using

artificial neural
networks

BP-ANN,
CP-ANN* 312

RMSEC = 2.3%
RMSEP = 2.6%

R2
P = 0.28

R2
C = 0.53

[217]

* indicates the best model from which statistical parameters are displayed in this table.

2.2.5. Oils

Yang et al. [218] analyzed the oil content of rapeseed by applying ANN method on data generated
by NIR. The study showed that multilayer feed-forward neural networks with 8 nodes (MLFN-8) are
the most suitable and reasonable mathematical model to use, with a RMSEP of 0.59. Cabrera and
Prieto [219] used artificial neural networks for the prediction of the antioxidant activity of essential
oils. Results showed that ANN are reliable, fast, and cheap tools for predicting antioxidant activity of
essential oils and can also be used to model biochemical properties of complex natural products and
predict the quality of food ingredients. Sanaeifar et al. [114] used several non-linear models (ANN,
SVM, BN) and the MLR linear model to investigate quality of olive oil during storage. Results showed
that SVM with RBF kernel had the best performance-based correlation coefficient for prediction of
peroxide value, UV absorbance at 232 nm, and chlorophyll. Dong et al. [220] evaluated adulteration of
extra virgin olive oil using Raman spectroscopy data using linear and non-linear models, with Bayesian
framework LS-SVM (Bay-LS-SVM) providing higher accuracy, i.e., good predictive capability and
appropriate goodness of fit.

Zhang et al. [221] studied measurement of aspartic acid by NIR in oilseed rape leaves under
herbicide stress using linear and non-linear methods and concluded that the best model was generated
using SVM. Riahi et al. [222] compared MLR, PLS, polynomial PLS (poly-PLS), and SVM to construct a
quantitative relation between the retention index of some essential oil components and their calculated
molecular descriptors. The results obtained from the data indicated that SVM was best-fitted model.

Table 12 summarizes results from the articles describing chemometric applications with statistical
parameters in prediction of oils.
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Table 12. Literature related to the use of chemometrics in prediction of properties of oils.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total)

Statistical
Parameters Ref Num

Analysis of the Oil
Content BP-ANN 29 RMSEP = 0.59 [218]

Prediction of the
antioxidant activity of

essential oils
BP-ANN 30 Medim relative

error = 3.16% [219]

Quantitative analysis
of adulteration of extra

virgin olive oil
LS-SVM 39

RMSEP = 0.0509
RMSEC = 0.0201

R2
P = 0.9976

R2
C = 0.9996

[220]

Measurement of
aspartic acid in oilseed

rape leaves under
herbicide stress

SPA-LS-SVM 248

RMSEP = 0.0339
RMSEC = 0.0428

R2
P = 0.9962

R2
C = 0.9936

[221]

Investigation of
different linear and

nonlinear chemometric
methods for modeling
of retention index of

essential oil
components

SVM 100

SEC = 1.96%
SEP = 4.95%
R2

P = 0.962
R2

C = 0.987
R2

CV = 0.963

[222]

2.2.6. Dairy

Non-linear methods have been applied to predict many different properties of interest in dairy
products. Bassbasi et al. [223] determined solid non-fat content in raw milk by Attenuated Total
Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) and methods including PLS and SVM.
However, the authors did not discuss the assumptions used for the SVM model, but compared the
R2, RE%, RMSEC, RMSECV, and RMSEP between PLS and SVM models. The non-linear model
showed better results than PLS with RE% between 0.39% and 0.29%, depending on the spectral range.
Wei et al. [224] used SVM and PLS models to evaluate the ability of voltammetric electronic tongue
(VE-tongue) to predict the rheological (viscosity), acidic (pH), and time characteristics in different
periods (fermentation, post-ripeness, and storage stages) of set yogurt in terms of R2 and RSD of
the validation values. Both models efficiently predicted the pH, viscosity, and storage time during
the storage process, but PLS performed better than SVM. Other examples of non-linear regression
compared with PLS as applied to dairy products are provided by Rocha et al. [225], Altieri et al. [226],
and Wu et al. [227], but the authors from all three papers only compared the models by R2, RMSEP,
and RE% and did not discuss dataset non-linearity. On the other hand, Balabin and Smirnov [228]
discussed the non-linearity of data in dairy products and have compared many linear and non-linear
multivariate calibration models for melamine detection in liquid milk, infant formula, milk powder
based on vibrational spectroscopy, NIR, and MIR. The authors concluded that the relationship between
the MIR/NIR spectrum of milk products and melamine content is nonlinear because the non-linear
models presented RMSEP values three times lower than linear models.

Table 13 summarizes results from the articles describing chemometric applications with statistical
parameters that were discussed in prediction of dairy food.
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Table 13. Literature related to the use of chemometrics in prediction of properties of dairy food.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total)

Statistical
Parameters Ref Num

FTIR-ATR determination
of solid non fat (SNF) in

raw milk
PLS, SVM* 56

RMSEP = 0.29
RMSEC = 0.21

R2
P = 0.998

[223]

Monitoring the
fermentation,

post-ripeness and
storage processes ofset

yogurt

PLSR, SVM* 210

RSDC = 0.86%
RSDP = 1.13%

R2
P = 0.9738

R2
C = 0.9895

[224]

Quantification of whey
in fluid milk BP-ANN 30

RMSEP = 2.6639
RMSEC = 0.21

R2
P = 0.9999

R2
C = 0.9935

[225]

On-line measure of
donkey’s milk properties

by near infrared
spectrometry

PLS 178 RMSEP = 0.40
FSPERR = 3.3% [226]

Study on infrared
spectroscopy technique
for fast measurement of
protein content in milk

powder

LS-SVM 410

RMSEP = 0.4115
RMSEC = 0.21

R2
P = 0.981

R2
C = 0.9935

[227]

Melamine detection by
mid- and near-infrared

(MIR/NIR) spectroscopy

PLS, Poly-PLS*,
BP-ANN, LS-SVM 69 RMSEP = 1.3 [228]

* indicates the best model from which statistical parameters are displayed in this table.

2.2.7. Others

Foods classified as “others” are defined in the Section 1.4 of this paper as a set consisting of food
such as beverages, water, spices, etc., that did not fit in the previous six groups. Several papers describe
the application of different methods of linear and non-linear regression models such as PCA, PLS,
SVM, and ANN. Tan et al. [229] have demonstrated the use of an ensemble strategy that employs a
combination of SOM and PLS techniques for NIR spectral calibration. The results of this technique
displayed good accuracy when using data from complex beverage samples. However, no discussion
or comparison was presented as to whether the accuracy of the model could be improved using
non-linear methods.

Ni et al. [181] have developed a procedure for determination of aminocarb and carbaryl in
vegetable and water samples by applying classical least squares (CLS), PLS, PCR, BP-ANN, RBF-ANN,
and PC-RBF-ANN. All these methods were applied for the prediction of the carbamate pesticides in
vegetable and water samples. The results showed that PLS and PC-RBF-ANN calibration models gave
the lowest prediction errors. Wu et al. [230] compared PLS against the non-linear methods BP-ANN
and LS-SVM to evaluate the feasibility of using NIR spectroscopy for determining three antioxidant
activity indices of bamboo leaf extract. Neither paper provided information about the assumptions
chosen to define the training and testing sets.

Ouyang et al. [231] proposed a novel cross-perception multi-sensor data fusion approach to
predict human panel test results. The non-linear methods SVM and BP-ANN achieved R2 > 0.8 for
E-eye, E-nose and E-tongue methods while MLR achieved R2 > 0.8 only for E-tongue
method. Other works [232,233] have detailed the use of linear and non-linear methods in order
to build regression models with excellent results. Nevertheless, these works lack a discussion about
cross-validation techniques for avoiding overfitting of the designed models. Absence of this information
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does not diminish the importance of the results achieved; however, they prevent a more in-depth
analysis of how those models would behave when used on external data.

On the other hand, Liu et al. [234] have presented the results of using LS-SVM to determine
acetic, tartaric, and lactic acids in plum vinegar based on Vis/NIR. In this work, the authors chose
a leave-one-out cross-validation method to avoid overfitting. The work of many others [235–239]
has also presented enough information about training and testing sets, cross-validation methods,
and overfitting considerations, providing good examples for the use of these models.

Table 14 summarizes results from the articles describing chemometric applications with statistical
parameters that were discussed in the prediction of other foods.

Table 14. Literature related to the use of chemometrics in prediction of properties of other food types.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

An ensemble method
based on a

self-organizing map for
near-infrared spectral
calibration of complex

beverage samples

SOMEPLS*, PLS,
KSPLS 218 RMSEP = 3.50 [229]

Determination of
antioxidant activity of

bamboo leaf extract

PLS, MLR*,
BP-ANN, LS-SVM 66

RMSEP = 4.621
rp = 0.966

RMSEC = 3.252
[230]

Instrumental
intelligent test of food

sensory quality

MLR, SVM,
BP-ANN* 75

rc = 0.9392
RMSEC = 1.88

rp = 0.9060
RMSEP = 2.27

[231]

Quantitative
determination of

aflatoxin B1
concentration in

acetonitrile

PLS, PCR, SVM,
PCA-SVM* 160 Prediction accuracy =

93.75% [232]

Application of
successive projections
algorithm for variable
selection to determine
organic acids of plum

vinegar

SPA-LS-SVM*,
MLR, PLS 225 RMSEC = 0.2851

RMSEP = 0.3581 [234]

determination of total
antioxidant capacity
and total phenolic

content of Chinese rice
wine

PLS, SVM* 222

RMSEP = 17.94
R2

P = 0.9529
RMSEC = 16.59

R2
C = 0.9572

[235]

Determination of
effective wavelengths
for discrimination of

fruit vinegars

PLS-DA, LS-SVM* 240

RMSEP = 0.083
R2

P = 0.995
RMSEC = 0.028

R2
C = 0.999

[236]

Investigating the
discrimination

potential of linear and
nonlinear spectral

multivariate
calibrations for

analysis of phenolic
compounds

PLS, PRM,
BP-ANN* 61

RMSEC = 0.34
R2

C = 0.9945
RMSEP = 0.34

R2
P = 0.9811

[237]
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Table 14. Cont.

Sample/Application
Description

Chemometric
Method(s)

Number of
Samples (Total) Statistical Parameters Ref Num

Optimization of NIR
calibration models for
multiple processes in

the sugar industry

SVM*, PLS 1797 RMSEP = 0.084 [238]

Quality grade
discrimination of

Chinese strong aroma
type liquors

Combined
PLS-SVM 108

Prediction accuracy =
92.6%

RMSEC = 0.084
R2

C = 0.990
RMSEP = 0.180

R2
P = 0.953

[239]

* indicates the best model from which statistical parameters are displayed in this table.

2.2.8. Critical Issues Found with Non-Linear Prediction Models to Study Food Analysis

Different nonlinear prediction models have been employed to study food analysis.
Techniques such as SVM, BPNN, RBF-ANN, and others were listed during this study. In general,
the papers analyzed in this review compare nonlinear and linear models through statistical parameters
such as R2, RMSEC, RMSECV, RMSEP, RSD, and RE%. These comparison criteria are the most
common. Another way to do this comparison is by applying statistical significance testing before
making conclusions whether a nonlinear model is better than a linear model. Significance tests show
the level of statistical confidence which indicates whether a difference truly exists between linear
and non-linear methods. Examples of some tests which can be used to compare the two models are
F-test [240], Aikake information criteria (AIC) [241,242], and Bayes information criteria (BIC) [243].
Unfortunately, only few studies in this review have demonstrated the use of a significance test to
determine whether one model is superior over another. Furthermore, some authors performed these
comparisons based on statistical significance testing using small datasets split into calibration (training)
and validation (testing) datasets. This strategy to evaluate the performance of linear and non-linear
methods and the assumption of independence, which is usually required for statistical tests, is not
valid. In these cases, bootstrap methods [244] and/or cross validation procedures [245] are advisable to
build test models before comparing the linear and non-linear models.

Special attention should be given to the comparison between the models made through the R2,
as this metric alone is an inadequate measure of how well linear and non-linear models fit the data.
Nevertheless, R2 is frequently used within the food science literature for the analysis and interpretation
of data fitting. In some cases, a low R2 value may be determined for a good model, or a high R2 value
for a model that does not fit the data. When using the R2 to compare models, supplementation with
other statistical methods such as checking residual plots for random behavior, drawing a graph with
all observations, checking if the dataset has outliers, and considering the subject area knowledge is
required to conclude that one model is better than another [246].

Another critical issue found was the use of insufficient data (training, testing, and validation
sets) when building regression models, which is directly related to a model’s ability of generalization.
As majority of the papers studied for this review did not present any discussion about how a
cross-validation technique was employed, and therefore some models tend to present an overfitting
behavior. In order to avoid the problem of overfitting, some form of validation [247] must be employed,
such as testing the model with a set of data completely independent from the training set, or using an
internal cross-validation approach. Validation processes for the use of non-linear and linear models is
essential in food science because application of these models often needs to be approved by federal
government agencies, such as MAPA, Anvisa, USFDA, and USDA. Thus, the models should be validated
with regards to precision, accuracy, absence of bias, standard error of prediction, prediction interval,
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signal-to-noise ratio, limit of detection, limit of quantification, sensitivity, and selectivity. Most of the
papers used in this review did not discuss such validation.

The final issue is uncertainty estimation in food science. According to De Bièvre [248], a result
without a reliability (uncertainty) statement cannot be trusted. In general, majority of papers in
this review have not described their procedure on how to deal with uncertainty estimation of the
models used. Many papers in the literature [249–251] tackle the issue of uncertainty estimation in linear
and non-linear methods, such as bootstrap and jackknifing analysis [251], which could be applied in
the area of food science.

3. What Changes have Happened between 2008 and 2018 in the Area of Food Analysis That
Facilitate the Application of Non-Linear Methods?

Several changes have occurred during the last decade among the scientific community in the area
of food analysis that facilitate the application of non-linear methods.

• Many instruments used for generating analytical data are equipped with software that performs
chemometric analysis by non-linear methods. While these applications may not be totally
optimized, these software bundles assist in dissemination of the non-linear methods to analysts,
i.e., the people who generate the data.

• Increasingly, studies are being developed with a multidisciplinary team of chemists, biologists,
engineers, and data scientists in the food area. The data scientist, after understanding the problem
that needs be studied and the questions which are required to be answered by the analysts,
can adjust the linear or non-linear models more adequately for extracting useful information from
the data.

• Increasingly, user-friendly software and free code libraries written by data scientists,
mathematicians, and statisticians are available on the internet with algorithms that create non-linear
models. This availability of information enables researchers who are not familiar with computer
programming to use non-linear models and allows a greater number of researchers to apply
non-linear models to their data without the need for a deep knowledge of the algorithms.
Consequently, this increases the dissemination of non-linear methods in various scientific
communities in food analysis.

4. Summary from Classification and Prediction

Through the examination of summary tables from the articles discussed in this review, it is
possible to note that accuracy of ANN models is highly dependent on sample-set size. This can be
seen from the pattern that emerges from a number of studies such as the ones conducted by Rady
and Guyer [50], Palacios-Morillo et al. [55], Liu et al. [76], Liu and He [85], and Marini et al. [83].
The increase in the number of samples, from 255 by Marini et al. [83] to 400 samples Liu et al. [76],
as well as Zheng et al. [73] using around 10 times as many samples than Guo et al. [67] to build their
models resulted in an increased accuracy of ANN models. On the other hand, SVM models showed less
variability in performance accuracy based on the sample set size. Above 90% classification accuracy
rates were reported in experiments conducted by Feng et al. [78], Barbosa et al. [79], and Jia et al. [87],
where dataset sizes were below 100 samples. Identical accuracy was reported by Yang et al. [77],
Wakholi et al. [86], Jia et al. [88], Guo et al. [89], and Ghasemi-Varnamkhasti et al. [90], who built SVM
models with much larger sample sets that ranged from 600 to 3208.

When comparing ANN classifiers with SVM, Zheng et al. [73] had worse performance when
compared to SVM models. However, when the number of samples for the construction of classifier
model was increased, ANN was able to deliver a better performance than SVM [41,114,143].

With respect to linear models, such as AdaBoost–OLDA, LDA, and PLS-DA, it can be observed that for
smaller sample sets in the range of 60–90 samples, linear models perform just as well as non-linear models.
In experiments conducted by Zheng et al. [73], Li et al. [100], and Huang, et al. [101], reported accuracies for
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non-linear classifiers were above 90% and, in a study for determining the geographical origin of medicinal
herbs A. membranaceus and P. albiflora [167], PLS-DA performed even better than SVM.

From the results obtained about models used for prediction analysis in food-related problems
showed in Tables 8–14, it is possible to conclude that non-linear models performed better than linear
ones as it was previously discussed [229,231–238] in Section 2.2.7. However, linear models can achieve
high accuracy when used with a small number of samples. Examples are highlighted in the papers
that discuss PLS [195,197,214] and MLR [230] models.

Accuracy of SVM models is not as highly dependent on sample-set size. However, it is worth
highlighting that the SVM model performed better than the PLS, even with a small number of
samples [208,223,224].

5. Conclusions and Future Perspectives

Non-linear methods are versatile and flexible tools for modelling complex relationships among
complicated datasets obtained from various types of instrumental analysis. These methods have
widely been applied in food analysis for classification and regression studies. Many examples have
been studied over ten years (2008–2018), and their performance compared with traditional methods
showed that non-linear methods are able to achieve results of high quality that, in some cases, are not
obtainable with the traditional methods. Many researchers are increasingly using various non-linear
methods for the construction of models which are more adequate and accurate in solving problems of
regression and classification. This indicates that researchers understand that non-linear phenomena
occur in nature, and the best way to investigate them is through the application of models that capture
this information more adequately.

This review has been able to show ideas about application of non-linear methods that have
become relatively commonplace in food analysis. While this field is still developing, with the growth
of computers in power and speed, new methods and variations are more widely available. A large
variety of websites are offering free downloads and software packages to encourage use of non-linear
methods. The reader is encouraged to ponder the advantages and disadvantages of these methods in
practical applications and to choose the most suitable methods for analysis of their experimental data
in order to extract important patterns, trends, and to understand “what the data say”.
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