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Abstract: The transcription factor NRF2 (nuclear factor-E2-related factor 2) orchestrates major
cellular defense mechanisms including phase-II detoxification, inflammatory signaling, DNA repair,
and antioxidant response. Recent studies strongly suggest a protective role of NRF2-mediated
gene expression in the suppression of cutaneous photodamage induced by solar UV (ultraviolet)
radiation. The apocarotenoid bixin, a Food and Drug Administration (FDA)-approved natural
food colorant (referred to as ‘annatto’) originates from the seeds of the achiote tree native
to tropical America, consumed by humans since ancient times. Use of achiote preparations
for skin protection against environmental insult and for enhanced wound healing has long
been documented. We have recently reported that (i) bixin is a potent canonical activator of
the NRF2-dependent cytoprotective response in human skin keratinocytes; that (ii) systemic
administration of bixin activates NRF2 with protective effects against solar UV-induced skin damage;
and that (iii) bixin-induced suppression of photodamage is observable in Nrf2+/+ but not in Nrf2−/−

SKH-1 mice confirming the NRF2-dependence of bixin-induced antioxidant and anti-inflammatory
effects. In addition, bixin displays molecular activities as sacrificial antioxidant, excited state quencher,
PPAR (peroxisome proliferator-activated receptor) α/γ agonist, and TLR (Toll-like receptor) 4/NFκB
(nuclear factor kappa-light-chain-enhancer of activated B cells) antagonist, all of which might be
relevant to the enhancement of skin barrier function and environmental stress protection. Potential
skin photoprotection and photochemoprevention benefits provided by topical application or dietary
consumption of this ethno-pharmacologically validated phytochemical originating from the Americas
deserves further preclinical and clinical examination.
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1. Introduction: Solar Radiation, Photodamage, Photoaging, and Skin Photocarcinogenesis

Exposure to solar ultraviolet (UV) radiation is a causative factor in acute skin photodamage,
chronic photoaging, and photocarcinogenesis [1–4]. More recently, a causative role of solar photons in
the visible and infrared spectral range contributing to skin photodamage has been substantiated [5–8].
Moreover, cutaneous exposure to other environmental stressors including combustion pollutants,
heavy metals, metalloids, and ozone has been shown to contribute to skin damage and carcinogenesis.
Remarkably, nonmelanoma skin cancer (NMSC; also referred to as keratinocyte cancers (KC)) is the
most common malignancy in the United States, and skin cancer incidence is increasing rapidly,
presenting a public health burden of considerable magnitude [9]. Even though sunscreen-based
photoprotection is an effective component of a sun-safe strategy to reduce cumulative lifetime exposure
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to UV light, much effort has been directed towards the development of more effective molecular
strategies acting through mechanisms different from (or synergistic with) photon absorption [9–14].

2. NRF2: A Master Regulator of Skin Barrier Function, Cellular Defense Mechanisms against
Environmental Stress, and Solar Radiation Response

The redox-sensitive transcription factor NRF2 (nuclear factor-E2-related factor 2) orchestrates
major cellular defense mechanisms including phase-II detoxification, inflammatory signaling,
DNA repair, and antioxidant response, and recent experimental evidence supports an important role
of NRF2 in skin barrier function. NRF2 has therefore emerged as a promising molecular target for the
pharmacological prevention of human pathologies resulting from exposure to environmental toxicants
including solar UV-induced damage and carcinogenesis [15–18]. Moreover, the potential of NRF2
for modulation of skin chronological and photodamage-associated aging has attracted considerable
attention [9,19,20].

3. NRF2: Molecular Biology and Pharmacological Modulation

NRF2 is ubiquitously expressed in all tissues, including the skin, but its protein levels and
consequently its activity are tightly regulated (Figure 1). Under basal (homeostatic) conditions,
NRF2 resides in the cytosol, where it binds to its negative regulator Kelch-ECH associated protein 1
(KEAP1), a substrate adaptor for a cullin 3-RING box protein 1 (CUL3-RBX1) E3 ubiquitin ligase
complex [21]. Thus, NRF2 is ubiquitylated and degraded by the 26 S proteasome [22]. However,
upon exposure to reactive oxygen species (ROS) or to electrophilic compounds, key sensor cysteine
residues in KEAP1 (cysteine 151 in particular) are chemically modified, causing a conformational
change in KEAP1 that prevents degradation of NRF2, which remains complexed to KEAP1 [23,24].
This allows newly synthesized NRF2 to accumulate and translocate to the nucleus, where it
heterodimerizes with small MAF (musculoaponeurotic fibrosarcoma) proteins and binds to the
antioxidant response elements (AREs) in the regulatory regions of its downstream genes [25].
This mode of canonical NRF2 regulation has been extensively studied in the context of skin protection
and pathogenesis. In addition, other modes of NRF2 regulation, such as the p62-dependent
non-canonical pathway that activates NRF2 in an autophagy-dependent manner [26,27] or the
GSK3-βTrCP (glycogen synthase kinase 3/β-transducin repeat containing protein) degradation
pathway [28,29], have been described. However, the involvement of these other modes of NRF2
regulation in skin barrier function and environmental stress protection remain to be determined.

Many natural chemopreventive compounds that have antioxidant properties exert their
cytoprotective function through NRF2 activation. Classic examples of NRF2 inducers are
sulforaphane (from cruciferous vegetables) [16], curcumin (from Curcuma longa) [30], cinnamaldehyde
(from cinnamon) [31,32], and tanshinones (from Salvia miltiorrhiza) [33], among many others. These
compounds are promiscuous electrophilic molecules that also react with cysteine 151 of KEAP1,
induce NRF2, and confer protection against a number of chemical insults or radiation damage
(including UV) observable in vitro and in vivo [34–36]. Recently, a synthetic triterpenoid NRF2
modulator and bardoxolone-derivative, RTA 408, has been tested for topical NRF2 activation in rat,
murine, and human skin [37,38], but limited data on skin protection properties are available. Taken
together, a significant opportunity for the development of cutaneous NRF2-dependent skin protection
strategies using nutrient-derived molecular entities remains to be explored.
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Figure 1. The nuclear factor-E2-related factor 2 (NRF2) pathway with a focus on skin barrier function 
and environmental stress protection. The transcription factor NRF2 binds to Kelch-ECH associated 
protein 1 (KEAP1), the substrate adaptor protein for the cullin 3-RING box protein 1 (CUL3-RBX1) E3 
ubiquitin ligase complex. Under basal conditions, NRF2 is ubiquitylated and degraded by the 26S 
proteasome. Upon modification of reactive cysteines in KEAP1 by reactive oxygen species (ROS) and 
electrophiles (including bixin), NRF2 is no longer ubiquitylated. This allows for newly synthesized 
NRF2 to accumulate, translocate to the nucleus, and activate the transcription of antioxidant 
response element (ARE)-containing target genes by dimerizing with small MAF (sMAF) proteins. 
Select skin-relevant NRF2 target genes are displayed according to the cellular function they perform. 
GPXs, glutathione peroxidases; PRDXs, peroxiredoxins; SRXN1, sulfiredoxin 1; TXN, thioredoxin; 
TXNR1, thioredoxin reductase 1; GCLC, glutamate cysteine ligase, catalytic subunit; GCLM, 
glutamate cysteine ligase, modifier subunit; SLC7A11, glutamate/cystine antiporter (xCT); AKRs, 
aldoketoreductases; NQO1, NAD(P)H:quinone oxidoreductase 1; GSTs, glutathione S-transferases; 
ABCs, ATP-binding cassette family proteins; MRPs, multidrug resistance-associated proteins; LCEs, 
late cornified envelope family members; KRTs, keratins; SPRR, small proline rich proteins; OGG1, 
8-oxo-guanine glycosylase; TP53BP1, p53 binding protein 1; RAD51, DNA repair protein RAD51 
homolog 1; ME1, malic enzyme; IDH1, isocitrate dehydrogenase 1; G6PDH, glucose-6-phosphate 
dehydrogenase; COX2, cytochrome c oxidase subunit 2; PSM, proteasome subunit proteins; 
SQSTM1, sequestosome 1 (p62); ATG5, autophagy-related gene 5; NOTCH1, Notch homolog 1, 
translocation-associated; EPGN, epigen; IGF, insulin-like growth factor; VEGF, vascular endothelial 
growth factor; FGF, fibroblast growth factor; BCL2, B cell lymphoma 2; CDKN1A, cyclin dependent 
kinase inhibitor 1A (p21); MiR, microRNAs. 

4. NRF2 Control of Skin Barrier Structure and Function 

Recently, it has been shown that numerous genes encoding skin barrier structural and 
functional components are under NRF2 transcriptional control, including late cornified envelope 1 
(LCE1) family members (LCE1B, LCE1C, LCE1E, LCE1G, LCE1H, LCE1M), keratins (KRT6A, KRT16, 
KRT17), small proline rich proteins (SPRR2D, SPRR2H), secretory leukocyte protease inhibitor 
(SLPI), and the EGF family member epigen (EPGN), some of which contain a validated ARE [39–43]. 
Moreover, a novel role of NRF2 in skin barrier and desmosome function has been attributed to 
transcriptional control of MiR-encoding genes (MIR29AB1 and MIR29B2C) in keratinocytes, 
substantiating a novel NRF2-miR29-DSC2 (desmocollin-2) axis in control of desmosome function 
and cutaneous homeostasis [44]. In addition, much research has substantiated a role of NRF2 in 
epidermal redox control, stress response regulation, terminal differentiation, and barrier 

Figure 1. The nuclear factor-E2-related factor 2 (NRF2) pathway with a focus on skin barrier function
and environmental stress protection. The transcription factor NRF2 binds to Kelch-ECH associated
protein 1 (KEAP1), the substrate adaptor protein for the cullin 3-RING box protein 1 (CUL3-RBX1)
E3 ubiquitin ligase complex. Under basal conditions, NRF2 is ubiquitylated and degraded by the 26S
proteasome. Upon modification of reactive cysteines in KEAP1 by reactive oxygen species (ROS) and
electrophiles (including bixin), NRF2 is no longer ubiquitylated. This allows for newly synthesized
NRF2 to accumulate, translocate to the nucleus, and activate the transcription of antioxidant response
element (ARE)-containing target genes by dimerizing with small MAF (sMAF) proteins. Select
skin-relevant NRF2 target genes are displayed according to the cellular function they perform. GPXs,
glutathione peroxidases; PRDXs, peroxiredoxins; SRXN1, sulfiredoxin 1; TXN, thioredoxin; TXNR1,
thioredoxin reductase 1; GCLC, glutamate cysteine ligase, catalytic subunit; GCLM, glutamate cysteine
ligase, modifier subunit; SLC7A11, glutamate/cystine antiporter (xCT); AKRs, aldoketoreductases;
NQO1, NAD(P)H:quinone oxidoreductase 1; GSTs, glutathione S-transferases; ABCs, ATP-binding
cassette family proteins; MRPs, multidrug resistance-associated proteins; LCEs, late cornified envelope
family members; KRTs, keratins; SPRR, small proline rich proteins; OGG1, 8-oxo-guanine glycosylase;
TP53BP1, p53 binding protein 1; RAD51, DNA repair protein RAD51 homolog 1; ME1, malic enzyme;
IDH1, isocitrate dehydrogenase 1; G6PDH, glucose-6-phosphate dehydrogenase; COX2, cytochrome
c oxidase subunit 2; PSM, proteasome subunit proteins; SQSTM1, sequestosome 1 (p62); ATG5,
autophagy-related gene 5; NOTCH1, Notch homolog 1, translocation-associated; EPGN, epigen; IGF,
insulin-like growth factor; VEGF, vascular endothelial growth factor; FGF, fibroblast growth factor;
BCL2, B cell lymphoma 2; CDKN1A, cyclin dependent kinase inhibitor 1A (p21); MiR, microRNAs.

4. NRF2 Control of Skin Barrier Structure and Function

Recently, it has been shown that numerous genes encoding skin barrier structural and functional
components are under NRF2 transcriptional control, including late cornified envelope 1 (LCE1)
family members (LCE1B, LCE1C, LCE1E, LCE1G, LCE1H, LCE1M), keratins (KRT6A, KRT16, KRT17),
small proline rich proteins (SPRR2D, SPRR2H), secretory leukocyte protease inhibitor (SLPI), and the
EGF family member epigen (EPGN), some of which contain a validated ARE [39–43]. Moreover,
a novel role of NRF2 in skin barrier and desmosome function has been attributed to transcriptional
control of MiR-encoding genes (MIR29AB1 and MIR29B2C) in keratinocytes, substantiating a
novel NRF2-miR29-DSC2 (desmocollin-2) axis in control of desmosome function and cutaneous
homeostasis [44]. In addition, much research has substantiated a role of NRF2 in epidermal redox
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control, stress response regulation, terminal differentiation, and barrier homeostasis, and a crucial role
of NRF2 in the control of a cytoprotective glutathione gradient throughout the epidermis has been
demonstrated [13,35,40,41,45].

Additional functional implications of NRF2 relevant to skin barrier maintenance, repair,
and rejuvenation have recently emerged, including a role in metabolic control and mitochondrial
homeostasis, proteasomal function and autophagy, and stem cell renewal and pluripotency [46–48].

Moreover, abundant functional crosstalk exists between NRF2 and other cutaneous stress
response pathways including AhR (arylhydrocarbon receptor) and NFκB [49–51]. For example,
the co-occurrence of ARE- and xenobiotic response element- (XRE-)sequences in the promoter region
of several AhR-controlled genes (including NQO1 (NAD(P)H quinone oxidoreductase 1) and GST
(glutathione-S-transferase) indicates mechanistic crosstalk between NRF2 and AhR at the gene
expression level [52]. Likewise, direct AhR binding to XREs located in the NRF2 promoter region has
been confirmed by immunoprecipitation analysis, enabling AhR agonists to induce NRF2 expression at
the mRNA and protein levels. It has also been demonstrated that protease-activated receptor-2 (PAR-2),
an important mediator of inflammation and immune responses by serine proteinases, activates NQO1
via NRF2 stabilization in keratinocytes, suggesting that in addition to induction of inflammation,
PAR-2 can play a cytoprotective role that depends on NRF2 [53].

5. NRF2 in Skin Pathology

A substantial body of experimental evidence indicates that NRF2 dysregulation, either due
to insufficient adaptive activation in response to environmental stressors or due to constitutive
hyperactivation as a result of genetic alterations that may also involve KEAP1, has detrimental
effects compromising skin barrier function and stress responses. Seminal research has documented
that constitutive epidermal NRF2 overactivation through permanent genetic deletion of KEAP1-caused
hyperkeratosis in murine skin [54]. It has also been demonstrated that forced constitutive NRF2
overactivation causes chloracne-like skin disease characterized by acanthosis, hyperkeratosis, and cyst
formation in mice [43]. Likewise, oncogenic NRF2 mutations have been detected in squamous
cell carcinomas of the esophagus and skin [55–57]. In contrast to compromised skin structure and
function that may originate from both impaired NRF2 activation as well as forced hyperactivation,
NRF2 activation in healthy skin is transient and subject to extensive feedback regulation and
modulatory crosstalk. Pharmacological modulation of NRF2 in skin aiming at a therapeutic, preventive,
or regenerative benefit must therefore be performed without causing prolonged hyperactivation of the
pathway as has been discussed before [56,58].

Wound healing. Recent research indicates that a glutathione-NRF2-thioredoxin cross-talk enables
keratinocyte survival and wound repair through modulation of inflammation, apoptosis, and oxidative
stress [59]. Importantly, substantial research has identified an essential role of NRF2 in diabetic
wound healing, amenable to therapeutic intervention using small molecule NRF2 activators such as
sulforaphane and cinnamaldehyde [32,60].

Psoriasis. In psoriasis, NRF2 is an important driver of keratinocyte proliferation with
up-regulation of Keratin 6, Keratin 16, and Keratin 17 [61]. However, NRF2-directed intervention in
psoriasis is efficacious since the anti-psoriatic drug monomethylfumarate increases NRF2 levels and
induces aquaporin-3 mRNA and protein expression, important for keratinocyte differentiation [62].

Allergic dermatitis. NRF2 activation has been identified as a key event triggered by common
skin sensitizers known be cysteine-directed electrophiles [63–66]. However, pharmacological NRF2
activation using ginger-derived 6-shogaol has shown efficacy in allergic dermatitis-like skin lesions
through anti-inflammatory redox modulation [67].

Atopic dermatitis. Redox dysregulation is an emerging causative factor contributing to
compromised skin barrier function in atopic dermatitis, and pharmacological intervention targeting
NRF2 has shown promise targeting atopic dermatitis-like skin lesions in 2,4-dinitrochlorobenzene
(DNCB)-sensitized and challenged mice [68,69].
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Melanocytic dysfunction. It is now understood that NRF2 also plays an essential role in
the maintenance of melanocyte responses to environmental stressors. NRF2 has been implicated
in cutaneous pigmentation disorders resulting from redox alterations relevant to vitiligo and
stress-induced and chronological hair greying [70–73]. Interestingly, recent evidence suggests that
NRF2 plays a role in facilitating glutathione-dependent chemoresistance of malignant melanoma
cells [74].

Chronological aging and progeria. Increasing evidence indicates a role of NRF2 in the control of
chronological cellular aging [75–77]. Recently, an unanticipated mechanistic role of NRF2 dysfunction
as a key contributor to premature aging has been proposed in the genetic premature aging disorder
Hutchinson-Gilford progeria syndrome (HGPS), attributed to increased chronic oxidative stress [78,79].
In HGPS, a de novo LMNA (lamin A/C) gene mutation encodes for progerin, a dysfunctional
nuclear architectural protein variant of lamin A lacking 50 amino acids. Progerin formation is
also observed during normal cellular aging, and chronic UVA exposure has been shown to induce
progerin in cultured human dermal fibroblasts [80]. Recent experimental evidence suggests that
progerin sequesters NRF2 and thereby causes its subnuclear mislocalization, resulting in impaired
NRF2 transcriptional activity and consequently increased chronic oxidative stress. Importantly,
reactivation of NRF2 activity in HGPS patient cells reverses progerin-associated nuclear aging defects,
suggesting that progerin-dependent repression of NRF2-mediated antioxidant responses is a key
factor underlying HGPS-type premature aging with potential relevance to chronological aging and
UVA-induced photoaging.

NRF2 in skin photodamage. Recent studies strongly suggest a protective role of NRF2-mediated
gene expression in the suppression of cutaneous photodamage induced by solar UV radiation
(as evidenced by suppression of UV-induced apoptosis and inflammatory signaling), and NRF2
activation has been shown to protect cutaneous keratinocytes and fibroblasts against the cytotoxic
effects of UVA and UVB [16,18,19,31,33,81–88]. Importantly, research performed in SKH-1
mice documents that genetic NRF2 activation protects mice against acute photodamage and
photocarcinogenesis [36,89]. Therefore, pharmacological modulation of NRF2 has now attracted
considerable attention as a novel approach to skin photoprotection, cancer photochemoprevention,
and suppression of skin photoaging [13,33,34,86]. Indeed, protection of primary human keratinocytes
from UVB-induced cell death by novel drug-like NRF2 activators has been reported, a photoprotective
effect attributed in part to NRF2-dependent elevation of cellular glutathione levels [40,87,90].

Our own studies have demonstrated the photoprotective effects of pharmacological NRF2
activation in cultured human skin cells and reconstructed epidermal skin models [13,31,33]. Topical
application of NRF2 inducers, e.g., the synthetic NRF2-activator TBE-31, has shown pronounced
photoprotective and photochemopreventive activity in murine skin, and suppression of solar
UV-induced human skin erythema was achieved by topical application of a standardized broccoli
extract delivering the NRF2 inducer sulforaphane [36]. However, little research has explored
the concept of cutaneous photoprotection and photochemoprevention achievable by systemic
administration of NRF2 inducers [13,91].

6. Systemic Photoprotection by Dietary NRF2 Activators: Focus on the Apocarotenoid Bixin,
an FDA-Approved Food Colorant and Spice Native to Tropical America

The dietary origin of numerous photochemopreventive factors suggests the possibility of
achieving efficient skin delivery through oral systemic administration, an emerging concept referred
to as ‘nutritional’ or ‘systemic photoprotection’ [9]. Indeed, clinical studies document feasibility of
human skin photoprotection by dietary intake of lycopene from processed tomato and flavonoid-rich
cocoa [10,92–94]. In an attempt to test for the first time the feasibility of NRF2-dependent systemic
photoprotection by dietary constituents, we focused our photoprotection studies on the apocarotenoid
bixin (Figures 1 and 2), an FDA-approved natural food colorant from the seeds of the achiote tree
(Bixa orellana) native to tropical America [13,95,96]. A native spice derived from the Americas, annatto
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is an orange-red condiment and food coloring used to impart a yellow or orange color to signature
foods of Latin America and the Caribbean.

Consumed by human populations in the Americas since ancient times, this apocarotenoid,
derived from lycopene through oxidative cleavage, is now used worldwide as a spice, food colorant,
and cosmetic and pharmaceutical ingredient (referred to as ‘annatto’; E160b). Due to its unusual
(linear/noncyclic) chemical structure, the apocarotenoid bixin displays characteristics different from
all other carotenoids. Specifically, bixin is water soluble, does not display provitamin A activity,
and is distinguished by an excellent safety record as well as established systemic bioavailability
and pharmacokinetic profile upon oral administration as documented extensively in mice and
humans [97–99]. Indeed, bixin is now one of the most consumed food colorants in the world
distinguished by a long record of dietary and ethno-pharmacological use [95,96,100]. Chemical
activities of bixin as sacrificial antioxidant, free radical scavenger, and efficient physical quencher
of photoexcited states including singlet oxygen (surpassed only by lycopene) are documented [101].
Topical preparations of annatto extract have been in ethno-pharmacological use showing therapeutic
efficacy for wound healing, mouth ulcers, and other pathologies associated with impaired epithelial
barrier function [100,102]. It is also interesting that translational research documents the efficacy
of bixin-loaded polycaprolactone nanofibers as an innovative delivery system accelerating wound
healing and reducing scar tissue formation in diabetic mice [103]. Moreover, bixin-based systemic
protection against environmental toxicants including methylmercury and carbon tetrachloride has
been documented in vivo [104,105].
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Figure 2. Bixin for improved skin barrier function and photoprotection. Based on pleiotropic
activities including direct chemical and NRF2-dependent antioxidant modulation, cis-bixin and its
physiologically relevant derivatives trans-bixin and nor-bixin enhance skin barrier structure and
function with photoprotective and potentially photochemopreventive efficacy; thioredoxin (TRX),
thioredoxin reductase 1 (TXNRD1).

In prior studies, bixin has demonstrated antigenotoxic and antioxidant cytoprotective activities,
and systemic availability of oral bixin and its demethylated metabolite norbixin has been documented
in rodent studies and healthy human subjects [97,98,106,107]. In long term murine feeding experiments,
supplementation levels up to 5% (w/w food) were well tolerated. Importantly, acceptable daily
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intake (ADI) over a lifetime without an appreciable health risk (http://apps.who.int/food-additives-
contaminants-jecfa-database/search.aspx) surpasses that of any other carotenoid approved as a food
additive [ADI (bixin): 12 mg/kg body weight/day] [108].

7. Bixin for NRF2-Dependent Systemic Skin Photoprotection

Bixin was identified as the result of a screen for diet-derived small molecule NRF2 activators
targeting oxidative stress and redox dysregulation in epithelial cells [13,109]. Using activity guided
fractionation and bio-analytical tools for the quantitative detection of bixin and other small molecule
constituents in annatto extracts, we were able to demonstrate that bixin is the active molecular entity
in annatto total organic extracts responsible for NRF2 activation. Recently, we have reported for
the first time that (i) bixin is a potent activator of the NRF2-dependent cytoprotective response in
cultured human skin keratinocytes; (ii) systemic administration of bixin activates cutaneous NRF2 with
potent protective effects against solar UV-induced skin damage in SKH-1 mice; and (iii) bixin-induced
suppression of photodamage is observable in Nrf2+/+ but not in Nrf2−/− SKH-1 mice confirming
the NRF2-dependence of bixin-based antioxidant and anti-inflammatory cutaneous effects [13].
Based on its unique status as a FDA-approved food additive with an established safety profile and
potent NRF2-inducing activity, we also have investigated and established efficacy of systemic NRF2
activation using intraperitoneal administration of bixin for lung protection against ventilation-induced
oxidative stress [110]. Importantly, dietary carotenoids (including β-carotene, lycopene, lutein,
3,3′-dihydroxyisorenieratene, zeaxanthin, astaxanthin) and their biosynthetic precursor molecules
(such as phytoene) have been under investigation for epithelial chemoprevention and cutaneous
photoprotection before [10,92,111–113], and the systemic photoprotective activity of carotenoids,
displayed only after dietary uptake and cutaneous accumulation, has largely been attributed
to their activity as photon absorbers, sacrificial antioxidants, and excited state/singlet oxygen
quenchers [101,113,114].

Interestingly, it has been shown that astaxanthin and its analogs (such as adonixanthin) activate
NRF2, preventing light-induced ocular photoreceptor degeneration [115]. Moreover, fucoxanthin,
another marine carotenoid from seaweed, has been shown to enhance the level of reduced
glutathione via NRF2 in human keratinocytes [116]. Indeed, prior research has examined the
specific mechanism of NRF2 activation by carotenoids, and oxidative metabolism leading to the
generation of electrophilic unsaturated mono- and dialdehydes (such 10,10′-diapocarotene-10,10′-dial)
has been identified as the mechanistic basis underlying upregulated antioxidant responses [117–119].
The specific structure-activity relationship of NRF2 upregulation by carotenoid-derived electrophilic
metabolites has been explored before, and it is therefore likely that bixin-dependent NRF2 activation
requires similar oxidative transformation to electrophilic intermediates, a subject of ongoing
investigation. However, even though the concept of cutaneous photoprotection achieved by
systemic administration of specific carotenoids and other phytochemicals has been explored in
the past [10,92,111,112,120–122], prior to our own investigations, no research had investigated the
NRF2-dependence of carotenoid-based systemic photoprotection [13]. However, the biological
effects of prolonged cutaneous NRF2 activation as a consequence of oral/systemic delivery of a
pharmacological molecular agent that may also affect NRF2 regulation in non-cutaneous tissue remain
to be elucidated.

8. Other Molecular Targets of Bixin with Relevance to Skin Barrier Function and Protection

Beyond NRF2-directed activities, bixin has been demonstrated to cause specific modulation of
the following molecular targets potentially relevant to skin barrier function and environmental stress
responses (Figure 2).

http://apps.who.int/food-additives-contaminants-jecfa-database/search.aspx
http://apps.who.int/food-additives-contaminants-jecfa-database/search.aspx
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8.1. PPARα and PPARγ

Interestingly, peroxisome proliferator-activated receptors (PPARs) have now been recognized as
important determinants of keratinocyte responses to skin injury regulating skin homeostasis, epithelial
repair, and morphogenesis [123,124]. Specifically, PPARα is a ligand-activated transcription factor that
regulates the expression of genes involved in fatty acid oxidation.

Recently, it has been demonstrated that oral administration of bixin improves obesity-induced
abnormalities of carbohydrate and lipid metabolism in mice, an affect attributed to PPARα activation
confirmed by luciferase reporter assays [125]. Specifically, treatment with bixin- and norbixin-induced
PPARα target gene expression upstream of fatty acid oxidation in PPARα-expressing HepG2
hepatocytes. Likewise, in obese KK-Ay mice, chronic nutritional supplementation using bixin
suppressed the development of hyperlipidemia and hepatic lipid accumulation with improvement
of hyperglycemia, hyperinsulinemia, and hypoadiponectinemia. This effect is consistent with
upregulated mRNA expression levels of adiponectin (ADIPOQ), an adipocyte-derived adipokine with
multiple beneficial effects such as anti-obesity and anti-insulin resistance roles as well as anti-apoptotic,
anti-oxidative, and anti-inflammatory activities in skin [124]. Likewise, experimental evidence suggests
that bixin also enhances adipocyte insulin sensitivity downstream of PPARγ activation [126]. It is
therefore tempting to speculate that the documented beneficial effects of bixin on cutaneous barrier
function and wound healing may be in part attributable to PPARα/γ-directed agonism operative in
addition to NRF2 activation as discussed above. However, the effects of prolonged pharmacological
PPARα- or γ-directed agonism on skin barrier function remain to be explored.

8.2. Thioredoxin/Thioredoxin Reductase

One of the key cellular antioxidant systems is regulated by the selenoproteins thioredoxin
(TRX) and thioredoxin reductase (TXNRD1), which use NADPH as an electron donor to reduce
oxidized substrates. TXNRD1 contains a very reactive selenocysteine in its active site that is prone
to electrophilic or oxidative attack, making it another important sensor of the cellular redox state
in addition to KEAP1 [127]. Thus, electrophilic compounds that typically activate NRF2 by KEAP1
cysteine modifications will also inhibit TXNRD1 [127]. The TRX/TXNRD1 system is essential for
keratinocyte survival, UV protection, and wound healing [59]. Interestingly, one report indicates that
at high (200 µM) concentrations bixin generates ROS, inhibiting both TRX and TXNRD1 with induction
of cell death [128]. This could be due to an exacerbated redox imbalance caused by the inability of
TRX/TXNRD1 to reduce their substrates, such as peroxiredoxins (PRX), as well as de-repression of
proapoptotic proteins, such as apoptosis signaling kinase 1 (ASK1), apoptosis inducing factor (AIF),
and caspase 3. Other important substrates of the TRX/TXNRD1 system are PTEN (phosphatase
and tensin homolog), NF-κB, AP1 (activator protein 1), and p53 (tumor protein 53), with important
implications for regulation of cell survival in response to TRX/TXNRD1 dysruption [129]. Interestingly,
it has been proposed that the TRX/TXNRD1 system might reduce the oxidized cysteine residues in
KEAP1 to restore its functionality [130]. Dual inactivation of these reactive proteins (KEAP1 and
TRX/TXNRD1) could contribute to pronounced NRF2 activation achieved by bixin. However, since
TRX and TXNRD1 are NRF2 target genes, reduced proteins might be restored by de novo synthesis
and GSH synthesis.

8.3. TLR4/NFκB

It has been observed that nutrional bixin attenuates cardiac injury progression through inhibition
of fibrosis, inflammation, and redox dysregulation, cytoprotective effects that were attributed to
Toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB) antagonism in mice [131]. Likewise,
bixin antagonized lipopolysaccharide (LPS)-induced pro-inflammatory cytokine over-expression in
cultured cardiac muscle cells. Given the emerging importance of TLR4 signaling in skin inflammation
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and UV-induced photodamage, it is therefore tempting to speculate that nutritional bixin regimens
may benefit human skin through TLR4 antagonism operative in addition to NRF2 activation [132,133].

9. Conclusions

The promising concept of achieving cutaneous solar protection through dietary intake of NRF2
activators remains largely unexplored, representing an innovative molecular strategy that deserves
further exploration. Building on its excellent safety record as an FDA-approved natural food colorant
and additive, its systemic availability upon oral administration in humans, and ability to activate
NRF2 in skin, dietary consumption of bixin, an ethno-pharmacologically validated phytochemical
originating from the Americas, warrants future preclinical and clinical evaluation for improved skin
barrier function and photoprotection.
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