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Abstract: While at the organismal level, biological aging can be estimated by telomere length and
DNA methylation signatures, reliable biomarkers that can predict reproductive age are much needed
to gauge the quality of an oocyte. Reproductive medicine and fertility centers often merely quantitate
the ovarian reserve to predict the likelihood of fertilization and pregnancy in women of advanced
reproductive age. It is highly important to address the level of age-related decline in oocyte quality
since it leads to an increased risk of miscarriages and aneuploidy. Conversely, the pathways behind
oocyte aging remain, in large part, elusive. Telomere shortening upon chronic stress exposure
regulates mitochondria function and biogenesis by various pathways; therefore, establishing a link
between these two important players and extrapolating them for the aging of oocytes will be the
purpose of our commentary.

Keywords: oocyte; egg; aging; telomeres; mitochondria; mitochondrial function; telomere shortening;
oxidative stress; ROS

1. Introduction

The burden of reproductive senescence in women on public health is of high impor-
tance. In present-day society, the problem of the age-related decline in female fertility is
highly relevant since the age of first pregnancy has been progressively increasing. This is
compounded by increased mean life expectancy that is not matched by women’s reproduc-
tive lifespan.

Noteworthy, chronic stress is a central player impacting human health and aging and
is linked to the development of many diseases [1,2]. With regards to oocyte aging, a better
understanding of the pathways by which chronic stress affects the oocyte developmental
competence in women of advanced age is important to counteract this process and to
develop novel therapeutic strategies [2].

There are two main hypotheses describing the age-related decline in oocyte quality.
The first hypothesis is related to the physiological selection process of follicular develop-
ment, meaning that the highest-quality oocytes are released from the follicle at a very young
reproductive age. Consequently, those oocytes with diminished quality are ovulated at a
more advanced age, and, therefore, these oocytes are exposed much longer to chronic stress
(Figure 1). Interestingly, in a recent study in mice, researchers found that a reduction in the
number of ovulations during life minimizes the risk of oocyte aneuploidy in advanced-age
mothers [3]. The second hypothesis is related to aging itself, affecting the oocytes that
remain arrested in prophase I before being selected for ovulation [4].
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Figure 1. Scheme showing the pathways and interplay between the endocrine system and the re-
productive system and their potential influence on the oocyte. After the hypothalamic CRH and 
ACTH from the pituitary gland are released, cortisol is secreted by the adrenal cortex. In conse-
quence, there is elevated mitochondrial activity in somatic cells; therefore, reactive oxygen species 
(ROS) are generated. High levels of ROS could cause the oxidation of guanin-rich telomeres in 
women’s oocytes. Cortisol might also affect telomerase activity directly. Further, IGF1, FSH, and LH 
do also influence the development and maturation of ovarian follicles, which indirectly appear to 
influence the aging of oocytes when ovulations are altered. 

2. The Link between Mitochondrial Dysfunction and Telomeres 
A key role in fertility and oocyte quality impairment with aging has been attributed 

to mitochondrial dysfunction [4–7]. Mitochondria play a unique role in the oocyte since 
they provide energy to support transcription and protein synthesis during oocyte matu-
ration and fertilization [7]. Therefore, mitochondrial quality is crucial for the oocyte con-
dition and developmental competence [7]. Chromosome segregation errors, such as tri-
somy of chromosome 23, have been reported to increase as women age [7]. Interestingly, 
mitochondrial dysfunction is one of the key factors responsible for chromosomal segrega-
tion errors during meiosis of mammalian oocytes [7]. Further, mitochondrial dysfunction 
was classified as one of the major hallmarks of aging [8]. Mitochondria and mtDNA are 
highly abundant in mature human oocytes [9], which is necessary to provide enough en-
ergy in the form of ATP to progress from fertilization to the blastocyst [10,11]. Indeed, the 
fate of the embryo is highly dependent on oocyte mitochondria quality since, after fertili-
zation, the paternal mitochondria are degraded [7,11]. Preovulatory age-related mito-
chondrial defects are often associated with changes in mtDNA copy number as well as in 
different mtDNA defects such as mutations and deletions [7,11]. Damages in mtDNA can 

Figure 1. Scheme showing the pathways and interplay between the endocrine system and the
reproductive system and their potential influence on the oocyte. After the hypothalamic CRH and
ACTH from the pituitary gland are released, cortisol is secreted by the adrenal cortex. In consequence,
there is elevated mitochondrial activity in somatic cells; therefore, reactive oxygen species (ROS)
are generated. High levels of ROS could cause the oxidation of guanin-rich telomeres in women’s
oocytes. Cortisol might also affect telomerase activity directly. Further, IGF1, FSH, and LH do also
influence the development and maturation of ovarian follicles, which indirectly appear to influence
the aging of oocytes when ovulations are altered.

2. The Link between Mitochondrial Dysfunction and Telomeres

A key role in fertility and oocyte quality impairment with aging has been attributed to
mitochondrial dysfunction [4–7]. Mitochondria play a unique role in the oocyte since they
provide energy to support transcription and protein synthesis during oocyte maturation
and fertilization [7]. Therefore, mitochondrial quality is crucial for the oocyte condition and
developmental competence [7]. Chromosome segregation errors, such as trisomy of chro-
mosome 23, have been reported to increase as women age [7]. Interestingly, mitochondrial
dysfunction is one of the key factors responsible for chromosomal segregation errors during
meiosis of mammalian oocytes [7]. Further, mitochondrial dysfunction was classified as
one of the major hallmarks of aging [8]. Mitochondria and mtDNA are highly abundant
in mature human oocytes [9], which is necessary to provide enough energy in the form of
ATP to progress from fertilization to the blastocyst [10,11]. Indeed, the fate of the embryo
is highly dependent on oocyte mitochondria quality since, after fertilization, the paternal
mitochondria are degraded [7,11]. Preovulatory age-related mitochondrial defects are often
associated with changes in mtDNA copy number as well as in different mtDNA defects
such as mutations and deletions [7,11]. Damages in mtDNA can occur upon elevated levels
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of reactive oxygen species (ROS) due to oxidant/antioxidant imbalance. Age-related ATP
deficiency, insufficient production of coenzyme Q (CoQ), lower inner membrane poten-
tial, as well as a decline in mitochondria number were all shown to contribute to oocyte
aging [7,11]. Oxidative stress is a very strong biological stimulus, influencing, among
others, the reproductive system and especially the female gamete [12,13]. Telomere attrition
was proposed to be another major contributor to oocyte aging [14]. The “end-replication
problem” and lack of telomerase activity is the main cause of telomere dysfunction in
proliferating somatic cells [15]. More precisely, during cell division, there is an incomplete
replication at the end of linear DNA, leading to telomere shortening. In nondividing cells,
such as oocytes, telomere damage is attributed to oxidative DNA damage of guanine-rich
telomeric repeats upon exposure to ROS, as well as to epigenetic and environmental factors,
diet, or lifestyle [16,17]. In somatic cells, activation of the DNA damage signaling cascade
at shortened or damaged telomeres eventually leads to the activation of apoptotic or/and
cellular senescence programs [18]. To what extent this process is triggered in oocytes re-
quires further elucidation. However, it has been reported that genetically induced telomere
attrition in mice phenocopies reproductive aging in women [16,19].

The first direct link between telomere and mitochondrial dysfunction, which could be
of relevance for the mammalian oocyte, was shown to be mediated via the P53-peroxisome
proliferator-activated receptor-γ coactivator alpha/beta (PGC1a/b) pathway (Figure 2).
DePinho and colleagues [20] observed that telomerase deficiency leads to repression of
mitochondria regulators PGC1a and PGC1b, leading to a decrease in the number of mi-
tochondria and mtDNA. This process is mediated by p53 since the loss of p53 restored
PGC expression and mitochondria homeostasis [20]. Other pathways linking telomere
shortening and mitochondria malfunction are related to SIRT1 activity [2]. The NAD-
SIRT1-PGC-1a axis is initiated by DNA damage signaling such as the one at dysfunctional
telomeres. DNA repair causes the consumption of NAD+ and, therefore, the loss of NAD+-
dependent deacetylase sirtuin 1 (SIRT1) activity, which affects mitochondrial health via
the PGC-1a [21] or PGC-independent pathway [22]. In addition, DNA repair at telomeres
can lead to activation of the mTOR cascade and PGC-1b-dependent mitochondria biogen-
esis (Figure 2). Mitochondria imbalance leads to ROS-mediated DNA damage response
(DDR) [23], creating a feedback loop on telomeres and persistent DNA damage signaling [2].
It is worth mentioning that the presence of the shelterin complex at telomeres protects from
the generation of the DNA damage response (DDR) [2].

Another important link between telomeres and mitochondria is attributed to cortisol
levels. On the one hand, as shown in Figure 1, cortisol is able to provoke increased
metabolic rates and mitochondrial activity, which, in consequence, leads to an elevated
level of ROS [24]. On the other hand, cortisol might impact the oxidative balance directly
via either genomic [25] or nongenomic pathways [26]. It is well known that telomeres
are particularly vulnerable to oxidative damage [27]. Interestingly, it was revealed in a
recent review that there is a negative correlation between markers for oxidative stress
and telomere length [28]. In line with this, ROS has been shown to induce single-strand
breaks (SSBs) at telomeres or could be responsible for replication fork collapse and telomere
loss [29].

Being that telomere biology and mitochondrial function play an important role in
oocyte quality, these parameters were suggested as markers for reproductive potential.
More research was conducted into telomere assessment; however, few studies also ad-
dressed mtDNA. Several studies identified a positive correlation between ovarian function
and mtDNA content along with telomere metabolism in follicular cells. Higher mtDNA con-
tent in cumulus cells resulted in better-quality embryos in IVF procedures [30,31]. Similar
results were obtained for cumulus cells with longer telomeres [32]. Furthermore, telomeres
appeared shorter in granulosa cells from women with premature ovarian insufficiency (POI)
compared with healthy controls [33,34]. Telomerase activity (TA) was also lower in women
with POI [33,34]. Likewise, TA appeared to be a better predictor than telomere length for
pregnancy outcomes in women undergoing IVF who had normal ovarian function [35].
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Due to the difficulty in sampling follicular cells, peripheral blood leukocytes (PBLs) were
proposed to be used as an alternative cell type, which is more suitable for routine measure-
ments. A number of publications identified a positive association of ovarian health with
mtDNA [36,37] and telomere function [34,38] in peripheral blood cells. To date, however,
the results are still controversial [39]. A recent study could not translate data on telomere
length in leukocytes to follicular cells, highlighting different mechanisms for telomere
maintenance in ovary and peripheral tissues [40]. Furthermore, another study could not
confirm the correlation between telomere or mtDNA content and IVF success [41]. This
discrepancy in results could partially arise from using different populations in terms of
age and ovarian health status. Nonetheless, thus far, this controversy in data makes it
challenging and requires more evidence to translate the assessment of telomere length and
mtDNA as ovarian reserve biomarkers to clinics.
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Figure 2. Scheme showing the bilateral crosstalk between telomeres and mitochondria in the ooplasm.
On the one hand, telomere damage lowers mitochondrial biogenesis via the activation of p53,
which, in consequence, negatively influences the PGC-1α and PGC-1β promoters. On the other
hand, mitochondrial dysfunction can result in short and dysfunctional telomeres. TERT stands for
telomerase reverse transcriptase and works as a catalytic subunit of the enzyme telomerase, and
TERC stands for telomerase RNA component.

3. Conclusions

Mitochondria are crucial powerhouses in oocytes. With advancing maternal age, a
concomitant decline in mitochondrial number and quality in oocytes is observed, indicating
that mitochondrial function appears to be a key determinant of oocyte and embryo develop-
mental competence. Excessive and chronic exposure to oxidative stress and reactive oxygen
species, a byproduct of mitochondrial metabolism, is harmful to the chromosomes of the
egg, specifically for guanine-rich telomeric hexamers. This link between mitochondria
and telomeres sparked interest within the reproductive field, but more research, especially
into oocytes, is required to better understand the relevance of these two key hallmarks of
aging for the oocyte. The identification of accessible and noninvasive biomarkers, such as
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potentially telomere and mitochondria markers, would be especially helpful in determining
which therapeutic strategy is adequate for individual patients. Taken together, the purpose
of this commentary was to stimulate new research to elucidate the molecular mechanisms
between telomeres and mitochondria during the aging process of oocytes. Therefore, novel
investigations can contribute to developing new strategies to enhance and prolong the
reproductive life span.
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