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Abstract

Focal contacts act as mechanosensors allowing cells to respond to their biomechanical environment. Force transmission
through newly formed contact sites is a highly dynamic process requiring a stable link between the intracellular
cytoskeleton and the extracellular environment. To simultaneously investigate cellular traction forces in several individual
maturing adhesion sites within the same cell, we established a custom-built multiple trap optical tweezers setup. Beads
functionalized with fibronectin or RGD-peptides were placed onto the apical surface of a cell and trapped with a maximum
force of 160 pN. Cells form adhesion contacts around the beads as demonstrated by vinculin accumulation and start to
apply traction forces after 30 seconds. Force transmission was found to strongly depend on bead size, surface density of
integrin ligands and bead location on the cell surface. Highest traction forces were measured for beads positioned on the
leading edge. For mouse embryonic fibroblasts, traction forces acting on single beads are in the range of 80 pN after 5
minutes. If two beads were positioned parallel to the leading edge and with a center-to-center distance less than 10 mm,
traction forces acting on single beads were reduced by 40%. This indicates a spatial and temporal coordination of force
development in closely related adhesion sites. We also used our setup to compare traction forces, retrograde transport
velocities, and migration velocities between two cell lines (mouse melanoma and fibroblasts) and primary chick fibroblasts.
We find that maximal force development differs considerably between the three cell types with the primary cells being the
strongest. In addition, we observe a linear relation between force and retrograde transport velocity: a high retrograde
transport velocity is associated with strong cellular traction forces. In contrast, migration velocity is inversely related to
traction forces and retrograde transport velocity.

Citation: Schwingel M, Bastmeyer M (2013) Force Mapping during the Formation and Maturation of Cell Adhesion Sites with Multiple Optical Tweezers. PLoS
ONE 8(1): e54850. doi:10.1371/journal.pone.0054850

Editor: Friedrich Frischknecht, University of Heidelberg Medical School, Germany

Received August 13, 2012; Accepted December 17, 2012; Published January 25, 2013

Copyright: � 2013 Schwingel, Bastmeyer. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the DFG Research Center for Functional Nanostructures, Karlsruhe, Germany (http://www.cfn.kit.edu/). The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: bastmeyer@kit.edu

Introduction

Cells exert forces onto their growth substrate during spreading

and migration by forming adhesive contacts that connect the

cellular cytoskeleton with the surrounding extracellular matrix

(ECM). Force sensing and transmission is a vital process and has

various effects on cell morphology, motility, proliferation and

physiology [1,2,3]. The ability of adhesive cells to spread and

migrate on a 2D or 3D substrate comes with the requirement to

establish cell-matrix contacts that are stable enough to withstand

traction forces but also dynamic enough to allow migration [4,5,6].

The connection between the intra- and extracellular domain is

mediated by membrane-spanning integrins that directly connect to

the extracellular ligands [7]. Within the large family of integrin

receptors, a variety of ligands is found, such as fibronectin,

vitronectin and collagen. Fibronectin is a dimeric protein

composed of two identical 250 kDa strands connected via disulfide

bonds at the C-terminus with each strand offering several motifs

recognized as binding sites by the integrin family [8]. The shortest

amino acid sequence known to be recognized as an adhesion motif

is the RGD (Arginine-Glycine-Aspartic Acid) sequence located in

FN repeat III10 serving as a binding site for a5b1, a8b1, aIIbb3 and

all av integrins [9,10].

Integrin accumulation occurs in response to chemical and

mechanical cues in their environment. Their interaction with the

ECM leads to signaling cascades which eventually result in the

accumulation of intracellular proteins into the cell-matrix contact

sites resulting in the constitution and reinforcement of early

adhesion sites [11]. Hereby a plaque of proteins is build at the

adhesion sites and forms a direct link between the actin

cytoskeleton and the ECM [12]. This link is vital to allow force

transmission which is required for cell spreading and migration

[13]. This is further exemplified by the finding that newly formed

adhesion sides are not stabilized and disappear when the cell does

not sense a sufficient counterforce provided by the environment

[1,13,14,15,16,17]. For integrin-mediated cell adhesion sites, it

was shown that cells require a specific membrane/substrate

interaction area to allow for the maturation of focal complexes into

focal adhesions [13]. Furthermore, the distribution and density of

integrin ligands on the substrate controls cell shape [2,4,18],

proliferation rate, and adhesion forces [19,20,21,22,23].

Cell motility originates in the extension of the actin cytoskeleton

by F-actin polymerization in the leading edge where migration is

achieved by the exertion of inward facing traction forces [24].

During this process, transient early adhesions are reinforced into

mature adhesion sites in response to force [1,16,25,26]. In addition
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to the resulting forward cell movement, a retrograde flow of actin

filaments is simultaneously observed which is initiated by forces

exerted by myosin II that contract the cytoskeleton

[27,28,29,30,31,32]. The velocity of retrograde flow behaves

reciprocal to the anterograde cell movement, leading to a fast

retrograde flow in slowly migrating cells and vice versa [33,34].

Concerning focal adhesion sites, a biphasic relation has been

found between retrograde flow dynamics and traction stress [35].

The invention of optical tweezers in 1986 by A. Ashkin [36]

added a versatile tool to established research techniques in the life

sciences. Optical tweezers use strongly focused laser light to trap

and move small dielectric particles and, due to their non-

invasiveness, are nowadays widely used to study biological

processes at the macromolecular scale [37,38,39,40]. With optical

tweezers high precision manipulation of objects on the cell surface

or within the cell becomes feasible and in addition they can act as

local probes to observe biological processes or biomolecular

interactions [41,42,43,44]. In combination with video microscopy,

optical traps can give insight into force dynamics in the range of fN

to pN with a temporal resolution of milliseconds. Therefore,

optical tweezers have evolved into a versatile tool to study cell

adhesion formation [1,13,19,45,46,47,48,49,50,51,52] and to

measure cell force generation [39,43,53,54,55,56,57,58,59,60] or

membrane stiffness [61,62,63,64]. With conventional single-trap

optical tweezers, however, force development of only one in-

dividual adhesion site can be monitored.

To study the temporal development and strength of cellular

traction forces at an extended number of individual adhesion sites,

we established a custom-built multiple trap optical tweezers setup.

The multiple trap feature of the optical tweezers system is

a valuable tool to derive a force mapping across the entire cell

surface. With the existing setup, we positioned up to 5 beads

simultaneously on the apical membrane, which enables the

coincidental initiation of adhesion sites in distinct locations. This

allows the synchronous, time-resolved force mapping in adhesion

sites with pN sensitivity. In addition, the influence of geometrical

and spatial restrictions such as bead size and spatial relation of

bead position was investigated.

As cellular forces and retrograde actin flow correlate

[1,28,30,35,45,46,65,66,67,68], we also used our system to study

retrograde bead translocation in addition to force development at

adhesion sites. Although several studies either demonstrate a link

between traction forces and retrograde flow or a link between cell

migration and retrograde flow [29,31,69,70], to date no study

correlating all three quantities has been undertaken. By applying

identical sample preparation and imaging methods for three cell

lines, we achieved a high degree of comparability, which enabled

us to correlate the experimental results across different cell types.

Results

Multiple Trap Tweezers for Force Spectroscopy at Cell
Adhesion Sites

To investigate the cellular response induced by mechanical

stimuli, we established a custom-built multiple trap optical

tweezers system (Fig. 1 A) and provided it with live cell imaging

equipment. Functionalized polystyrol beads were used to mimic

new contact sites for cell-matrix adhesions and served as force

probes to study the time-resolved development of force trans-

duction. Before starting an experiment, the optical traps were

calibrated in multiple trap mode. Two to eight beads were trapped

simultaneously and the thermal fluctuations of the beads within

the optical potential of the trap were recorded. By changing the

AOD transmission, the laser intensity assigned to the traps was

adjusted and thus the trap stiffness was controlled. The maximum

laser power locatable to one individual optical trap was limited to

200 mW, which corresponded to a trap stiffness of 0.160 pN/nm

for beads of 4.5 mm diameter and 0.100 pN/nm for beads of

3.0 mm diameter. Laser operation at 1064 nm offers low

absorption rates in biological material, corresponding to a low

risk for optical damage. Furthermore, the heating characteristics in

aqueous solutions are suitable for live cell experiments [43,71,72].

By focusing the laser light onto polystyrol beads in an optical plane

well above the cell surface, the level of irradiation of the cells is

strongly reduced compared to the laser intensity in the trap center.

In experiments with laser light focused for 30 minutes slightly

above the apical cell surface, no change in cell morphology or

proliferation was observed compared to control cells (data not

shown). Experiments conducted in multi-trap mode allowed to

expose cells simultaneously to a predefined number of beads to

study the force development at distinct locations in one individual

cell. Due to the fast scanning rate of the AOD system with up to

100 kHz, cells experience a quasi-static substrate rigidity upon the

exertion of traction forces to the beads.

Reinforcement of Adhesion Sites
FN functionalized beads were placed with optical traps on the

apical cell surface of cells spread on a homogeneous FN-coated

substrate to mimic new contact sites (Fig. 1 B). For the

reinforcement of emerging adhesion sites, a counterforce to the

cellular traction is required. Counterforces were applied to the

beads by optical traps of fixed trap stiffness which could be chosen

independently for each trap to be between 0.010 pN/nm and

0.160 pN/nm. During the formation of adhesion sites, cells apply

traction forces to the beads, displacing them from the trap center.

To study this process of force development in maturing adhesion

sites, bead displacements were continuously analyzed over a time

course of 5 min at a frame rate of 1 Hz. For a comparison of

forces under different experimental conditions, the traction forces

after an adhesion time of 5 minutes were regarded.

To determine the optimal conditions for the optical tweezers

force spectroscopy assay, FN functionalized beads of 3.0 and

4.5 mm diameter were positioned by optical traps at the leading

edge of mouse embryonic fibroblasts (MEFs) and the force

development in the evolving adhesion sites was monitored (Fig. 1

C). Both bead batches were prepared with a FN surface coverage

of 80% and each individual bead was confined to a trap with

a spring constant of 0.100 pN/nm. For force measurements,

a predefined number of beads were positioned onto the cell surface

and optical traps were operated with a preset trap stiffness for 5

minutes. Cells form adhesion contacts around the beads as

demonstrated by vinculin accumulation around the beads in

transfected cells that express full length vinculin-GFP fusion

proteins (Fig. S2). When the formation of adhesion sites was

initiated, cellular traction forces were applied onto the beads. This

resulted in a bead displacement from the trap center, which

correlated linearly with the magnitude of exerted traction forces.

Hence, the acquisition of bead displacement movies allows for

a time-resolved analysis of cellular traction force development in

early adhesion sites.

We obtained strongly reduced forces for 3.0 mm beads

compared to forces transmitted onto 4.5 mm beads

(F3.0 mm = 1661 pN after 5 min, number of independent experi-

ments N = 5, number of examined cells n = 17,

F4.5 mm = 8364 pN, N = 5, n = 14, Fig. 1 C). The contact area

between microscopic beads and the cell membrane was calculated

from the indentation depth of the bead, which was previously

determined by atomic force microscopy and scanning electron
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microscopy to typically yield 0.05 to 0.2 mm [13,73,74]. From this,

contact areas of #1.5 mm2 for 3 mm beads and #3.0 mm2 for the

4.5 mm beads were derived. In conclusion these experiments show,

that a 1.5 times larger contact area induced a 5-fold increase in

force transmission.

For all following force studies, functionalized 4.5 mm beads were

used to mimic new contact sites as they geometrically enable

maturation of initial adhesions into larger focal adhesions.

Influence of Ligand Density on Force Development
The amount and spacing of substrate-bound integrin ligands in

the extracellular domain has been shown to influence cell

adhesion, proliferation, and migration [19,21,22,75]. To de-

termine the effect of ligand density on the investigated cell types,

beads were functionalized with the ECM protein FN, a ligand

offering adhesion motifs for a large number of different integrins.

The shortest amino acid sequence known to be recognized as

adhesion motif is the RGD sequence located in fibronectin domain

III. We compared the influence of FN and cyclic RGD (cRGDfk)

density on force development during the early assembly of cellular

contact sites [75].

Beads were functionalized with different amounts of FN and

cRGDfk, respectively, and batches with bead coverages of 50%,

80%, and 100% were prepared, with 100% corresponding to

a completed ligand monolayer on the bead surface. The ligand

density on the bead surface was controlled spectrophotometrically

by optical density measurements. With optical traps the beads

were placed on the leading edge of MEF cells and the

displacement of beads from the trap center was monitored. Beads

were restrained by traps set to the maximum trap stiffness of

0.160 pN/nm to provide the highest available resistance to the

cellular traction forces and thus prevent the removal of the bead

from the optical trap during the course of measurement.

For MEF cells in contact with FN beads a dependence of the

force-time curves on coating density was observed for membrane/

bead interaction times longer than 60s (Fig. 2A). The evaluation of

the force-time curves after 5 min yielded a correlation between

coating density and force transmission (Fig. 2 C). This is

supposedly due to enhanced integrin clustering mediated by the

availability of high ligand densities. The force development on

beads with distinct FN densities was distinguishable after less than

3 min of contact time (p,0.001). After 5 min of membrane/bead

contact, cells transmitted forces of FFN,50% = 4963 pN (N = 5,

n = 13), FFN,80% = 8165 pN (N = 5, n = 9) and

FFN,100% = 134613 pN (N = 5, n = 8) onto the beads. Further

enhanced coating densities were not tested with FN as ligand, as

the forces applied to 100% FN beads were close to the maximum

optical trap counterforces available with the existing setup.

Identical measurements were performed with beads functiona-

lized with different densities of cRGDfk. Here, an additional bead

batch with 150% surface coverage was prepared to test whether

a saturation effect occurred. These beads had more ligands

attached than required to form a complete monolayer and thus

a second peptide layer formed. Data obtained with cRGDfk

peptides show a dependence of both, the rate of force increase and

the magnitude of forces on the coating density (Fig. 2B). The

evaluation of the force-time curves after 5 min of membrane/bead

contact shows a correlation between ligand density and force

development for up to 100% bead coverage (Fig. 2 C). The forces

obtained ranged from FcRGD,50% = 4467 pN (N = 5, n = 13) to

FcRGD,80% = 6369 pN (N = 5, n = 8) and FcRGD,100% = 92611 pN

(n = 8) and were discernible after 2 min of membrane-bead

contact (p,0.0001). The formation of a second ligand layer on

the bead (150% coverage) did not lead to an increased force

transmission at the contact sites but resulted in a saturation on the

force level observed for 100% coverage (FcRGD,150% = 90616 pN

(n = 8)).

Control measurements with beads coated solely with PLL

(without FN or cRGD) revealed an unspecific bead attachment to

the cell surface of a small percentage of beads (about 8%).

Although these beads were in contact with the membrane, they

did not show rearward translocation and could easily be displaced

by the optical traps.

Thus, traction forces in the initial 5 min of cell adhesion

formation depend on the density of integrins ligands offered on the

bead surface. A comparison of cellular traction forces applied to

beads covered with different densities of FN and cRGD displays

enhanced force transmission at contact sites formed to FN

Figure 1. Experimental setup and cellular traction forces with regard to bead size. A) Schematic illustration of the multiple trap optical
tweezers setup. The orthogonal alignment of two acousto-optic deflectors (AODs) allows for the simultaneous operation of several optical traps used
to apply fibronectin functionalized beads to the cells. B) A fibronectin functionalized bead (3 mm diameter) is positioned by an optical trap in the
leading edge of a cell. The arrow denotes the direction and magnitude of cellular traction forces. (a pseudocolored overlay was added to highlight
the outline of the cell; scale bar = 5 mm). C) Beads with a diameter of 3 mm and 4.5 mm, respectively, were aligned on the cellular leading edge. The
obtained averaged force-time curves only show reinforcement over the entire measurement intervall for 4.5 mm beads. No reinforcement occurs at
cell contact sites established at 3 mm beads (mean 6 s.e.m marked in gray and only exemplified for selected time points; N = 5, n = 14–17).
doi:10.1371/journal.pone.0054850.g001
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functionalized beads (Fig. 2C). This divergence of force trans-

mission on different ligands becomes more pronounced with

enhanced ligand densities.

Influence of Bead Position on Force Development
The optical tweezers setup features a multi trap mode

allowing to measure traction forces simultaneously at distinct

locations. This enables a force mapping with high spatial and

temporal resolution over the whole cell body of a single cell and

grants a high accuracy when comparing forces measured within

distinct cellular regions. Here, we simultaneously arranged

a predefined number of beads on cellular protrusions (area I),

the leading edge (area II) and the cell body (area III) of a single

cell to estimate the dynamics and adhesion strength occurring

during initial force development (Fig. 3 A to D). All beads were

functionalized with a FN surface coverage of 80% and were

captured in traps featuring identical spring constants in

multimode operation.

Traction forces were highest in the foremost protrusions,

decreased rearwards toward the leading edge and became

negligible when beads were placed in the nuclear region or the

rear of the cell (Fig. 3 D and E). The example in figure 3 A

depicts a cell with 5 beads distributed across the surface: two

beads were positioned in area I, one at a forward directed

protrusion and one at a lateral directed protrusion, another

bead was located in area II and one bead was placed in area

III. One bead was attached to the rather static nuclear area and

was not considered for force evaluation as the formation of new

adhesion sites is not expected in this area. The force vectors

attributed to the bead in area I correspond to the highest forces

in this area relative to areas II and III. Beads located on the

leading edge experienced cellular traction forces in an in-

termediate force regime while hardly any force development

was observed for beads placed in area III. Furthermore, the

force mapping approach demonstrated that adhesion sites

exhibit similar traction forces when they are located at an

equal distance from the foremost tip.

We conducted complementary measurements to evaluate the

rate of retrograde bead transport in different cellular areas (Fig. 3

B and C). Functionalized 4.5 mm beads with a FN coverage of

80% were positioned with optical traps on the cell membrane and

traps were switched of instantly to monitor the rearward bead

translocation. As the beads were large compared to topographical

changes in the cell surface, they stayed in the focal plane and were

easily traceable. The retrograde transport velocity of FN

functionalized beads was fastest at protrusions and decreased

steadily when the distance to the membrane tip was enlarged

(Fig. 3 D). This is consistent with the results obtained for cellular

traction forces and reveals an intrinsic relation of force generation

and retrograde flow rates.

Geometrical Constraints Limit Force Transmission
In the cell periphery, cell matrix adhesion sites are often

spatially closely related. The results presented so far all considered

adhesion sites that were well separated. In the force mapping

assay, multiple beads on the cell surface were spatially separated

by distances .10 mm and therefore were regarded as indepen-

dent. Now, we tested the influence of spatially closely related beads

and adhesions on force transmission. The beads offering new

contact sites for the cells were placed with a distance of 5 mm on

the leading edge of the cell (4.5 mm beads, 80% FN surface

coverage, 0.080 pN/nm trap stiffness). A control was performed

with bead spacing larger than 10 mm and yielded the same result

as obtained for force transmission on single beads. Two examples

of bead spacing were regarded for the acquisition of force-time

curves: (i) beads were placed in a radial orientation and (ii) beads

were placed in successive order and were aligned normally to the

border of the leading edge (Fig. 4 C).

In case (i), a declined force transmission was observed when

the spatial separation between beads was reduced from 10 to

5 mm (Fig. 4 A to C). On 5 mm spaced beads, cells applied

traction forces amounting about 60% of the strength they

exerted on spatially separated beads (F5 mm = 4964 pN; N = 7,

n = 19) compared to F10 mm = 8364 pN (N = 5, n = 9). The force-

time curves show that the force development becomes divergent

already after 30 seconds of membrane/bead contact time

(p = 0.02).

The second case (ii) with a normal bead orientation (Fig. 4 B

and C) yielded a stronger force reduction than case (i) when the

distance between the beads was reduced to 5 mm. Here, the bead

closer to the leading edge (bead I) does not experience any

reduction in force transduction but shows the same behavior as

a single bead. Instead, reduced force transmission occurred on

bead II where cells created only 38% of the forces applied to the

anterior bead (F5 mm = 7064 pN; N = 5, n = 8 and

F10 mm = 2665 pN; N = 4, n = 7).

Figure 2. Dependence of cellular traction forces on ligand density. A) and B) Averaged force-time curves of cellular traction development
with different coating densities of fibronectin (FN) or cRGDfk on 4.5 mm beads (averaged force-time curves including the s.e.m. for each considered
ligand density are shown in Fig. S3) Cellular forces increase proportionally to the amount of ligand. C) Traction forces after 5 minutes observation
time for FN or cRGDfk beads. Force exertion to FN beads is consistently higher as compared to cRGD beads (N= 5 for FN and for cRGDfk beads, n = 8–
13 cells).
doi:10.1371/journal.pone.0054850.g002
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Relation between Force, Retrograde Transport, and Cell
Migration in Different Cell Types

In a number of studies, cellular traction forces have been

examined using multitudinous approaches

[16,61,76,77,78,79,80,81]. The measured forces varied strongly

depending on the cell type used. However, they were not easily

comparable due to the diversity of applied methods. Here, we

study three different cell types, namely B16 cells, MEFs and PCFs,

with the same optical setup, identical sample preparation, and

identical imaging conditions to allow for a comparison of force

development. In addition to traction forces we measured the

retrograde transport velocity and cell migration rate for the three

cell types. Again, 4.5 mm beads were functionalized with FN to

a surface coverage of 80% and were restrained by traps with

a spring constant of 0.160 pN/nm. The intermediate surface

coverage was chosen to ensure an optimal utilization of the full

force range accessible by the optical tweezers setup (10 to 160 pN).

The immortalized B16 and MEF cells were of similar size and

featured an elongated shape (Fig. S1). In contrast, the PCF cells

were much larger and adopted a more squared morphology. The

analysis of the structural organization of the actin cytoskeleton

showed that B16 melanoma cells developed a random meshwork

of actin fibers in the leading edge, with characteristic arc-like fibrils

connecting neighboring peripheral adhesion sites (Fig. 5 A). MEF

cells displayed more pronounced actin stress fibers originating

from the adhesion sites in the cell periphery and stretching towards

the cell center (Fig. 5 B). The adhesion sites in both cell lines

(marked by staining of endogenous vinculin) were of similar shape

and size. Distinctively, PCF cells showed large clusters of vinculin

containing adhesion sites in the leading edge but displayed smaller

individual adhesions in the central area (Fig. 5 C). Furthermore,

PCF cells featured an extensive actin stress fiber system spanning

the length of the entire cell.

Traction forces were measured at the contact site of a 4.5 mm

FN functionalized bead over a time course of 300 s. The forces

transmitted during the formation of adhesive contacts were clearly

distinguishable for the three investigated cell types and after 300 s

the following forces resulted (Fig. 5 D): FB16 = 4262 pN (N = 5,

n = 12), FMEF = 8364 pN (N = 6, n = 14), FPCF = 151610 pN

(N = 7, n = 20). B16 cells showed the slowest increase of traction

forces over time and after 1 min a significant difference in force

transmission was observed in comparison to MEF and PCF cells

(p,0.01).

MEF traction forces evolve in a two-step process with a steep

force increase in the early adhesion formation (initial 120 to 180 s)

followed by a moderate force development in the second phase.

Concerning the entire course of measurements, we derived the fast

reinforcement rate for PCF cells. Although PCF and MEF cells

showed the same traction force evolution in the first 120 s of bead

contact, MEF force enhancement slowed in the following, while

PCF cells maintained a linear increase in adhesion strengthening

and exerted steadily growing forces onto the beads. The

measurement duration was extended to 10 min to determine

whether PCF reinforcement continued at the same rate: no

Figure 3. Mapping of traction force and velocity onto the cell surface. A) and B) DIC images of FN-beads deposited at various positions onto
the surface of MEF cells. The cell surface is classified into three areas with area I referring to cellular protrusion, area II to the leading edge and area III
to the cell body. A) For force measurements beads were positioned onto the cell surface and optical traps were operated with a predefined trap
stiffness of 0.160 pN/nm for a time course of 5 minutes. Black arrows denote the direction and magnitude of cellular traction forces. B) For
measurements of retrograde transport velocities, beads were positioned by optical traps onto the cell surface, traps were switched off after 5
seconds, and bead movements were recorded in a time lapse movie. Red arrows denote the direction and velocity of retrograde transport. C)
Example trajectory of an individual bead positioned in area I (a pseudocolored overlay was added to highlight the outline of the cells and the nucleus
was traced by a red line; scale bar = 10 mm). D and E) Forces and retrograde transport velocities are position-dependent and correlate with each other
(N = 5).
doi:10.1371/journal.pone.0054850.g003
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decrease in adhesion strengthening was found within the increased

measurement interval and after 8 min the cells overcame the

optical counterforce and removed the beads from the traps (data

not shown).

In addition to traction forces, retrograde transport dynamics

were characterized for B16, MEF and PCF cells. Since beads

with 100% FN coverage are detached from the traps in less

than 5 minutes by PCF cells, 4.5 mm beads with 80% FN

surface coverage were placed on the leading edge of the cells.

Lacking a restoring force from the optical traps, beads attached

to the cell surface were coupled to the retrograde actin flow and

move rearward towards the nucleus. Bead trajectories were

derived from time lapse records with a frame rate of 1 Hz over

a time course of 20 min. The evaluation of the retrograde

transport velocity vrt resulted in the fastest transport dynamics

in the PCF cells, followed by moderate transport rates for MEF

cells and slow transport dynamics for B16 cells

(vrt,PCF = 0.4460.03 mm/min, N = 5, n = 21,

vrt,MEF = 0.1760.02 mm/min, N = 5, n = 24,

vrt,B16 = 0.09760.006 mm/min, N = 6, n = 36). A cell type

comparative analysis of force transmission and retrograde

transport shows a linear correlation of the two values (Fig. 5

E), and reveals an intrinsic link of force generation and actin

flow dynamics.

The retrograde transport velocity is known to inversely correlate

with cell migration velocity [27,33,82]. We tested this relation with

the three cell lines chosen for force and retrograde transport

studies. Time lapse images were recorded with 1 frame per min

over a time course of 12 h and the migration velocity vm was

derived by tracking the movement of the nucleus. The fastest

migration speed was found in B16 cells, followed by MEF cells and

PCFs: vm,B16 = 0.5360.03 mm/min, N = 5, n = 53;

vm,MEF = 0.4460.02 mm/min, n = 49; vm,PCF = 0.2760.03 mm/

min, N = 5, n = 51 with p,0.02 (Fig. 5 E).

Comparing the results for traction forces, retrograde transport

rates, and migration velocities in B16, MEF and PCF cells, a linear

relation between force and retrograde transport velocity is

apparent: a high retrograde transport velocity is associated to

strong cellular traction forces and vice versa. In addition,

a reciprocal behavior is observed between cell migration velocity

Figure 4. Influence of bead distance on force development. A) Pairs of 4.5 mm beads were positioned in a radial orientation with a center-to-
center spacing of 5 or 10 mm. The averaged force-time curves show a force development similar to single beads for distances of more than 10 mm
between adjacent beads (mean 6 s.e.m marked in gray and only exemplified for selected time points). With bead spacing of 5 mm, reinforcement of
each neighboring adhesion site was reduced to 60%. B and C) Two bead orientations with bead spacing of 5 or 10 mm were considered: radial and
normal with respect to the leading edge, respectively. Cellular traction forces applied to the normal oriented anterior bead I were significantly
enhanced compared to forces acting on the posterior bead II. Control measurements were performed separately for the locations of bead I and II: in
control I the anterior bead was positioned in an identical distance to the tip of leading edge as bead I, and the second bead was displaced by 10 mm
toward the nucleus. For control II, the posterior bead was placed in the same distance to the leading edge tip as bead II, and the paired bead was
displaced by 10 mm toward the leading edge. This procedure was necessary, as traction forces at adhesion sites decrease with increasing distance to
the leading edge (N= 5, n = 8–19 cells).
doi:10.1371/journal.pone.0054850.g004

Multiple Optical Tweezers to Study Cell Adhesion

PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e54850



compared to traction force and retrograde transport rate. This

corresponds to fast migrating cells exerting the lowest traction

forces at developing adhesion sites.

Discussion

Although the process of force generation has been studied with

various approaches, many details about the interaction of the

intracellular cytoskeleton with the extracellular surrounding re-

main elusive. The multiple trap optical tweezers setup allows for

force spectroscopy with local force probes. Functionalized beads

act as passive sensors for cellular traction forces and do not actively

apply forces to the cell. Hence, the cellular response to ligand

stimuli is not subjected to external mechanical disturbances, which

enables a noninvasive study of evolving adhesion sites. By

changing the optical trap intensity, the compliance of the force

probe can be adapted to mimic specific substrate rigidities. The

resistance of trap confined beads to cellular traction forces is much

lower than the compliance of the commonly used glass substrates

and reflects the physiological conditions of cell-matrix interactions

more closely. It should be noted, however, that traction forces in

our experimental setup are measured on the dorsal side of

adherent cells. It is known that the organization of the actin

cytoskeleton differs between the ventral and dorsal side and also

depends on adhesion conditions [83].

Crucial parameters for cellular traction force generation are the

size of the adhesion area, the ligand density, adhesion site position

with regard to the leading edge, and the spatial separation of

adjacent adhesion sites. We evaluated these parameters to quantify

and characterize the development of forces in individual adhesion

sites immediately after adhesion initiation.

The formation and development of adhesion sites was analyzed

with regard to the available contact area between cell surface and

bead. The dot-like initial adhesion sites reach a size of 1 mm

diameter and mature into elliptical focal adhesions with an

expansion of 2 to 5 mm along the elongated axis. It has been

shown that the formation of mature adhesion sites requires

a sufficient contact area between bead and cell, with bead

diameters of about 3 mm matching this criterion [13]. Dependence

between adhesion size and force development has also been shown

in cells cultured on flexible substrates [84]. Our analysis of

adhesion forces in MEF cells showed that 4.5 mm beads were best

suited for studies of adhesion site reinforcement as the membrane/

bead contact area allowed the maturation of initial adhesion sites

into mature adhesion sites. In contrast, the membrane/bead

contact area provided by 3.0 mm beads did not suffice to induce

adhesion reinforcement. The reduction of the available contact

area by a factor of two resulted in a 5-fold decrease of the cellular

traction forces, although the ligand density on the bead surface

was kept constant. This nonlinear relation between contact area

and traction force indicates a size dependent change in the protein

constitution of the adhesion sites and shows that in addition to the

counterforce a sufficiently large contact area has to be available to

transmit high forces [13].

Apart from geometrical restrictions, the amount of integrin

ligands available in the extracellular environment is a limiting

factor to adhesion formation and reinforcement. The type of

ligand [9,19], ligand density [3,21,75,85] and ligand spacing

[2,4,23,86] regulate adhesion formation and force transmission.

To examine the ligand affinity of cells, force transmission on beads

functionalized with the ECM constituent FN were compared to

cRGDfk coated beads. FN is a macromolecule comprising

distinctive adhesion motifs, which serve as binding sites for a large

Figure 5. Comparison of different cell types. A) to C) Fluorescent labeling of the nucleus (blue) actin cytoskeleton (green), and vinculin (red) of
mouse B16F1 melanoma cells (B16), mouse embryonic fibroblasts (MEF) and primary chicken fibroblasts (PCF) (scale bars 20 mm). D) Averaged force-
time curves for the three cell lines (s.e.m. is marked in gray and only exemplified for selected time points) using 4.5 mm beads with 80% FN surface
coverage. E) Correlation of traction forces, retrograde transport velocities, and migration velocities for the different cell types. A linear correlation for
force and retrograde transport is revealed and is concomitant with a reciprocal correlation for migration velocity.
doi:10.1371/journal.pone.0054850.g005
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number of different types of integrins. Among others, the

tripeptide RGD sequence in the FNIII7–10 domain mediates the

formation of cell-substrate adhesions. The RGD sequence is

known to be recognized by several integrins and is arranged in

a loop-like conformation in the wild type FN domain III. The

cyclic tripeptide cRGDfk was chosen for the experiments as the

cyclic conformation is supposed to resemble the wild type situation

more closely than a linear peptide configuration [87]. We

administered ligand functionalized beads with a surface coverage

ranging from 50% to 100%, where 100% surface coverage

corresponded to a tightly packed ligand monolayer. The force

transmission to FN- and cRGDfk-beads in contact with MEF cells

revealed an adhesion reinforcement that was corresponding to the

increase in ligand density. To determine whether adhesion

reinforcement continued for ligand amounts exceeding the

amount required to form a ligand monolayer, we prepared a bead

batch with a cRGDfk coverage of 150%. This relates to the

formation of a ligand bilayer on the bead surface. We observed

cellular traction forces of the same magnitude as for beads coated

in a ligand monolayer. The monitored saturation effect could be

caused by impaired binding properties in the upper ligand layer,

were peptides are bound to the underlying peptide layer only.

cRGDfk-cRGDfk interaction is considered to be less stable and

less resistant to cellular traction force application and thus might

facilitate peptide detachment from the bead surface. Furthermore,

the phenomenon could be attributed to an excess of ligand

molecules, which cannot be assessed by integrins. Due to spatial

restrictions within the adhesion site these ligands cannot contribute

to enhance integrin clustering, resulting in a saturation of force

transmission at the contact site.

The comparative study of the two ligands FN and cRGDfk gave

evidence to enhanced force transmission at adhesion sites

mediated by FN-beads. The preference for FN comprising

substrates could be attributed to the capacity of FN to bind to

a wider range of integrin subunits. For example, the integrin a5b1

binds to FN, but not to the RGD adhesion motif alone [19].

Instead, avb3 integrins promote RGD binding. a5b1 is a key

regulator of adhesion reinforcement and resists high traction

forces, while avb3 is less stable under high tension but mediates

signal transduction [88]. Hence, the observed reinforcement gain

of FN-integrin complexes over cRGDfk-integrin adhesions might

be induced by the role of distinctive integrin subunits in adhesion

regulation.

With the multiple trap feature of the optical tweezers setup, it is

feasible to study the cellular traction forces exerted onto ligand-

coated beads positioned in distinct areas of the cell membrane.

Furthermore, beads functionalized with the ECM proteins can be

used to study cytoskeletal dynamics and were among the earliest

approaches to study retrograde actin flow in fibroblasts [1,45]. We

performed complementary measurements on traction force de-

velopment and retrograde transport velocities in distinct cellular

areas and found an intrinsic correlation of the two parameters

[35,68,77,89]. Both, forces and velocities were highest in the

foremost protrusions of MEF cells and decreased with increasing

distance to the foremost membrane tip [5,90].

Cellular traction forces depend on multiple parameters, such as

ligand density, surface rigidity, and the size of adhesions. Here, we

tested whether the spatial separation of individual adhesion sites

influences their evolution and force transmission. To probe their

environment cells form membrane extensions in the lamellipo-

dium. In this highly dynamic area, a large number of adhesion

complexes are constantly assembled and remodeled. Due to this,

tightly arranged adhesion patterns move towards the lamella

where they mature into focal adhesions or disassemble. Hence, the

evolution of adhesion forces in neighboring adhesion sites and the

spatiotemporal coordination of adhesion reinforcement are of

particular interest. Adhesion sites that developed with a spatial

separation of 10 mm or more displayed the same behavior as

isolated adhesion sites. However, the reduction of the center-to-

center distance of neighboring adhesions to 5 mm led to significant

changes in force transmission. When two beads were radially

aligned on the leading edge, both beads experienced the same

force magnitude and these forces were reduced by about 40%

compared to independent adhesion sites. The force reduction

could be created by the competition of the two emerging adhesion

sites for adhesion-mediating proteins from the cytoplasmic pool. In

addition, the closely neighboring adhesions could be linked to a set

of underlying actin fibrils which is supported by a single actin stress

fiber. This could also explain the apparent synchronization of the

force development in the two adhesion sites. However, further

investigations are required to analyze the reorientation of the actin

network and possible mechanisms for adhesion crosstalk.

We also studied the effect of the intrinsic orientation of a set of

closely related adhesion sites. Therefore, we arranged two beads

normally and evaluated the forces transmitted to the forward and

successive bead. Our data showed a decrease of adhesion forces on

the successive bead. The decline of traction forces exceeded the

expected reduction due to an enlarged distance to the leading

edge, which was confirmed by control measurements at in-

dependent adhesions [17,70,91,92,93,94,95]. It has been proposed

that adhesion sites constitute a barrier for retrograde actin flow by

inducing friction and thus decelerate the actin flow

[32,33,70,96,97]. A theoretical model has been developed that

predicts a stretching of the rearward flowing actin network upon

encounter with the adhesion sites, which results in a stress-

dependent partial disintegration [90,98,99,100,101,102]. The

model computed by Shemesh and coworkers projects the

appearance of ‘‘shadows’’ of low actin density right behind

adhesion sites. Hence, the reduced forces in an adhesion site

closely succeeding an anterior adhesion could be induced by

friction between the cytoskeleton and adhesion sites. As the

rearward bead is situated in the shadow region of its predecessor it

lacks access to the actin network and is impaired in reinforcement.

Together, this indicates that reinforcement of adhesion sites does

not only depend on the parameters of the contact directly

concerned but also relies on neighboring adhesions.

Our data reveal that both traction forces and retrograde flow

velocity decrease with distance to the leading edge. This result

agrees well with an unperturbed flow of the underlying actin

cytoskeleton initiated by polymerization at the membrane tip. By

contrast, the work of Gardel and coworkers on ventral adhesions

showed a biphasic relation of force and velocity: initially,

a decrease of flow velocity was accompanied by an increase of

forces [35]. The organization of the actin cytoskeleton differs

between the ventral and dorsal side [83]. Hence, a relation

between the maturation of focal complexes into focal adhesions to

the spatial organization of the cytoskeleton at the transition from

lamellipodia to lamella should to be considered [103].

In addition to the analysis of cellular traction forces and

retrograde flow velocities on the scale of individual MEF cells, we

performed a related cell type comparative study. Furthermore, we

took the cell migration velocity into consideration. For the three

cell lines (B16, MEF, PCF) investigated, our data reveal a cell type

independent correlation of traction force generation at adhesion

sites, retrograde transport rates and cell migration velocity. B16

melanoma cells developed the weakest forces, which correlated to

slow retrograde transport rates. Concomitantly, these cells

featured the highest migration velocities of all three cell lines.
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MEF cells displayed forces, retrograde transport velocities and

migration rates in an intermediate regime, while the primary cell

line of PCFs exhibited the strongest forces, fastest retrograde

transport and slowest migration.

A correlation of traction forces and retrograde actin flow has

been demonstrated in previous studies [35,68,77,104] as well as an

inverse relation of retrograde flow and cell motility [31,105].

However, traction forces, retrograde flow velocities and migration

rates together have not yet been analyzed in a cell type

comparative manner. Our data confirm the conservation of the

proportionality of forces and actin flow velocity as well as the

inverse correlation of forces and actin flow with migration

velocities throughout different cell lines.

Materials and Methods

Ethics Statement
Fertilized chick eggs (Gallus gallus domesticus) used for the

preparation of primary chick fibroblasts were obtained from a local

breeder and experiments were performed according to European

(Council Directive 86/609/EEC) and German (Tierschutzgesetz)

guidelines for the welfare of experimental animals. Embryos were

dissected from eggs after 8 days of breeding in a commercial egg

incubator and sacrificed by decapitation prior to skin preparation.

Cell Culture
Mouse B16F1 melanoma cells (B16 cells; kindly provided by B.

Imhof, CMU- Universite de Geneve, Switzerland) [106], mouse

embryonic fibroblasts (MEF cells; kindly provided by W.Ziegler,

IZKF Leipzig, Germany) [107] and primary chicken fibroblasts

(PCF; isolated from the skin of day 8 chicken embryos) were

cultured at 37uC under humidified atmosphere and 5% CO2. B16

and MEF cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM, Invitrogen) supplemented with 10% fetal

bovine serum (FBS, Sigma-Aldrich) and PCFs were supplied with

Kaighn’s modified nutrient mixture (Invitrogen) with 10% FBS

and 5% chicken serum. Prior to experiments, cells were plated

onto fibronectin (FN) functionalized glass-bottom culture dishes

(MatTek) and preincubated for 2 hours to allow cells to spread.

30 min before measurements the standard growth medium was

exchanged for CO2 independent medium (phenol-red-free

DMEM or F-12 containing 20 mM Hepes and 2% FBS and

during the course of measurements cells were kept in a live cell

imaging chamber at 37uC.

Fluorescent Staining
Monoclonal mouse anti-vinculin antibodies (clone hVIN-1,

Sigma Aldrich) were used in combination with Cy3-conjugated

goat-anti mouse F(ab’)2 antibodies (Dianova) to mark focal

adhesions. The actin cytoskeleton was stained with Alexa488-

conjugated phalloidin (Invitrogen) and the nucleus was visualized

with DAPI (Sigma Aldrich).

Vinculin Expression
MEF cells were transfected to express full length vinculin-GFP

fusion proteins (pEGFP-C2 vectors, Clonetech). 2 mg plasmid

DNA were transferred into an electroporation cuvette and were

mixed with 106 cells suspended in 250 ml cold electroporation

buffer (120 mM KCl, 10 mM K2PO4/KH2PO4, 2 mM MgCl2,

25 mM Hepes, 0.5% Ficoll 400; pH7.6). The cuvette was

incubated on ice for 2 min before subjection to an electroporation

pulse of 250 V and 60 ms duration (Gene Pulser Xcell, Bio-Rad).

Subsequently the cell suspension was stored on ice for 2 min and

cells were mixed with DMEM medium and replated onto cover

slips. The transfected cells were incubated for 16 h under routine

conditions to express the protein. Subsequently, cell samples were

incubated with FN-functionalized beads for 20 min and were fixed

to analyze vinculin recruitment at bead contact with a confocal

laser scanning microscope (LSM 510, Carl Zeiss).

Bead Functionalization
Carboxylated polystyrene beads of 3.0 mm and 4.5 mm di-

ameter (Polysciences) were homogeneously functionalized either

with the extracellular matrix protein FN (human plasma

fibronectin, 1 mg/ml; Sigma-Aldrich) or with a cyclic RGD

peptide (c(RGDfk)-(Ahx)3-N3, 1 mg/ml). Therefore, beads were

incubated with 100 ml Poly-L-Lysine in PBS (PLL, 200 mg/ml,

Sigma-Aldrich) for 1 h at room temperature with gentle mixing.

The solution was washed 3 times with PBS by centrifugation and

varying amounts of FN (1 ml, 2 ml, 3 ml) or cRGDfk (2 ml, 4 ml,

5 ml, 8 ml) were added into 100 ml PBS to obtain distinct densities

on the bead surface. Beads were incubated with gentle mixing for

another hour at room temperature. The amount of ligand

attached to the bead surface was determined spectrophotometri-

cally by UV-VIS spectroscopy (NanoDrop1000, PEQLAB Bio-

tech-nologie GmbH). Optical density data were obtained from the

supernatant of the bead-ligand solution at a wavelength of 260 nm

and yielded the concentration cresidue of residual (unattached)

ligand. The number of ligand molecules in the supernatant was

calculated from the relation Nresidue = cresidue VNA (V denotes the

volume of the solution and NA the Avogadro constant). From the

number of initially deployed ligand Nini and residual ligand

Nresidual, the number of attached ligand molecules per bead Nb was

estimated: Nb = (Nini – Nresidue)/nb where nb is the number of

beads. The size of an individual 450 kDa FN molecule was

determined by scanning electron microscopy [108,109] and

amounts a width of 2 to 3 nm and a length of 61 nm. Thus, an

individual FN molecule can cover an area of approximately

120 nm2. For the 1 kDa cRGD tripeptide, a surface coverage of

about 0.24 nm2 per molecule was assumed from the relation of FN

to cRGD molecular weights. From this calculation, the degree of

surface coverage can be estimated. For the presented experiments,

bead batches with a surface coverage of 50%, 80% and 100%

were prepared for the ligands FN and cRGDfk. An additional

sample with 150% coverage was prepared with the cyclic peptide

only. Bead-ligand solutions were washed 3 times with PBS to

remove residual ligands and were finally stored in 16PBS at 4uC.

Beads were freshly prepared one day prior to the experiments.

Substrate Preparation
Glass bottoms of culture dishes (MatTek) were covered with

a solution of 50 ml PLL in PBS and incubated for 1 h at room

temperature. After rinsing the dishes twice with PBS, 0.5 ml FN

diluted in 50 ml PBS were added and dishes were incubated for

1 h at room temperature. Residual FN was removed by rinsing

twice with PBS and the culture dishes were stored at 4uC covered

with PBS until further use.

Multiple Trap Optical Tweezers
The laser tweezers setup was based on a two-axis acousto-

optical deflection system (AOD, AAoptoelectonics) which allowed

the independent steering and intensity modulation of a large

number of quasi static optical traps. Optical traps were operated

by an AOD beam steering controller (Aresis), allowing closed-loop

operation by relying on the live image of a CCD camera (C3077,

Hamamatsu Photonics) for positioning of optical traps. Due to the

fast access time (6.5 ms) of the deflectors, multiple time-shared

traps could be generated within a scan angle of 2006200 mm and
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operated simultaneously. An infrared diode pumped solid state

laser (Compass 1064; Coherent), operating at a wavelength of

1064 nm, was coupled into a custom-built microscope and focused

by a high numerical aperture objective to generate the optical

traps. The microscope was equipped with epifluorescence optics

and a heating unit to maintain a sample temperature of 37uC for

live cell force measurements. To manipulate microscopic beads on

the cells surface, a water immersion objective (636, 1.2 numerical

aperture, Carl Zeiss) was lowered into the imaging medium within

of a glass bottom dish. Imaging was performed with an oil

immersion objective (636, 1.2 numerical aperture, Carl Zeiss)

mounted below the sample dish.

Optical Trap Calibration
The optical traps were calibrated using the thermal fluctuation

method in combination with video microscopy for trap stiffness

and the drag force method for maximum trap force determination

[40].

Optical trap calibration was performed prior to the experiments

in multi trap mode to ensure that no additional losses due to the

scanning of the laser beam reduced the effective trap stiffness.

Geometrical patterns of four to eight optical traps were generated

and calibrated simultaneously (Fig. 1 B). Each trap was assigned to

an individual laser intensity and a polystyrol bead of 3.0 mm or

4.5 mm was captured in the center of each trap. Thermal

fluctuations were recorded for a time course of 10 min with the

CCD camera and the resulting bead trajectories were obtained

with MetaMorph (Visitron) and evaluated with MATLAB (Math-

Works). From the distribution of bead displacements from the

equilibrium position in the trap center, the optical potential U(x) of

each trap was derived: U(x) = k*Dx(t)2 where Dx is the bead

displacement and k the trap stiffness. The optical potential was

calculated separately for forces pointing in x and y direction and

showed a circular symmetry. Calibrations were performed close to

the apical cell surface. The laser intensity applied to a trap was

adjusted by changing the AOD transmission via the software

interface Tweez (Aresis). The recorded video frames were

submitted to data analysis to obtain the trap stiffness for each

trap for varying laser power.

To determine the maximal optical force on microscopic beads,

the drag force method was applied. A bead was captured in a trap

well above the cell surface and moved through the sample plane

with a defined trap velocity. The trap velocity was enhanced until

the bead was unable to follow the trap. From the recorded escape

velocity the maximum trap force was calculated using the Stokes

relation F=bv = 6pgrv, where b is the drag coefficient, v is the trap

velocity, g denotes the fluid viscosity and r the bead radius.

The linear dependence of trap force on bead displacement

F(t) = k*Dx(t) is utilized to determine the traction forces a cell

applies to a trapped bead.

Force Spectroscopy Assay
Cells were transferred onto FN functionalized glass bottom

dishes and were incubated for two to three hours to allow cells

to spread. Half an hour before a measurement, the medium was

exchanged for F12 imaging medium containing 20 mM Hepes

and 2% FBS. FN functionalized beads were applied into the

culture dish and 1 to 5 optical traps were activated to capture

the beads and position them on the cell. Beads were placed on

individual cells with positions varying between cellular protru-

sions, the leading edge and the cell body. Traps remained active

during the complete measurement course of 5 min and images

were recorded with a frame rate of 1 Hz with the CCD

camera.

Retrograde Transport Assay
To characterize the dynamics of retrograde actin flow, the

retrograde transport of microscopic beads was monitored. Cells

and beads were prepared as described and a predefined number of

beads were positioned by optical traps on the cell surface. For the

retrograde transport assay, optical traps were switched off

immediately after positioning the beads. The bead position was

recorded with the CCD camera over a time course of 20 min and

with a frame rate of 0.5 Hz. The videos were analyzed with

MetaMorph to determine the bead position in each frame and the

retrograde transport velocity of the beads was calculated from the

derived trajectory data.

Cell Migration Assay
To characterize cell motility, cells were sparsely plated onto FN

functionalized glass bottom dishes and preincubated for 2 h at

37uC and 5% CO2 to allow for adhesion and spreading.

Subsequently, time lapse movies of migrating cells were recorded

(Colibri/AxioObserver.Z1, 206/0.8 Ph2 plan- apochromate, Carl

Zeiss) with a rate of 1 frame per minute for 12 hours.

Image Analysis
To investigate force development and retrograde transport, time

lapse movies were recorded at a frame rate of 1 Hz and analyzed

with the object tracking application of MetaMorph (Molecular

Devices). In each frame the actual bead position was determined

by the software and the bead displacement was calculated as the

distance between trap center and actual position.

The velocity of migrating cells was derived from the observation

of the locomotion of its nucleus. The nucleus was tracked with the

manual tracking plugin (F.Cordelieres, NIH ImageJ) and the

nuclear velocity was calculated with the chemotaxis and migration

plugin (ibidi) for ImageJ.

Supporting Information

Figure S1 DIC images of the three cell types studied.
Cells were seeded onto homogeneously fibronectin-functionalized

glass cover slips and incubated for 2 hours before fixation. A)

Mouse melanoma B16F1 cells, B) mouse embryonic fibroblast

(MEF) cells and C) primary chick fibroblast (PCF) cells (scale

bars = 100 mm).

(TIF)

Figure S2 To test whether cells accepted the FN
functionalized beads to invoke new adhesion sites on
the surface, MEF cells were transfected to express a full
length vinculin-GFP fusion protein. In figure S2 A) the

accumulation of vinculin at the membrane/bead interface is

depicted. The bead on the cellular leading edge did not experience

any external force as it was not restrained by the optical forces of

the laser trap. In about 50% of the examined cells a vinculin-GFP

circle had formed around the bead, confirming the formation of

adhesion sites at the contact area. B) Overlay of a DIC image with

the fluorescent channel (scale bar = 10 mm).

(TIF)

Figure S3 Averaged force-time curves for each surface
density of FN and cRGDfk functionalized beads. A) to C)

show the development of cellular traction force exertion onto FN-

beads and D) to G) onto cRGDfk-beads (mean 6 s.e.m; the s.e.m.

is denoted in gray and the gray bars are error bars representing

specific time points, N = 5, n = 8–13).

(TIF)
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