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Abstract: Coordination-induced spin crossover (CISCO) in nickel(II) porphyrinates is an intriguing
phenomenon that is interesting from both fundamental and practical standpoints. However, in
most cases, realization of this effect requires extensive synthetic protocols or extreme concentrations
of extra-ligands. Herein we show that CISCO effect can be prompted for the commonly available
nickel(II) tetraphenylporphyrinate, NiTPP, upon deposition of this complex at the air/water interface
together with a ruthenium(II) phthalocyaninate, CRPcRu(pyz)2, bearing two axial pyrazine ligands.
The latter was used as a molecular guiderail to align Ni···Ru···Ni metal centers for pyrazine coordina-
tion upon lateral compression of the system, which helps bring the two macrocycles closer together
and forces the formation of Ni–pyz bonds. The fact of Ni(II) porphyrinate switching from low- to
high-spin state upon acquiring additional ligands can be conveniently observed in situ via reflection-
absorption UV-vis spectroscopy. The reversible nature of this interaction allows for dissociation of
Ni–pyz bonds, and thus, change of nickel cation spin state, upon expansion of the monolayer.

Keywords: nickel porphyrinate; spin crossover; ruthenium phthalocyaninate; supramolecular; axial
coordination; air/water interface; Langmuir monolayer; optical response

1. Introduction

Axial coordination of molecules and anions to metal centers in tetrapyrrole compounds
represents one of the generally acknowledged approaches to control photophysical and
redox properties of these compounds, occurring in a large number of natural processes
and technical applications [1]. It ranges from bonding of oxygen to the heme complex in
hemoglobin of living beings [2,3] to formation of man-made molecular systems employing
nanocarbons [4,5] and organic dyes [6,7] as extra-ligands. This coordinating ability of
cation in a tetrapyrrolic environment can be exploited for development of coordination
polymers of different dimensionalities and sophisticated bioinspired architectures [8–11].
Axial coordination can improve photosensitizing efficiency of tetrapyrrole-based anti-
cancer drugs [12], modulate redox-activity of cytochromes and alter extracellular electron
transfer [13], affect charge transfer kinetics within surface-bound porphyrins [14], etc.

In this context, one of particularly interesting features of tetrapyrrolic chemistry is the
coordination-induced spin crossover (CISCO) [15]. This phenomenon, as the name implies,
involves switching of the spin states of the metal center upon increase of the coordination
number (CN). On the one hand, the interest in this process is explained by its relevance
to naturally occurring switching between S = 2 and 0 spin states upon binding of oxygen
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to iron cation in heme molecules [2]. On the other hand, compounds, which demonstrate
such behavior, are becoming popular components of sensors, materials with tunable optical
and magnetic properties, and spintronic devices [16,17]. Due to the clearly recognizable
photophysical properties of porphyrinoids, this switching can be read out via various
spectroscopic techniques, which probe electronic structure of the tetrapyrrolic macrocycle.
Such spectroscopic studies can be especially important when direct magnetochemical
measurements of the spin states are not available.

Among tetrapyrrolic complexes, which exhibit CISCO behavior, special attention is
paid to nickel(II) complexes. Nickel(II) porphyrinates lacking axial ligands are distorted
macrocycles, where the metal center is square planar and diamagnetic (S = 0), but switches
to paramagnetic state (S = 1) upon coordination of one or two axial ligands due to the dif-
ference in occupancies of dx2−y2 and dz2 orbitals (Figure 1a,b). Importantly, binding of the
first ligand flattens the macrocycle and also facilitates the binding of the second one. While
archetypal Ni(II) complexes, such as octaethylporphyrinate, NiOEP, and tetraphenylpor-
phyrinate, NiTPP, do not tend to coordinate additional ligands unless dissolved in almost
pure N-donor solvents [18], specially tailored porphyrins can have much greater affinity
for axial coordination, which obviously expands their possible application area.

Studies of axial coordination of N-donor ligands to nickel porphyrinates were started
in early 1960′s on the example of Ni(II) complex with mesoporphyrin IX dimethyl ester,
whose UV-vis spectra in chloroform and pyridine differed drastically, exhibiting ca. 30 nm
bathochromic shift of the Soret band in coordinating solvent (Figure 1c,d); moreover, the
latter solution showed clearly paramagnetic character [19]. Later, the influence of such
coordination on conformational state of the porphyrin ring and various spectroscopic sig-
natures of this influence were studied [18,20–22]. These studies emphasized the importance
of electronic effects both in the porphyrin ring and in axial ligands to provide optimal
balance between σ-donor versus π-acceptor bonding [15].
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Figure 1. (a) axial coordination to Ni(II) porphyrinates, leading to formation of high-spin pyramidal and bipyramidal
complexes with coordination numbers CN = 5 and 6; (b) partial molecular orbital scheme, depicting the electronic structure
of low- and high-spin states of Ni(II) porphyrinates (adapted from Reference [23]); (c,d) Ni(II) complex with dimethyl ester
of mesoporphyrin IX, for which axial coordination was observed for the first time, and corresponding spectral changes in
the Soret band region upon increase of pyridine fraction in the solvent (adapted from Reference [19]).

A new round of research on Ni(II) multistable complexes began with the develop-
ment of novel approach towards switching of magnetic properties of these molecules,
namely light-induced spin change by photodissociable external ligands [24]. The au-
thors used azopyridine ligands capable of photoisomerisation between cis- and trans-
states, which in turn possessed different affinity to Ni(II) metal center in electron-deficient
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tetra(pentafluorophenyl)porphyrin complex (Figure 2a). The ratios of coordinated and non-
coordinated forms at photostationary states could be regulated by bulkiness of substituents
in the azopyridine ligands.
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Following this principle, covalent attachment of azopyridine moieties to the porphy-
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solution at room temperature [25] (Figure 2b). Modification of the movable handle with 
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Figure 2. (a) coordination of photodissociable external ligands to Ni(II) tetra(pentafluorophenyl)porphyrinate [24]; (b) re-
versible light-induced magnetic switching of azopyridine functionalized Ni(II) porphyrin [25]; (c) pH-dependent spin
switch, acting in aqueous solution; here G[2.0] stands for hydrophilic dendritic glycerol substituent [26]; (d) electron
deficient Ni(II) porphyrinate, acting as a colorimetric “naked eye” selective sensor of CN− anions [27]; (e) cofacial Ni(II)
porphyrin dimer exhibiting efficient binding of 1,4-diazabicyclo[2.2.2]octane with Ni(II) metal centers [28].

Following this principle, covalent attachment of azopyridine moieties to the porphyrin
core afforded photoactive complexes exhibiting magnetic bistability in homogeneous so-
lution at room temperature [25] (Figure 2b). Modification of the movable handle with
electron-donating substituents allowed controlling the efficiency of light-induced spin state
switching. For example, introduction of the ionizable OH-group afforded pH-responsive
magnetic switch [26], whose compatibility with aqueous solutions was improved by in-
troduction of G[2.0]-hydrophilic dendrimeric substituents (Figure 2c). In this context,
further design of Ni(II) complexes with optimized electronic and sterical features allowed
development of receptors capable of binding guest molecules [28] or important analytes
such as, for example, cyanide anions [27] (Figure 2d,e).

These examples provide an important insight: if a potential axial ligand is forced
onto the metal center by an external stimulus, binding becomes highly probable. At this
point, a question arises, can one forcibly manipulate a porphyrin disc in such a way that



Molecules 2021, 26, 4155 4 of 13

nickel metal center would be in close proximity to a potential extra-ligand and bind with it
without chemical modification and utilization of excessive concentrations?

In the present work we study the possibility to achieve CN5 and CN6 states for a
readily available nickel(II) tetraphenylporphyrinate, NiTPP, via forced axial coordination
by pyrazine ligands incorporated into ruthenium(II) tetra-15-crown-5-phthalocyaninate,
CRPcRu(pyz)2 (Figure 3). We propose to achieve the necessary mutual orientation of the
components by placing them at the air/water interface, and lateral compression will be
used as the driving force for the controlled forced rapprochement of the nickel metal centers
and the coordinating ligands.
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Figure 3. Components of a supramolecular garland, formed by forced coordination of pyrazine ligands to Ni(II) centers in
the present work.

2. Materials and Methods

Complexes NiTPP and CRPcRu(pyz)2 were synthesized using the previously re-
ported procedures [29,30]. Their chemical structures are shown in Figure 3. Right prior to
the formation of the corresponding Langmuir monolayers, complexes were purified by
column chromatography on neutral alumina.

The solutions of NiTPP and CRPcRu(pyz)2 for spectral and Langmuir monolayer
studies were prepared in distilled chloroform. Concentrations used were ca. 5 × 10−6 M
for the nickel porphyrinate and ca. 1 × 10−5 M for the ruthenium complex. In case of
mixed monolayers study, the component solutions were mixed in appropriate volumes to
achieve a 1 to 1 molar ratio before the spreading onto the water surface.

Langmuir–Blodgett device KSV Minitrough (Espoo, Finland) with PTFE trough with
surface area of 273.0 cm2 and moveable barriers made of hydrophilic polyacetal was
used for Langmuir monolayer formation. Compression isotherms were recorded using
automated Langmuir balance and platinum Wilhelmi plate. The monolayers were formed
by spreading chloroform solutions onto the air/water interface using a chromatographic
syringe. Then the system was left undisturbed for 10–15 min in order for the solvent to
evaporate from the interface. After that, monolayer compression at the rate of 5 mm min−1

commenced. Expansion of compressed monolayers was carried out with the same rate.
Ultrapure water (18 MΩ cm) deionized by a Milli-Q water purification system (Millipore,
Burlington, MA, USA) was used as a subphase in Langmuir monolayer studies. All
experiments were carried out at 25 ◦C in air.

In situ absorbance UV-vis spectra of monolayers on aqueous subphases were recorded
in the reflection-absorption mode according to a previously described technique [31]. The
measurements were carried out in the wavelength range of 350–900 nm using an AvaSpec-
2048 fibre optic spectrometer equipped with a halogen light source AvaLight HAL (Avantes,
Apeldoorn, The Netherlands). Light source wavelength range was limited by a 350 nm
longpass filter to avoid harsh UV photodamage of the studied monolayers. The UV-vis
reflectometric probe with a fibre diameter of 400 µm combined with a six-fibre irradiating
cable was placed perpendicularly to the subphase surface at a distance of 2–3 mm from
the monolayer. The signal obtained upon reflection of light from the subphase surface
immediately before the monolayer spreading was used as a baseline.



Molecules 2021, 26, 4155 5 of 13

3. Results

At the first stage of the present study, we have measured the UV-visible spectra of the
NiTPP and CRPcRu(pyz)2 chloroform solutions as precursors for Langmuir deposition.
The obtained spectra are provided in Figure 4. Curve 1 shows characteristic UV-vis
spectrum of a nickel tetraphenylporphyrinate in chloroform solution with a prominent
Soret band ca 415 nm. Spectrum of CRPcRu(pyz)2 (curve 2) in chloroform demonstrates a
number of absorbance bands, characteristic to ruthenium crown-phthalocyaninates [32–35].
It should be noted that none of them overlap strongly with the NiTPP Soret band. As
expected, UV-vis spectrum of a mixed solution with 1 to 1 molar ratio (Figure 4, curve 3)
represents a sum of the component spectra, signifying that no chemical interactions take
place between the porphyrinate and phthalocyaninate in the solution.
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Figure 4. UV-vis spectra of (1) 5.1 × 10−6 M NiTPP, (2) 1 × 10−5 M CRPcRu(pyz)2 solutions in
chloroform, and an UV-vis spectrum of (3) the mixed solution of both in 1:1 molar ratio (concentration
of each component is 3.4 × 10−6 M).

Continuing the study of the individual compounds in question, we have formed the
monolayers of NiTPP and CRPcRu(pyz)2 at the air/water interface. Obtained surface
pressure–mean molecular area isotherms of these monolayers (Figure 5a, curves 1 and 2)
both show typical forms for true Langmuir monolayers: regions, where compression does
not lead to an increase of surface pressure at the right side of the graph, and a sharp bend
at the limiting mean molecular area, where the molecules compressed in the monolayer
start to interact with each other leading to subsequent growth of the surface pressure.

The isotherm for the NiTPP monolayer (Figure 5a, curve 1) exhibits a limiting molec-
ular area value ca. 150 Å2. Curiously, square approximation of the NiTPP molecule with a
side of 12.4 Å (Figure 5b) yields theoretical molecular area of ~154 Å2, which can indicate
initial face-on orientation of the complex at the air/water interface. Moreover, the slight
bend of the isotherm ca. 85 Å2 corresponds well to a theoretical area that can be occupied
by NiTPP molecule on its edge (rectangular approximation with sides of 12.4 and 7.2 Å,
and thus area of ~89 Å2), indicating that at this compression stage, the molecules assume
edge-on orientation in the monolayer.
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In the case of CRPcRu(pyz)2 (Figure 5a, curve 2), the observed limiting area value
amounts to ca. 300 Å2, which corresponds to neither smallest nor largest possible areas
that a crown-phthalocyaninate molecule can occupy at the interface. Considering the
fact that CRPcRu(pyz)2 bears two axial pyrazine ligands, which are quite hydrophilic,
face-on orientation of the molecule is most likely. The observed discrepancy between the
experimental molecular area and the theoretical one is commonly explained by hydrophilic
and labile nature of the crown-ether moieties, which can be partially immersed into the
aqueous subphase and/or deformed slightly in the monolayer [36–39].

Apart from certain bathochromic shifts of the whole spectra that arise due to change
in polarity upon transfer from organic solvent phase to the air/water interface, the UV-
vis spectra recorded in situ for the NiTPP and CRPcRu(pyz)2 individual monolayers
upon their compression (Figure 6a,b, respectively) exhibit only a gradual increase of the
absorbance values with decrease of the mean molecular area values. This is explained by
the increase of the density of the light absorbing molecules per unit of area at the interface
upon lateral compression of the monolayer. No shifts of the initial absorbance bands nor
appearance of new bands are observed upon compression. This means that no significant
changes in aggregation state of the studied complexes in their individual monolayers, let
alone the coveted change of the nickel metal center coordination number, take place in
these monolayers, as was well expected.

Having built the foundation in form of the data on individual monolayers, we
can move on to the exciting part of this study, i.e., the mixed Langmuir monolayers
of CRPcRu(pyz)2 and NiTPP. As was mentioned before, the UV-vis spectrum of a solution
of these two complexes in chloroform (from which the Langmuir monolayers are eventually
formed) shows no shifts of the absorbance bands, indicating absence of any interaction of
the components in the solution (Figure 4).
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Deposition of this solution onto the air/water interface as per Langmuir technique and
subsequent compression of the resulting monolayer leads to some interesting observations.
First of all, compression isotherm of the NiTPP and CRPcRu(pyz)2 mixed monolayer
(Figure 5a, curve 3) differs drastically from the theoretical one for non-interacting compo-
nents. As it is a mixed monolayer, the mean molecular area values represent area occupied
by some ‘average’ molecule in the monolayer. The experimental limiting mean molecular
area value for the this mixed monolayer amounts to ca. 280 Å2.

In order to analyze this value somehow, it is convenient to compare it to the molecular
areas of the individual components, as observed in the respective monolayer compression
isotherms. To do so, we can employ the following formulas:

Ath
mix = x·Aind

NiTPP + (1− x)·Aind
CRPcRu(Pyz)2

(1)

∆Amix = Ath
mix − Ath

mix (2)

where Ath
mix is the calculated theoretical limiting molecular area occupied by imaginary

average molecule of the mixed monolayer assuming no interaction between the individual
components occurs in the monolayer; Aind

NiTPP and Aind
CRPcRu(Pyz)2

are limiting molecular
areas of NiTPP and CRPcRu(pyz)2 observed in respective individual monolayers; x is the
molar fraction of the first component, in our case with 1:1 molar ratio, this fraction amounts
to 0.5; Aexp

mix is the experimental limiting area observed for the mixed monolayer; and ∆Amix
is the difference between the experimentally observed and theoretically ideal areas for the
mixed monolayer.

Plugging the corresponding values into Formulas (1) and (2) gives ∆Amix of +55 Å2.
Positive sign of this value indicates that repulsive interaction between the components of
the mixed monolayer takes place. Quite significant positive value also indicates that no
initial interaction between NiTPP and CRPcRu(pyz)2 occurs before further compression.
The logic being that, if the complexes were to form a coordination bond, they would have
needed to assume edge-on orientation and approach each other; and thus, a negative
∆Amix would have been observed, which is not the case here.
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Lateral compression of NiTPP × CRPcRu(pyz)2 mixed monolayer leads to a peculiar
evolution of its UV-vis spectra (Figure 7a). Initially, absorbance bands of both components
are in the positions, where they have been observed for the individual systems: NiTPP Soret
band maximum is located ca. 432 nm, and Q-bands of both compounds are superimposed in
the range from ca. 530 to 700 nm, with a dominating CRPcRu(pyz)2 band at 663 nm. While
for CRPcRu(pyz)2 bands only a progressive increase of the absorbance intensity is observed
upon compression of this mixed monolayer (as was the case for individual monolayers
as well), indicating absence of any changes happening to this complex, evolution of the
NiTPP Soret band is much more interesting. Figure 7b shows it in a clearer fashion.
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It can be seen that initially the dominant wavelength of this band is 432 nm, and a small
shoulder at 450 nm is already observed at the compression to the limiting mean molecular
area of the mixed monolayer (ca. 280 Å2). At this mean molecule area, the molecules are
already in contact in the monolayer, and we can assume that some of them are involved
in coordination interactions. Further compression of the NiTPP × CRPcRu(pyz)2 mixed
monolayer leads to redistribution of these bands in favor of the latter, which becomes
a dominant sharp band at the monolayer compression stage with mean molecular area
value ca. 115 Å2 (or with surface pressure of 19–20 mNm−1). Quite intriguing, this shift of
the Soret band does not stop at this point. Further compression of the mixed monolayer
leads to a broadening and long-wave shift of this band, which ends in the formation of
a new absorption band with a maximum at 455 nm with a simultaneous small loss of
absorbance value.

These observations can be conveniently summarized as a dependence of the Soret band
maximum absorbance wavelength on mean molecular area value (and thus, corresponding
surface pressure). Such a graph is provided in Figure 8. It can be seen that the evolution
of this band during the mixed monolayer compression is a stepwise process: at the first
stage, the Soret band does not change and stays at ca. 432 nm, then a bathochromic shift
by 18 nm occurs and is further followed by another 5 nm shift. These spectral changes are
indubitably explained by axial coordination of the nickel center in the porphyrinate, first, in
one axial position, and then in the second. As almost exactly the same bathochromic shifts
were observed upon formation of the CN5 and CN6 complexes in the literature [40–42].
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Notably, the shifts reported in the literature are almost identical numerically, and first
extra-coordination leads to a large shift, while the second is accompanied by only several
nanometers shift; exactly like in the data presented here. Clearly, the spectral shifts
observed in our case are indicative of nickel metal center consistently attaining CN5 and
CN6 upon compression in NiTPP × CRPcRu(pyz)2 mixed monolayer.
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arrow denotes the direction of the compression (rapprochement of the molecules in the monolayer)
for clarity.

Another interesting observation is that in the mixed monolayer, usually strong Soret
band of NiTPP does not dominate the spectra at later stages of compression. This, together
with loss of absorbance of the band upon its shift mentioned above, can be considered
another evidence for occurring interaction between NiTPP and CRPcRu(pyz)2, which is
probably explained by differences in molar extinction of nickel complexes with CN4, CN5,
and CN6.

Thus, the observed behavior is highly likely due to formation of biaxial coordina-
tion compound between NiTPP and CRPcRu(pyz)2 in the compressed monolayer. At
the later stages, when the Soret band shift is maximal, indicating that CN6 nickel metal
center is present in the system, most of the monolayer is probably comprised of extensive
coordination polymers, in which each nickel metal center is bound with two ruthenium
metal centers via pyrazine linkers. This is achieved only at such molecular area values,
where both porphyrinate and phthalocyaninate molecules assume edge-on positions, and,
due to close packing of the monolayer, make the closest possible contact between the
coordinating pyrazine moiety and the nickel atom, thus, forcing the axial ligation. The
general concept is illustrated by the cartoon in Figure 9 to clearly convey the nature of
the hypothesized supramolecular assemblies. It is notable, that in contrast to previously
reported cases, CN6 nickel in the present work was observed in a chemically unmodified
tetraphenylporphyrinate complex.
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Figure 9. A cartoon illustrating the proposed formation of a supramolecular assembly of NiTPP and
CRPcRu(pyz)2 in the mixed Langmuir monolayer upon its lateral compression.

Unfortunately, direct confirmation of the nickel metal center spin state, for example
via EPR technique, is not possible at the air/water interface, and all our attempts to
transfer the studied mixed monolayers onto solid substrates via Langmuir-Blodgett or
Langmuir-Schaefer deposition have shown that in the film on solid substrate metal center
in the porphyrinate complex returns to a mundane CN4 state. This is probably due to
the extremely metastable nature of the system in question, as it exists in the unusual CN5
or CN6 state in form of Ni···Ru dimers or Ni···Ru···Ni···Ru garland-like coordination
polymers in a compressed Langmuir monolayer, and any disturbances, like movement of a
substrate through it, lead to local relaxations of the supramolecular structure and release of
the NiTPP back into conformation with CN4 nickel center.

On the other hand, this exact dynamic behavior allows for control of nickel spin
state in the mixed NiTPP × CRPcRu(pyz)2 Langmuir monolayer, since expansion of the
compressed system also leads to reversal of the forced coordination, as evidenced by
return of the NiTPP Soret band back to its initial position upon decompression (Figure 10).
Notably, these spectral changes are repeatable under compression-expansion cycling.
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Figure 10. NiTPP Soret band upon lateral compression and expansion of NiTPP × CRPcRu(pyz)2

mixed monolayer. Presented spectra correspond to the first cycle of lateral compression from mean
molecular area of (1) 220 Å2 to (2) 60 Å2, (3) monolayer expansion to 220 Å2, and (4) another
compression to 60 Å2.
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This proof-of-concept study shows the possibility to tune the magnetic properties
of nickel porphyrinates using a methodology unexplored before. Moreover, because the
present phenomenon takes place at air/water interface, this brings potential application of
such CISCO-enabled systems closer, as soft matter can be considered much more practical
than bulk solutions in organic solvents. Since porphyrins and phthalocyanines, being
redox-active ligands, exhibit extremely diverse and rich electrochemical properties, further
development of this approach to control of metal center spin state can potentially lead to
creation of systems, where redox-activity can be fine-tuned via CISCO and vice versa, in
the future.

4. Conclusions

In the present work we show that CN5 and CN6 nickel(II) in an unmodified tetraphenyl-
porphyrin can be achieved via forced axial coordination with a dipyrazine ruthenium(II)
crown-phthalocyaninate, where the latter is used as a molecular scaffold that aligns nickel
cations within the pyrazine-ruthenium-pyrazine coordination axis at the air/water inter-
face. Lateral compression of these molecules at the water surface leads to their rapproche-
ment and initiation of the nickel-pyrazine binding, which in its turn results in formation
of bimolecular dimers with pentacoordinate Ni(II) center at the first stage, and then to
further appearance of garland-like supramolecular heterometallic polymer, where nickel
metal center assumes coordination number six. These transformations were found to be
reversible, and nickel metal center can be prompted to release the extra-ligands upon
relaxation of the mixed monolayer.
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