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Abstract

Protein recruitment to DNA break sites is an integral part of the DNA damage response (DDR). 

Elucidation of the hierarchy and temporal order with which DNA damage sensors as well as 

repair and signaling factors assemble around chromosome breaks has painted a complex picture 

of tightly regulated macromolecular interactions that build specialized compartments to facilitate 

repair and maintenance of genome integrity. While many of the underlying interactions, e.g. 

between repair factors and damage-induced histone marks, can be explained by lock-and-key 

or induced fit binding models assuming fixed stoichiometries, structurally less well defined 

interactions, such as the highly dynamic multivalent interactions implicated in phase separation, 

also participate in the formation of multi-protein assemblies in response to genotoxic stress. 

Although much remains to be learned about these types of cooperative and highly dynamic 

interactions and their functional roles, the rapidly growing interest in material properties of 

biomolecular condensates and in concepts from polymer chemistry and soft matter physics to 

understand biological processes at different scales holds great promises. Here, we discuss nuclear 

condensates in the context of genome integrity maintenance, highlighting the cooperative potential 

between clustered stoichiometric binding and phase separation. Rather than viewing them as 

opposing scenarios, their combined effects can balance structural specificity with favorable 

physicochemical properties relevant for the regulation and function of multilayered nuclear 

condensates.
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1 Introduction

According to Richard Dawkins’ ‘The Blind Watchmaker: Why the Evidence of Evolution 

Reveals a Universe without Design’, “biology is the study of complicated things that give 

the appearance of having been designed for a purpose”, whereas “physics is the study of 

simple things that do not tempt us to invoke design” [1]. Oil droplets in water, from this 

perspective, could be considered simple things, with no sign of design. Living cells, on the 

other hand, with their intricate architecture and organizational complexity, are complicated 

things. As tiny high-precision machines, cells use energy to exert spatio-temporal control 

over the numerous biochemical reactions that take place every millisecond inside the 

intracellular space. Compartmentalization is key to such spatio-temporal control, and recent 

years have seen resurging interest in the biological, chemical and physical principles that 

govern cellular compartmentalization [2–5].

The cell nucleus is the biggest cellular compartment, a membrane-enclosed organelle 

and home of the chromosomes and the embedded genetic code. It comprises various 

layers of organizational complexity to maintain genome structure and function, including 

chromatin loops and higher-order chromatin architecture, but also a large number of 

chromatin-associated and non-associated nuclear proteins and protein complexes, which 

can form biomolecular condensates and thereby subdivide the nuclear space. Biomolecular 

condensates can be generally defined as intracellular compartments that lack surrounding 

membranes but function to concentrate biological molecules, and the term was chosen 

in part because it provides a link to concepts from condensed matter physics [5]. Such 

assemblies, despite the absence of a lipid membrane, can be considered physical entities, in 

which certain molecules are enriched, while others are excluded. Biomolecular condensates 

can form by different means and have different material properties, ranging from highly 

dynamic liquid droplets to dense and sometimes irreversible aggregates [6–8]. They can 

form through stoichiometric binding of molecules to one another, e.g. with the chromatin 

scaffold and histone modifications serving as binding site clusters for cooperative or non

cooperative protein binding, or, at the other end of the spectrum, by thermodynamically

driven liquid-liquid phase separation (LLPS). Lava lamps and vinaigrettes (‘simple things’) 

have served as popular examples for liquid demixing and to illustrate behavioral features 

of coexisting liquid phases. But of course, biomolecular condensates in living cells are 

in many aspects far more complex than oil droplets in water or than the ‘lava’ in 

lava lamps. They are composed of hundreds of molecules of different kind that make 

inter- and intra-molecular contacts, often in a highly dynamic manner and employing 

bonds of varying interaction strength. Their compositional control is energy dependent, 

and enzymatic reactions, including post-translational protein modifications, are involved 

in regulating their formation and functions [9]. Structured domains provide high affinity 

interaction surfaces for binding partners, and these interactions can be critical for the 

formation or maintenance of a compartment. Energy dependence does not refute a role for 

local thermodynamics, however, and lock-and-key type interactions involved in clustered 

binding can cooperate with dynamic multivalent weak interactions to form functional 

condensates [10]. Stable protein complexes with fixed stoichiometries represent a minority 

in protein interaction networks, which are instead dominated by weak, nonstoichiometric 
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interactions [11]. On the other extreme, intrinsically disordered proteins that form liquid 

droplets in vitro typically show more complicated behavior in their natural habitat inside 

cells, where homotypic interactions are dominated by various heterotypic interactions that 

involve multiple interaction partners [12]. A lot of biology (‘complicated things’) likely 

happens between the extremes of stable complexes with fixed stoichiometries and purely 

entropy-driven phase separation in idealized few component systems (Fig. 1).

Maintenance of genome integrity depends on local multi-protein assemblies, e.g. around 

sites of DNA damage, to mark genomic lesions and coordinate DNA repair reactions 

with other vital functions such as transcription and cell cycle progression. Denominating 

DNA repair foci as biomolecular condensates does not serve a purpose on its own, but 

focusing on material properties of these compartments and on the role of disordered 

protein sequences and their highly dynamic multivalent interactions complements classical 

biochemical and structural approaches and can open new areas of research. Here, we focus 

on and discuss connections between cellular mechanisms important for the maintenance 

of genome integrity and phase separation in the nucleus of eukaryotic cells, highlighting 

emerging examples of how protein properties involved in phase separation contribute 

to DNA damage sensing and compartmentalization of lesions, to cell cycle checkpoint 

activation, to the clustering and movement of DNA breaks, to replication initiation and 

replication stress signaling, and to telomere maintenance in cancer. We draw parallels to 

phase separated compartments outside the nucleus and discuss opportunities and future 

perspectives related to a better understanding, based on new conceptual frameworks and 

advancing technologies, of the specific interactions that form condensates and how such 

knowledge may be used to modulate condensate functions and to exploit condensate biology 

therapeutically.

2 Condensate formation by phase separation

Phase separation as principle implicated in the formation of biomolecular condensates 

has been discussed for a wide range of organisms [13] including bacteria [14], yeast 

[15], plants [16], animals [17], and also for viruses [18]. Example condensates include 

nucleoli [19–24], Cajal bodies [25–27], histone locus bodies [28], nuclear speckles and 

paraspeckles [29–34], PML nuclear bodies and APBs [35–38], SAM68 nuclear bodies [39], 

chromatin domains [40–51], transcription condensates [52–64], centromeres [65–67], DNA 

replication and repair condensates [68–79], stress granules and P-granules [80–82], and 

virus particles [83–92]. Several of these reside in the cell nucleus [93] and have genome

related functions (Table 1). Although attributing functional roles to phase separation has 

been difficult in some cases and requires further attention and dedicated research efforts, a 

rapidly growing list of cellular processes has been linked to phase separation properties 

and includes ribosome biogenesis and RNA metabolism, protein quality control and 

degradation, signal transduction, response to stress, cell division, endocytosis, autophagy, 

cytoskeleton regulation and cargo transport [94–111]. In the context of these processes, 

phase separation has been implicated in the enhancement or suppression of biochemical 

reactions and regulation of enzyme activities, signal amplification, storage, sequestration and 

molecular buffering, sensing of changes in the environment, control of viscoelasticity and 

viscoadaptation, and exertion of mechanical forces [112–119].
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In the context of equilibrium thermodynamics, a phase can be defined as form of matter, 

which within its boundaries is homogeneous in relevant properties such as chemical 

composition and physical state. As living cells are not at equilibrium, the definition of 

a phase broadens, yet without losing its general meaning or applicability. Accordingly, 

a polymer core is not per se incompatible with multi-layered condensate organization 

through percolation (an example for a cellular compartment with multiple co-existing 

phases being the nucleolus [20]), and local thermodynamic equilibria exist at mesoscopic 

scales despite living cells being out of equilibrium [120–122]. Phase separation and the 

regulation of intracellular condensates by active processes are therefore not mutually 

exclusive mechanisms, and a number of energy-consuming processes, including different 

post-translational modifications (PTMs), have been shown to participate in the spatio

temporal regulation of phase separation [9,117]. The relative abundance of the participating 

molecules determines composition and morphology of condensates [12,60,123], and PTMs 

not only change chemical properties of modified proteins, but are also central to the 

regulation of the abundance and local concentration of proteins and RNA. Although the 

exact nature, or molecular grammar, of interactions that drive phase separation and their 

regulation by PTMs is only starting to emerge, it is important to appreciate that, while they 

are often highly dynamic and may be considered ‘fuzzy’, they are not ‘unspecific’. The 

multivalent interactions that participate in phase separation are sequence-encoded and often 

conserved [124,125], yet they differ from stoichiometric lock-and-key type interactions, 

for which structure-guided exchange of a single amino acid may be sufficient to abrogate 

binding (Fig. 1). This poses inherent difficulties to classic biochemical and cell biological 

approaches, such as the generation of separation-of-function mutants by single amino acid 

exchange, or structure-based design of small molecule inhibitors. However, these challenges 

should not only be seen as a disadvantage, but also as a chance for novel approaches in 

biochemistry and drug development. As the field moves towards a better understanding of 

the dynamic interplay between different types of interactions that contribute to condensate 

formation in different cellular contexts (Table 2), the easier it will become to modulate 

condensate behavior and tune condensate functions in a targeted manner.

A useful general framework for phase transitions driven by multivalent protein and 

nucleic acid molecules is provided by the ‘stickers and spacers’ model, adapted from 

the field of associative polymers [145,146]. In simplified terms, stickers provide intra- 

or intermolecular attraction between discrete sequence elements and are interspersed by 

spacers, which do not contribute significantly to the attractive interactions that drive 

condensate formation. Of note, stickers can be folded binding domains (e.g. SH2, SH3, 

SUMO, Chromo, Bromo, RRMs), labile structures (e.g. LARKS, low-complexity aromatic

rich kinked segments; RACs, reversible amyloid cores), or short linear motifs and even 

single residues that form attractive condensate-driving interactions [145–153]. Likewise, 

disordered sequence stretches can serve as neutral spacers between motifs that drive phase 

transitions. Intrinsically disordered sequences are thus neither necessary nor sufficient for 

phase separation [154]. Rather than sequence disorder per se, valence and patterning, e.g. 

of aromatic residues in prion-like domains, are important features associated with phase 

separation [129,140, 155]. In multi-component condensates, nodal scaffold molecules that 

are critical for condensate formation can be discriminated from low valency clients, although 
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the distinction, rather than being binary, might be more gradual and also vary depending on 

the cellular context [156]. Nevertheless, identifying driver molecules and driver interactions 

that form biomolecular condensates and elucidating their context-dependent regulation is 

among the key challenges in this area.

The three intrinsically disordered FET proteins, Fused in sarcoma (FUS), Ewing sarcoma 

breakpoint region 1 (EWSR1/EWS), and TATA box binding protein associated factor 15 

(TAF15), with their aminoterminal prion-like domains and their carboxy-terminal RNA

binding motifs and RG/RGG-repeats, play a prominent role as drivers of phase separation. 

The FET proteins are abundant nucleic acid binding proteins, which bind to thousands 

of transcripts and affect multiple steps in mRNA biogenesis [157]. They can be seen 

as prototype intrinsically disordered proteins (IDPs), and their low complexity domains 

serve as translocation partners for DNA-binding domains of various transcription factors in 

several different cancers [2]. Point mutations, on the other hand, cause neurodegenerative 

diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia 

(FTLD) [2]. As prototype IDPs with high medical relevance, their self-assembly features 

have attracted significant attention in recent years. Dissecting the molecular grammar of 

FET protein phase separation revealed that multivalent interactions among tyrosine residues 

from prion-like domains and arginine residues from RNA-binding domains and RG/RGG

repeats are critical [125]. Interestingly, when minimalist polymers of the positively charged 

amino acids arginine or lysine were investigated together with mono- or polynucleotides, 

poly-arginine condensates exhibited 100-fold higher viscosity as compared to poly-lysine 

droplets, and arginine outcompeted lysine for anionic binding, resulting in condensate 

immiscibility and inversion [135]. Consistently, lysine cannot substitute for arginine in the 

context of nuclear speckle condensation by intrinsically disordered mixed-charge domains, 

underpinning the specificity of interactions involved in condensate properties [30]. These 

results suggest that arginine motifs with their guanidium groups that enable simultaneous 

formation of charge-charge, π-π, and cation-π contacts play particularly important roles 

as stickers that drive condensate formation and govern their viscoelastic properties. On the 

other hand, such themes cannot be overly generalized, as sequence determinants of phase 

separation, both at the level of participating proteins and at the level of participating nucleic 

acids, are condensate type and context dependent. RNAs, for instance, not only act as 

molecular seeds that trigger protein phase separation, but based on their properties, such as 

abundance, sequence, length, secondary structures, and covalent modifications, also directly 

tune biophysical features of phase separated condensates, including size and shape, viscosity 

and surface tension, and molecular composition [31,60,81,158–161]. Such features can 

change over time and can result in what is typically referred to as ‘aging’ of phase-separated 

compartments towards increased condensate viscosity, enabling dynamic and sometimes 

adaptable transitions from liquid to gel and to solid [21,81,158,162–164]. While condensate 

solidification and protein aggregation may be more difficult (although not impossible) to 

reverse and are often associated with disease [165,166], a rather broad spectrum of (mixed) 

material property states is used in biological systems under physiological conditions and 

in response to cell stress. Within this broad spectrum, low complexity domains can even 

form labile, reversible cross-β polymer cores inside liquid droplets and reversible hydrogels 
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[167,168]. The formation of these labile amyloid-like fibers is regulated by PTMs and may 

thereby respond to changing cellular conditions, including cell stress.

A particularly dangerous type of stress occurs in the nucleus when cells experience 

replication stress or DNA damage, and emerging evidence supports that replication stress 

and DNA damage responses not only involve stoichiometric high affinity interactions 

at sites of DNA damage and among signaling molecules, but also make use of phase 

separation properties of proteins, nucleic acids, and of the DNA damage-induced polymer 

poly(ADP-ribose) (PAR) for spatio-temporal and physico-chemical control of genome 

integrity maintenance.

3 Phase separation and maintenance of genome integrity

3.1 DNA damage sensing and PAR formation

Among the first cellular responses to DNA damage is the synthesis of PAR by enzymes 

of the PARP family [169,170]. PAR formation occurs locally at sites of DNA damage and 

is a transient response due to the antagonizing activity of PARG. Due to two phosphate 

groups per ADP-ribose unit, PAR is a highly negatively charged polymer, which during 

the peak of PAR production recruits a plethora of PAR-binding proteins by multivalent 

electrostatic interactions, including FUS, EWS and TAF15 [171]. While the prion-like 

N-termini of the FET proteins undergo concentration-dependent phase separation and form 

liquid droplets in cells, their positively charged RG/RGG-rich C-termini confer affinity to 

anionic PAR [68,172,173]. Interestingly, polyelectrolyte interactions can lead to ultrahigh 

affinity complexes in which the binding partners retain their structural disorder and highly 

dynamic character [174,175], implying that high affinity binding and structural disorder 

within complexes are not mutually exclusive. Hence, cooperative weak interactions can 

lead to very high binding affinities despite a high degree of conformational flexibility. PAR 

can reach chain lengths of several dozens to hundreds of units and can thereby generate 

a highly anionic environment at sites of PAR synthesis. FUS, on the other hand, with its 

multiple RG/RGG motifs is among the top 5% of proteins in terms of cellular abundance 

and has an estimated nuclear concentration between 4 and 8 μM [69]. The local induction 

of PAR chains nucleates the assembly of FUS both in vitro and in vivo [68,69]. Under 

physiologic conditions, intracellular FUS condensates stay liquid, but liquid to solid phase 

transition and aggregation into fibrous structures occurs for disease-associated mutations 

of FUS [68,69]. FUS-deficient or mutated cells have DSB repair defects and accumulate 

DNA damage, and they are sensitive to ionizing radiation and display chromosomal 

instability [176–180]. As FUS is involved in gene expression and transcription-associated 

processes, some of these effects might be due to altered transcription programs and 

transcription-associated DNA damage. Importantly, however, the PARP1-PAR-FUS system 

was recently reconstituted in vitro and analyzed at the single molecule level by atomic force 

microscopy [70]. This confirmed FUS recruitment to DNA damage through PAR-binding, 

and interestingly also revealed PAR- and FUS-dependent compartmentalization of damaged 

DNA [70]. Although direct in vivo evidence for PAR-dependent tethering of DNA ends by 

alteration of viscoelastic properties is currently missing, PARylation was shown to promote 

DNA repair by end-joining mechanisms that rely on close proximity of broken DNA ends 
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[181,182]. Moreover, phase separation of FUS at DNA damage sites was recently reported 

to be involved in the spatial organization and clustering of DNA damage-induced γH2AX 

nanofoci detected by 3D-SIM (structured illumination microscopy), further strengthening 

the link between DNA damage-induced PAR formation, protein condensation and damage 

clustering [183]. Due to the short-lived nature of PAR and the transient recruitment of 

PAR-binding proteins, the proposed tethering of broken DNA ends might primarily assist 

early events in the DDR (e.g. comparatively fast end-joining reactions), whereas more long

lived modifications and proteins recruitments have the potential to stabilize the damaged 

chromatin domain in a more sustained manner (see below).

The FUS-related proteins EWS and TAF15 show very similar transient recruitment behavior 

and co-assemble into PAR-seeded compartments [68,172,173], and several additional RNA- 

and PAR-binding proteins, including hnRNPs and hnRNP-like proteins, also get transiently 

enriched in PAR-seeded condensates [171,184]. While according to the scaffold and client 

model some of these RNA- and PAR-binding proteins likely play more important roles than 

others for the local demixing that occurs around DNA break sites, it seems reasonable to 

assume that collectively they shape the local environment and its viscoelastic properties. 

One example is the nuclear matrix protein SAFB, which through an R/G-rich region at its 

C-terminus is recruited to sites of DNA damage in a PAR-dependent manner and promotes 

γH2AX spreading and DNA damage signaling [185]. More recently, SAFB was shown to 

phase separate in vitro and its interaction with heterochromatin-associated repeat transcripts 

via its R/G-rich region is required for maintaining interchromosomal interactions adjacent 

to pericentromeric heterochromatin and heterochromatin condensation [186]. In response to 

DNA damage, PAR may thus compete with repeat transcripts such as major satellite RNAs 

for SAFB binding, and it will be interesting to address whether recruitment of SAFB (and 

potentially of other non-coding RNA-binding proteins) to sites of DNA damage is associated 

with compromised heterochromatin architecture.

The transient nature of PAR-seeded condensates may balance such risks, and the FET 

proteins, SAFB and other RNA- and PAR-binding proteins are later released and excluded 

from sites of DNA damage [68,185,187–191]. DNA damage-induced phosphorylation 

regulates this exclusion, and phosphorylation was shown to disrupt FUS phase separation by 

reducing self-interaction [167,192]. The bimodal assembly and exclusion dynamics that are 

observed for FET and FET-like proteins can help to remove nascent RNA and RNA-DNA 

hybrids from DNA break sites to facilitate repair [188,193]. In addition to exclusion from 

the damaged area, phosphorylation by the DDR kinase DNA-PK also promotes nuclear 

export and cytoplasmic accumulation of the FET proteins [194]. Interestingly, in ataxia 

telangiectasia (A-T) cells, which show deficiency in the DDR kinase ATM, neurotoxic 

protein aggregation occurs due to increased levels of reactive oxygen species (ROS) and 

hyperactivation of PARylation [195]. Elevated levels of PAR have also been reported 

for Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD) and 

for amyotrophic lateral sclerosis (ALS), and inhibition of PARylation was shown to be 

beneficial in PD, AD, HD, and ALS disease models [196–201]. Of note, while PAR 

formation is most strongly induced by DNA damage in the nucleus, it is also involved in 

cytoplasmic phase separation and protein condensation into stress granules, with important 

implications for health and disease [202–206]. As PARP inhibitors impact PAR-triggered 
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phase separation and can prevent toxic protein aggregation, their therapeutic value may 

go beyond modulating DNA repair. In the context of DNA damage, the dynamic nature 

and timely dissolution of PAR-seeded condensates facilitates the handover to downstream 

compartmentalization of the damaged area.

3.2 Chromatin topology and the chromatin response to DNA damage

The chromatin response to DNA double-strand breaks (DSBs) has been investigated in 

great detail [207–210]. Around the break sites, multiple DNA damage-induced chromatin 

modifications work together to remodel the chromatin and recruit repair factors. Many of 

the proteins that get recruited to damaged chromatin contain structurally defined chromatin 

reader domains with affinity for specific DNA damage-induced histone marks. An apical 

mark that is induced by DSBs and spreads at megabase scale is the phosphorylation of 

H2AX by ATM to form γH2AX compartments. The formation of these large domains 

depends on cohesin-mediated loop extrusion at DSBs, which results in bidirectional 

spreading of γH2AX within the boundaries of topologically associating domains (TADs) 

marked by CTCF [211]. In yeast, DNA-cohesin clustering resembles bridging-induced 

(polymer-polymer) phase separation, which may stabilize cohesin-CTCF complexes [212], 

and thereby potentially also stabilize the γH2AX domain. Downstream of γH2AX and 

its reader protein MDC1 the large scaffolding protein 53BP1 gets recruited. 53BP1 is a 

multivalent chromatin reader and its recruitment depends on γH2AX, on the abundant 

histone mark H4K20me2 (a mark that discriminates unreplicated from replicated chromatin 

and guides DSB repair pathway choice accordingly), and on DNA damage-induced de 

novo deposition of H2AK15ub [213–216]. 53BP1 binds modified chromatin as a dimer, 

but preformed 53BP1 dimers quickly self-assemble into dynamic higher order oligomers 

upon cooperative H4K20me2 and H2AK15ub binding [217,218]. Consistently, apart from 

H4K20me2 and H2AK15ub binding, also the oligomerization domain of 53BP1 is required 

for 53BP1 assembly into DNA damage-induced foci [219]. Stoichiometric one-to-one 

binding models can therefore explain the initial recruitment of 53BP1 dimers to modified 

nucleosomes, but simplified linear ‘beads on a string’ illustrations fall short of capturing the 

ensuing assembly and maturation of 53BP1 compartments. Of note, there is no dichotomy 

between initial, kinetically controlled, stoichiometric binding, i. e. one 53BP1 dimer per 

nucleosome, and the ensuing, thermodynamically driven nonstoichiometric assembly to 

generate the 53BP1 compartment (Fig. 2). Rather than viewing them as mutually exclusive, 

these mechanisms likely synergize to stabilize the domain and endow it with favorable 

properties.

Indeed, the 53BP1 compartment stabilizes chromatin topology at multiple levels: In 

the sub-micrometer range, 53BP1 forms dynamic nanodomains, which overlap with 

TADs, similar to γH2AX [220–222]. These nanodomains then cluster together to form 

circular microdomains, which provide an environment that favors DSB repair by non

homologous end-joining (NHEJ) and confines limited DNA end resection and homologous 

recombination (HR) factors to its center. 53BP1 compartments, which can also undergo 

fusions to form even larger repair condensates, are thus multi-layered, and multiple types of 

interactions, weak and strong, cooperate in their formation and functionality (Fig. 3).
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This multi-layered organization is disrupted easily, in fact more easily than the upstream 

γH2AX and MDC1 foci, by changes in osmotic pressure, temperature, salt concentration, 

or inhibition of hydrophobic interactions [71]. This is important to keep in mind when 

detergents or methanol are used before or simultaneously with cell fixation, as such 

treatments may disrupt critical interactions. The self-assembly features of 53BP1, which are 

triggered by DNA damage, can be recapitulated in DNA damage-independent optoDroplet 

experiments using the Arabi-dopsis thaliana photoreceptor cryptochrome 2 (Cry2) as 

controllable and reversible optogenetic seed module [71]. On its own, this module does not 

result in light-induced protein clustering, but when fused to protein sequences that can phase 

separate by multivalent interactions, rapid formation of liquid droplets can be observed in 

living cells [71,223]. The C-terminus of 53BP1, which contains the oligomerization domain 

and is particularly rich in amino acids that have been implicated in phase separation, is 

sufficient to promote optoDroplet formation in this system, and the formed condensates are 

highly dynamic, frequently fuse, and once formed remain for several minutes in the absence 

of blue light [71]. When combined with a localized, chromatin-tethered seeding event such 

as endonuclease-mediated DSBs, blue light induction triggers rapid assembly of additional 

53BP1 molecules specifically at these sites. 53BP1 also phase separates in vitro [71,72], 

and 53BP1 foci in irradiated cells display behavior consistent with nucleation, growth and 

coarsening, both when expressed ectopically and also in cells in which the endogenous 

gene locus had been edited to express fluorescently labeled 53BP1 [71,72]. Interestingly, 

DNA damage induced 53BP1 condensates also ‘age’ towards increased viscosity, and their 

formation and properties are modulated by additional macromolecules, including DNA 

damage-induced long non-coding RNAs (dilncRNA) synthesized by RNA Pol II from 

DSBs [72], and by the large 53BP1-interacting scaffolding protein AHNAK [73]. As more 

functions for RNA and RNA-binding proteins as regulators of genome stability are emerging 

[224–226], it will be interesting to elucidate exactly how different RNA species, their 

modifications and their abundance and dynamics around DNA break sites affect DDR 

condensate properties and repair outcomes.

53BP1 condensates also selectively attract clients, including the tumor suppressor p53 [71], 

which itself has phase separation properties and forms nuclear condensates to amplify target 

gene expression [29,227]. Consistently, p53 target gene expression and p21 induction are 

dependent on 53BP1 and can be tuned by 53BP1 regulators, which in turn determines 

cell fate decisions [71,73,228–231]. While structural and biochemical studies suggest that 

dimethylated p53 binds stoichiometrically to the 53BP1 tudor domain [228,232], cellular 

experiments have implicated the oligomerization domain and the BRCT domain of 53BP1 

in p53 activation [71,73,229], raising the possibility that structural diversity and interaction 

multiplicity within a larger conformational space may contribute to full p53 activation.

DNA damage compartments not only form larger repair centers by fusion, but also 

relocalize within the nuclear space [233]. Nuclear actin polymerization, the actin-nucleating 

ARP2/3 complex, and nuclear myosins have been implicated in the directed motion of a 

subset of DSBs into discrete clusters to promote homology-directed repair [234,235]. Cell 

membrane-associated actin assembly by the ARP2/3 complex depends on phase separation 

and stoichiometry-dependent dwell times [236]. Potentially, relocalization of the subset of 

DNA breaks, which are difficult to repair, e.g. due to the chemical nature of the break 
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site itself, due to heterochromatic environment, or due to iterative cutting by an activated 

endonuclease, also depends on dwell times of the actin polymerizing machinery at the 

damaged domain. Thus, how long a DNA break remains unrepaired may work as a timer to 

eventually trigger mobilization of the domain and initiate a different type of repair, e.g. to 

switch from unsuccessful NHEJ attempts to relocalization and repair by HR.

In yeast, the meiotic DNA break machinery assembles by a DNA-driven condensation 

process that shares several features with phase separation [74]. Furthermore, the 

recombination protein Rad52, the functional homolog of the HR factor BRCA2 in 

mammalian cells, accumulates at induced DSBs to form liquid droplets with features 

reminiscent of phase separation [75,76]. Rad52 exhibits a slower diffusion coefficient and 

confined motion inside the condensate, and the diffusion coefficient changes sharply when 

molecules cross the phase boundary [76]. Furthermore, foci fusions result in condensates 

with twice the volume of individual foci, and Rad52 molecules inside fused domains explore 

the entire compartment. Together, these results support that rather than clustered binding, a 

nucleation core and phase separation cooperate to form the repair compartment [76].

Of note, Rad52 condensates nucleate DNA damage-inducible intranuclear microtubule 

filaments (DIMs), which are important for condensate fusions and, upon enrichment of 

tubulin in fused domains, also mediate the mobilization of damaged DNA to the nuclear 

envelope for repair [75]. Functional cooperation between membraneless liquid droplets, 

microtubule filaments, and lipid membranes is an exciting new concept, and the mechanical 

connections between membraneless and membrane-bound compartments, e.g. as can be 

observed for instance for phase separated RNA granules that ‘hitchhike’ on lysosomes 

for long-distance RNA transport in neurons [237], is largely unexplored in the context of 

mammalian DNA repair and maintenance of genome integrity.

3.3 DNA replication and replication stress signaling

DNA replication and DNA replication stress are a major source of DNA damage and 

genome instability in cancer [238], and fine-tuned mechanisms have evolved to coordinate 

the firing of replication origins, replication fork speed, fork stability and repair with cell 

cycle progression and checkpoint signaling [239]. In mammalian cells, replication initiation 

involves licensing of replication origins and formation of the pre-replication complex 

(pre-RC), followed by origin firing in S-phase. While it is understood that replication 

initiation and origin firing are tightly regulated and well coordinated in space and time, 

the dynamic control of interactions involved in forming initiation clusters and replication 

factories in eukaryotic cells remains nebulous. Recent work on replication initiation in 

the fruit fly Drosophila melanogaster revealed that the origin recognition complex (ORC) 

and the initiation factors Cdc6 and Cdt1 contain intrinsically disordered regions that drive 

DNA-nucleated phase separation, which selectively promotes assembly and loading of the 

Mcm2-7 complex of the replicative helicase [77]. Cyclin-CDK-mediated phosphorylation 

disrupts phase separation of these condensates, likely by abolishing electrostatic interactions 

between charged disordered protein sequences and DNA [77]. In mammalian cells, a 

very similar mechanism seems to be in place, because short linear motifs (SLiMs) within 

intrinsically disordered regions of ORC1 and CDC6 drive phosphorylation state-dependent 
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interactions and liquid-liquid phase separation on DNA [78]. Also here, the process is 

neither untargeted nor independent of energy, but rather part of a multi-step initiator 

condensation process.

Downstream of origin licensing and formation of the pre-RC, origin firing during S-phase 

progression is controlled by the cell cycle checkpoint kinase ATR [240]. ATR activation in 

response to replication stress depends on the scaffolding protein TopBP1 and its intrinsically 

disordered ATR activation domain (AAD). Similar to the DSB repair factor 53BP1, TopBP1 

was recently shown to form light-inducible optoDroplets with properties resembling phase 

separation [79]. Intriguingly, TopBP1 optoDroplets not only enriched the ATR kinase, but 

could also be used to reversibly switch ATR signaling on and off, resulting in blue light

controlled activation of the major downstream checkpoint kinase CHK1 and a slowdown of 

replication forks [79]. All these effects were mediated by the disordered AAD of TopBP1 

and were abrogated by mutation of an essential aromatic tryptophan residue. TopBP1 is 

phosphorylated in response to replication stress, and mutation of a phosphorylation site 

in close proximity of the critical tryptophan to alanine reduced TopBP1 condensation and 

ATR signaling, suggesting a positive feedback loop between TopBP1 and ATR in TopBP1 

condensates for signal amplification [79]. Consistent with the multi-step processes and 

multi-layered condensate organization discussed above, the authors propose the formation 

of a nucleation complex (based on stoichiometric interactions, e.g. between RPA and 

ssDNA and ATR-ATRIP, TopBP1 and the 9-1-1 complex), which stabilizes TopBP1 at 

stalled or damaged replication forks, and an ensuing condensation into dynamic higher-order 

assemblies by multivalent cooperative interactions to achieve robust ATR activation and 

signal amplification [79].

3.4 Alternative lengthening of telomeres (ALT)

Certain regions in the genome are particularly fragile, e.g. due to DNA secondary structures, 

repetitive sequence elements, heterochromatic environment, late replication timing, low 

density of replication origins, or a combination of these features [230]. Telomeres at 

chromosome ends fall into this category, and replication stress at telomeres is frequently 

seen in cancer cells. A subset of cancer cells uses alternative lengthening of telomeres (ALT) 

as telomerase-independent mechanism of telomere maintenance and show particularly high 

levels of telomere-associated replication stress [241]. ALT is characterized by telomere 

clustering in ALT-associated PML bodies (APBs) and by recombination-based telomere 

elongation involving break-induced replication (BIR), a noncanonical form of DNA 

synthesis [242]. APB formation is dependent on SUMOylation and on SUMO recognition 

by SUMO interaction motifs (SIMs), and recent work has implicated phase separation 

by SUMO-SIM binding modules in the formation of APBs [37, 38]. Poly(SUMO) and 

poly(SIM) scaffolds, or chemically induced tethering of SIMs at telomeres, drives liquid 

condensation and telomere clustering by coalescence, and induces ALT-like phenotypes such 

as mitotic DNA synthesis (MiDAS) at telomeres, BLM-dependent C-circle formation, and 

heterogeneous telomere length [37,38].

Interestingly, ALT-associated homology-directed repair also depends on carefully controlled 

PAR formation at broken telomeres [243]. PARylation at ALT telomeres assembles various 
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PAR-binding proteins, including the repair factors XRCC1 and LIG3 and the chromatin 

remodelers ALC1 and CHD7, but also the disordered FET proteins FUS, EWS and TAF15, 

several hnRNPs, SAFB1, SATB1, other RNA- and PAR-binding proteins such as RBMX 

and NONO, and the F-actin nucleation complex ARP2/3 [243]. Consistent with a role 

in PAR-triggered phase separation at ALT telomeres, loss of these proteins impairs APB 

formation and telomere clustering [243].

Finally, recent findings have suggested that telomeric BIR in APBs is a self-perpetuating 

process, due to BLM helicase-dependent BLM enrichment and BIR-dependent TRF2 

SUMOylation to sustain SUMOSIM interactions and DNA repair factor recruitment [244]. 

These findings are consistent with the phase separation model of APB assembly, and self

perpetuation of biochemical processes might be a more general feature of biomolecular 

condensates during their respective lifetimes.

4 Opportunities and future perspectives

Investigating spatio-temporal aspects of genome integrity maintenance has been a long

standing endeavor, not least due to the clinical relevance of cellular replication stress and 

DNA damage responses. Resurgent interest in phase separation and its different flavors 

(e.g. liquid-liquid, liquid-gel, liquid-solid, polymer-polymer) has started to broaden the 

focus from stoichiometric binding between structurally defined binding partners towards 

studying multivalent interactions and structurally less well defined complexes. This has also 

spurred new interest in material properties of membraneless compartments and how these 

relate to function. Rather than being seen as mutually exclusive, stoichiometric binding 

between structured domains and multivalent interactions that can drive phase separation 

likely cooperate for condensate formation in the complex environment of the cell nucleus, 

and several intriguing examples related to different aspects of maintenance of genome 

integrity have recently emerged (Fig. 4).

Unlike phase separation in few component systems, the formation of biological condensates 

involved in the maintenance of genome integrity is more complex and typically follows 

a multi-step process, but in this process makes use of phase separation properties of 

some of the key components involved [245]. Studying these properties in vitro, using 

purified proteins, can be revealing (e.g. to identify relevant interactions and important 

sequence features, or to study mixing behavior in well controlled settings), and just like 

the biochemical characterization of an enzymatic activity in a test tube calls for an in vivo 
counterpart to provide context, cellular assays ideally performed at endogenous protein 

concentrations as was done in several cases, provide an important counterpart to phase 

separation experiments with purified components.

Existing technologies are being further developed and new ones are rapidly emerging, 

which can complement and extend classical biochemistry to inform about structure-function 

relationships in the context of biomolecular condensates. These include structure elucidation 

techniques such as solution and solid-state nuclear magnetic resonance spectroscopy 

(NMR, ssNMR), small-angle x-ray scattering (SAXS), cryo-electron microscopy (cryo

EM) and atomic force microscopy (AFM), as well as single molecule fluorescence 
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microscopy (SMFM) techniques including fluorescence fluctuation spectroscopy (FFS) 

and single molecule Förster resonance energy transfer (smFRET). Moreover, in vitro 
turbidity assays, microfluidics and optical tweezers, as well as light-inducible phase 

separation (optoDroplets) to study phase behavior under controlled conditions in living 

cells have emerged as informative techniques. Computational tools for sequence analysis 

and prediction of phase separation potential, for structural modeling, molecular dynamics 

simulations, and to calculate phase diagrams for multicomponent systems have become 

increasingly important, and intravital microscopy (IVM) may be used to examine 

condensates in their native environment [246–255]. As technologies advance and become 

more quantitative, a clearer picture of the relative contribution and functional relevance of 

phase separation properties in different biological contexts, also with regard to alternative 

mechanisms and interaction modes [256–259], is going to emerge. As with any single 

technology, limitations exist and have to be taken into account. For instance, as mentioned 

above, the choice of cell permeabilisation, pre-extraction and fixation has an impact on 

cellular architecture, and weak interactions involved in condensate formation may get 

easily lost. In live cell imaging experiments of endogenously labeled proteins (which, if 

the tag does not interfere with protein functions, is preferable over ectopic expression of 

fluorescently labeled proteins), signal intensity depends on target protein abundance, with 

limiting consequences for exposure times and phototoxicity. The development of particularly 

bright monomeric fluorescent proteins and advanced image segmentation tools using deep 

learning may attenuate some of these limitations in the future. While single cell and 

single molecule techniques provide insight into phenotypic and structural heterogeneity, 

this information is lost when population averages are analyzed. Moreover, microscopy

based approaches such as fluorescence in situ hybridization (FISH) and genomics-based 

approaches such as chromatin conformation capture (3C) techniques do not always yield 

congruent results, and it was suggested that 3C measurements may not always reflect 

spatial proximity [260]. Such limitations need to be taken into account when functions of 

biomolecular condensates are studied in the context of genome stability and organization.

Over the last couple of years the concept of phase separation has revived significant interest 

in and spurred new research on multivalent interactions, disordered protein sequences, 

dynamic protein and nucleic acid complexes and material properties of intracellular 

condensates. In multiple cellular contexts, including the processes involved in DNA 

repair and maintenance of genome integrity, there is mounting experimental support 

for intracellular phase boundaries, coarsening, and differential viscoelastic properties 

of condensates versus the surrounding milieu. At the same time there is experimental 

support for the notion that in nuclear multi-component compartments not all components 

are distributed uniformly and that their assembly resembles a tightly controlled and 

energy-dependent multi-step process, which often starts from a nucleation core. This 

process, however, once initiated, uses self-assembly properties of key components to foster 

percolation.

Working towards identifying and characterizing the specific interactions that are critical for 

the dynamics and for the material properties of intracellular biomolecular condensates may 

offer new opportunities to modulate their functions (Fig. 5). First examples of condensate

specific enrichment of cancer therapeutics have been reported [261,262], and the better 
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we understand the physico-chemical, viscoelastic properties of intracellular condensates 

and the molecular interactions that define them, the more specific the targeting of drugs 

to their relevant sites of action may work. This might be particularly relevant as derailed 

phase separation could well be a unifying theme for the development of a broad spectrum 

of conditions ranging from neurodegeneration to cancer and aging [263–266]. Finally, the 

development of bio-inspired materials such as designer organelles and nanocarriers can 

benefit from a deeper understanding of biomolecular condensates and their varied properties 

[267,268]. Although applying concepts from polymer chemistry and soft matter physics to 

cell biology and, vice versa, using knowledge from biological systems to engineer functional 

biomaterials comes with inherent challenges, the chances and new opportunities prevail.
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Fig. 1. Binding modes.
(A) Stoichiometric, in this case monovalent one-to-one binding, e.g. by lock-and-key or 

induced fit association. (B) Highly dynamic multivalent interactions involved in phase 

separation. Note that in both cases dynamic association and dissociation can occur and, 

importantly, high binding affinities can be reached.
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Fig. 2. Model of 53BP1 condensation at sites of DNA damage.
At the spatial and temporal scales relevant for the DNA damage response, 53BP1 

condensation may be favored both kinetically, through enzymatically-controlled deposition 

of histone marks, and thermodynamically, through self-assembly of 53BP1 into mature 

oligomers to form a denser 53BP1 compartment.
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Fig. 3. Model of 53BP1 nano- and microdomains.
The propensity of 53BP1 to self-interact may play a role for the formation of 53BP1 

nanodomains, for the assembly of multiple nanodomains into bigger microdomains, and for 

the fusion of microdomains into large DNA repair centers. The multi-layered organization of 

these domains enables tuning of DNA end resection and repair pathway choice according to 

replication and chromatin status, cell cycle position, and lesion complexity.
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Fig. 4. Emerging examples of nuclear condensates with phase separation properties and roles in 
maintenance of genome integrity.
(A) Poly(ADP-ribose) (PAR) triggers assembly of multiple intrinsically disordered and 

RNA-binding proteins (RBPs) including FUS/TLS, EWS/EWSR1, TAF15, hnRNPs, 

SAFB1/2 and SLTM and initiates their local demixing at sites of DNA damage, which may 

promote tethering and religation of broken chromosome ends. (B) 53BP1 condensates form 

around DSBs in a manner that requires multivalent chromatin binding and oligomerization 

and is promoted by DNA damage-induced transcription of long noncoding RNAs (ncRNAs). 

53BP1 condensation is linked to activation of p53 signaling, and p53 dynamically co

assembles in 53BP1 condensates. (C) In yeast, the DNA repair protein Rad52 forms 

phase-separated condensates, which concentrate tubulin and project DNA damage-inducible 

intranuclear microtubule filaments (DIMs). DIMs mobilize the liquid Rad52 compartment 

to the nuclear periphery for repair. (D) In mouse and human cells, heterochromatin domains 

get mobilized when they experience DNA damage through FMN2/ARP2/3-mediated actin 

polymerization. Nuclear F-actin and myosin re-localize heterochromatic DSBs to the nuclear 

periphery for repair. (E) For initiation of DNA replication, DNA-dependent phase separation 

of the origin recognition complex (ORC), Cdt1 and Cdc6 facilitates Mcm2-7 loading. (F) 
TopBP1 condensation at DNA replication impediments switches on ATR/CHK1 kinase 

signaling to initiate a replication stress response. (G) Through multivalent polySUMO

polySIM interactions at chromosome ends in cells that use alternative lengthening of 

telomeres (ALT), ALT-associated PML bodies (APBs) form by phase separation for 

telomere clustering and telomere recombination.

Spegg and Altmeyer Page 31

DNA Repair (Amst). Author manuscript; available in PMC 2021 November 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 5. Emerging opportunities for condensate therapeutics.
Condensate properties and functions may be modulated by targeting the molecular drivers of 

condensate formation, or by interfering with the intra- and intermolecular interactions that 

are important for condensate formation and maturation. Conversely, the physico-chemical 

properties of condensates may be exploited to facilitate partitioning of drugs into target 

compartments and enhance their efficacy.
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Table 1
Biomolecular condensates in the nucleus and their main function(s).

Nuclear condensates Main function(s) References

Nucleoli rRNA transcription and ribosome biogenesis [19,20,21,22,23,24]

Cajal bodies Biogenesis and maturation of snRNPs [25,26,27]

Histone locus bodies Processing of histone pre-mRNAs [28]

Nuclear speckles Regulation of pre-mRNA splicing [29,30]

Paraspeckles Protein and (lnc)RNA sequestration, gene regulation [31,32,33,34]

PML nuclear bodies Genome organization, transcriptional regulation, viral defense [35,36]

APBs in ALT cells Telomere clustering and telomere maintenance by ALT [37,38]

SAM68 nuclear bodies RNA metabolism [39]

Chromatin domains Genome organization, gene regulation, X-inactivation [40,41,42,43,44,45,46,47,48,49,50,51]

Transcriptional condensates Transcription initiation and elongation [52,53,54,55,56,57,58,59,60,61,62,63,64]

Centromeres Chromosome segregation during cell division [65,66,67]

DNA repair compartments DNA damage signaling and repair [68,69,70,71,72,73,74,75,76]

Replication condensates Replication initiation, coordination of origin firing [77,78,79]

Listed are membraneless nuclear compartments, which have been linked to protein and nucleic acid phase separation, together with their main 
cellular function(s). Note that condensate formation does not necessarily rely on phase separation alone, and that for some condensates the causal 
relationship between phase separation properties of the involved molecules and cellular condensate function(s) is still debated.
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Table 2
Interactions implicated in (liquid-liquid) phase separation.

Interaction Residues involved References

π-π Phe-Phe; Tyr-Tyr; Phe-Tyr [126,127,128,129,130,131]

Cation-π Tyr-Lys; Phe-Lys; Tyr-Arg; Phe-Arg [131,132]

Charge-charge Asp/Glu-Arg/Lys; Phospho-Arg/Lys [133,134,135,136,137]

Hydrophobic Ala/Ile/Leu/M/Phe/Trp/Tyr/Val- or Pro-rich [138,139,140,141,142,143]

Dipole-Dipole Gly/Gln/Asn/Ser-Gly/Gln/Asn/Ser [143,144]

Listed are interactions implicated in phase separation, together with residues involved. For example, attractive π-stacking between aromatic rings 
(aromatic stacking, π-π interactions), electrostatic (charge-charge) interactions, or dipoledipole associations including hydrogen bonding can 
promote protein assembly by phase separation. Note that multiple types of interactions can cooperate for phase separation, and that besides proteins 
and their indicated residues and sequence motifs also nucleic acids participate in phase separation and provide multivalent binding surfaces.
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