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Sustained clinical remission (CR) without drug treatment has not been achieved in patients
with rheumatoid arthritis (RA). This implies a substantial difference between CR and the
healthy state, but it has yet to be quantified. We report a longitudinal monitoring of the drug
response at multi-omics levels in the peripheral blood of patients with RA. Our data reveal
that drug treatments alter the molecular profile closer to that of HCs at the transcriptome,
serum proteome, and immunophenotype level. Patient follow-up suggests that the molecular
profile after drug treatments is associated with long-term stable CR. In addition, we identify
molecular signatures that are resistant to drug treatments. These signatures are associated
with RA independently of known disease severity indexes and are largely explained by the
imbalance of neutrophils, monocytes, and lymphocytes. This high-dimensional phenotyping
provides a quantitative measure of molecular remission and illustrates a multi-omics
approach to understanding drug response.
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heumatoid arthritis (RA) is an autoimmune disorder

associated with inflamed joints and often accompanied by

systemic symptoms'. Disease-modifying antirheumatic
drugs (DMARDs) have enabled us to reduce disease activity and
halt the progression of RA*™% however, unmet needs persist
(such as pain, physical functionality, and fatigue), which have not
been resolved even with DMARDs’. Additionally, sustained
remission without drug treatment, drug-free remission, has not yet
been accomplished®, implying that DMARDSs treat symptoms of
RA but may not fully address molecular mechanisms that char-
acterize patients with RA”. Indeed, it is unclear whether the
achievement of clinical remission (CR) reflects the state in which
molecular profiles are closer to those of healthy individuals
(healthy controls; HCs) than to those of RA patients, which we
refer to as molecular remission (MR).

There is a substantial lack of understanding regarding the
alignment between the clinical and molecular effects of DMARD
treatment. Transcriptomics studies have revealed the molecular
effects of TNF blockers or tocilizumab (TCZ) in the peripheral
blood® or synovial tissues’ of patients with RA. Although these
attempts have shown significant alterations in gene expression by
drug treatments, because of the lack of data from HCs, the cor-
relation between gene expression levels in patients after drug
treatment and those in HCs remains unknown. Thus, knowledge
of the molecular aberrations that persist in patients with RA, even
after DMARD treatment, is scarce. Additionally, studies of the
effects of DMARDs from “omics” perspectives other than tran-
scriptomics are limited'%12, Therefore, multi-omics monitoring
of changes in molecular features with DMARD treatments as well
as sufficient data from HCs is highly in demand to elucidate the
molecular foundation for the development of next-generation
DMARD:s.

Here, we conducted a longitudinal multi-omics study of HCs
and patients with RA treated with widely used DMARDs. The
DMARD:s used in this study include methotrexate (MTX), a first-
line DMARD whose target is not clearly understood, and inflix-
imab (IFX) or TCZ, which are biologics targeting tumor necrosis
factor receptor and interleukin 6 signaling, respectively. Our
integrative analysis revealed a greater effect of IFX and TCZ than
MTX on molecular profiles and that molecular profiles after
treatment define stable CR. Moreover, we identified molecular
signatures that were resistant to DMARDs, as well as their
responsible immune cell subsets. This knowledge will facilitate
drug discovery and contribute to the development of precision
therapy for RA.

Results
Molecular characteristics of drug-naive patients with RA. The
overarching goal of our study is to understand the extent to which
drug treatments return the molecular phenotypes in RA to the
healthy state. To achieve this goal, we first elucidate the molecular
features that characterize drug-naive RA based on multi-omics
profiling of blood samples from 45 drug-naive patients with RA
and 35 HCs (Fig. la and Supplementary Table 1). Our mea-
surements encompass entities in three molecular classes: the
whole-blood transcriptome (12,486 probes; 45 RA and 35 HC),
serum proteome (1070 aptamers; 44 RA and 35 HC), and per-
ipheral cell counts (26 cell types; 34 RA and 35 HC). Absolute cell
counts and cell counts relative to white blood cells were used. We
identified 6006 transcripts, 255 serum proteins, and 20 cell vari-
ables corresponding to 18 cell types that are significantly asso-
ciated (moderated f-test; FDR <0.05) with drug-naive patients
with RA compared with HC (Fig. 1b and Supplementary Data 1).
The challenge of utilizing these RA-associated variables to
evaluate the therapeutic effect on molecular phenotypes is to

quantify the composite effect of drug treatment rather than just
the univariate effect. Some drugs might have small effects on RA-
associated variables but consistently push them back to the
healthy state. In contrast, some drugs might have strong effects,
but the directions of those effects are distributed randomly
toward the healthy state and the RA state. In this situation, it is
difficult to determine which drug has a more beneficial effect on
molecular phenotypes. Therefore, a metric that unifies RA-
associated variables is required for an objective assessment of the
drug effect. To develop such a metric, we constructed statistical
models that classify individuals as RA or HC based on a
molecular profile by using a partial least-squares regression. Data
were split into five subsets; four subsets were used for training,
and the remaining subset was used as test data to estimate the
accuracy of the model. We used each subset as test data for the
model trained by the remaining four subsets and repeated this
process three times, resulting in 15 models trained by different
subsets of data. The transcript-based, protein-based, and cell-
count-based models, respectively, classified subsets into RA or
HC with accuracies, on average, of 98.8%, 92.9%, and 86.5%
(Fig. 1c). The accuracies of models trained by permuted data were
39.6%, 41.4%, and 51.0%, on average, for the transcript-based,
protein-based, and the cell-count-based model, respectively,
indicating that our models outperformed random assignment
(Supplementary Fig. 1). The prediction accuracies of the 15
models were very similar (Fig. 1c), and the contributions of
variables to the predictions were highly correlated (Supplemen-
tary Figs. 2-4). This result indicated that the PLSR models
captured predictive variables that were generally informative in
our data. Therefore, we used the average prediction from the 15
models as a final prediction from each data type. Hereafter, we
refer to an ensemble of 15 models as a model. Using each data
type as input, our models produced an RA probability ranging
from 0 to 1, where an RA probability greater than 0.5 was
classified as RA, and a probability less than 0.5 was classified as
HC (Supplementary Fig. 5). As we described above, we built the
models based on data from 45 patients with RA who had not
received any medications, while patients who had been treated
with any medication were removed from the training process. In
this respect, we examined whether the models introduced upward
bias on RA probability for the samples used in the training
process. To achieve this goal, we compared RA odds between 45
patients who were used in the training and 22 patients who had
been treated with medications but did not respond to them
(Supplementary Table 2) and found no significant differences in
RA odds estimated by the models (Supplementary Fig. 6). These
results indicated that our ensemble models were reasonably
accurate and did not introduce significant bias into the training
samples.

To understand the function of biomolecules that are
important for the classification of RA and HCs, we analyzed
the relative contribution of variables in the prediction (Fig. 1d,
f, g and Supplementary Data 1). Transcriptional changes are
likely to reflect alterations of cell composition in whole blood.
To clarify the contribution of each cell type to the levels of the
transcripts, we assessed the expression profiles of up- or
downregulated genes based on the reference transcriptomes
of purified 15 immune cells measured using the Affymetrix
HG-U133 Plus 2.0 array (Supplementary Fig. 7). Indeed,
transcripts that were upregulated in RA, such as OSERI-ASI,
LOC100419583, and SUPT20H, were all highly expressed in
neutrophils, and those that were downregulated in RA, such as
EEF2K, IRF2BP2, and RAII, tended to be expressed at low levels
in neutrophils and at high levels in natural killer (NK) cells
(Supplementary Fig. 8). To confirm this trend globally, the
single-sample GSEA method!? was used to merge the gene
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Fig. 1 Identification of molecular signatures associated with drug-naive patients with RA. a Study design. TR, PR, and CC represent the transcript-based
model, the protein-based model, and the cell-count-based model, respectively. b The number of variables associated with drug-naive patients with RA. A
linear regression model was used to compare the levels of variables between RA and HC accounting for age. For the transcripts, the RNA integrity number
was also included in the model. The false discovery rate was controlled at 5%. ¢ Cross-validation performances of RA diagnostic models. PLSR was
employed to build predictive models. Fifteen PLSR models for each data type were generated using 15 different portions of samples as training data. The bar
plot represents the average prediction accuracies against the testing data with the standard deviation. White diamonds indicate the expected accuracy of
the null models estimated by 1000 sample permutations. d The top ten important transcripts for discriminating patients with RA and HC. Error bars
represent the variabilities of the contribution to the model prediction that originated from the model ensemble. e Expression profiles of important
transcripts across 15 immune cells. Meta-expression features of important upregulated or downregulated transcripts in RA were calculated separately
using the ssGSEA method and standardized across immune cells. f The top ten important cell types for discriminating between patients with RA and HC. A
suffix of “r" indicates that the cell counts were normalized to the total number of white blood cells, and a suffix of “a” indicates absolute cell counts. g The
top ten important serum proteins for discriminating patients with RA and HC. Error bars represent the variabilities of the contribution to the model
prediction that originated from the model ensemble. h Biological enrichment of influential serum proteins in the model. Serum proteins with a variable
importance greater 50 were used for enrichment analysis using hypergeometric test. The biological concepts enriched at the significance level of p value
<0.05 and FDR <0.05 are displayed. Red nodes represent biological concepts enriched with proteins that are upregulated in RA. Nodes are connected if
there are shared genes in two biological pathways. The error bars represent standard errors
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expression levels of 2110 genes with an importance measure
exceeding 50 for discriminating RA vs HC into a single meta-
expression in each of 15 immune cells. The genes that were
upregulated in RA were highly expressed and those that were
downregulated in RA were weakly expressed in neutrophils
(Fig. le). These results have also been confirmed at the protein
level based on public reference proteomes of 26 immune cells'*
(Supplementary Fig. 9). The cell-count-based model indicated
that the decrease in the number of NK cells relative to white
blood cells and the increase in the absolute number of
neutrophils was associated with patients with RA (Fig. 1f).
Together, the cell-count-based model and transcript-based
model both indicated an elevation of neutrophils as a hallmark
of RA. Indeed, increased absolute numbers of neutrophils,
referred as “left shift,” are often seen in inflammatory diseases
including RA'®. Known protein biomarkers for the diagnosis of
RA, such as C-reactive protein and interleukin 16'°, were
identified as highly influential variables in the protein-based
model (Fig. 1g). We then investigated the immune cells that
contribute to 107 serum proteins with an importance measure
greater than 50 based on the reference proteomes'. However,
both up- and downregulated proteins were highly expressed in
the same cell types (Supplementary Fig. 10), suggesting that
levels of serum proteins could not be explained simply by
cellular protein profiles but are influenced by various tissues
such as inflammatory joints or liver'”. To understand the
functions of RA-associated serum proteins, we conducted
pathway enrichment analysis using a gene set collection of
the canonical pathway and hallmarks from MSigDB'8. Proteins
involved in complement cascade were enriched (hypergeo-
metric test; FDR <0.05) with the upregulated proteins (Fig. 1h
and Supplementary Table 3). Activation of a complement
system has been reported in patients with RA'%, which indicates
that the prediction from the protein-based model reflects the
known molecular signature of RA.

Drug treatments ameliorate the molecular signatures of RA. To
investigate the effects of different treatments on molecular sig-
natures in patients with RA, we collected blood samples long-
itudinally throughout the course of the MTX, IFX, and TCZ
treatments (Fig. 2a and Supplementary Table 4). For each drug,
ten patients with RA who were classified as good responders by
European League Against Rheumatism response criteria® at
24 weeks after the initiation of drug treatment were subjected to
multi-omics profiling, and then RA odds were calculated using
the models. At 24 weeks of treatment, all three drugs significantly
reduced the RA odds estimated based on transcripts, proteins, or
immunophenotypes (Fig. 2b). The reduction of RA odds occurred
within 4 weeks after drug administration (Fig. 2c). The time
course of improvements was similar for the three drugs, but the
therapeutic effect of TCZ on serum proteins was significantly
greater than those of IFX and MTX throughout the treatments
(Welch's t-test; p <0.05, all weeks). To understand the relation-
ships of treatment effects on the three models, we conducted
pairwise comparisons of RA odds. We found a significant con-
sistency between the protein-based model and the cell-count-
based model, while the transcript-based model showed modest
positive correlations with the other models (Supplementary
Fig. 11). Additionally, responders and inadequate responders
were significantly separated by the protein-based model and the
cell-count-based model (Fig. 2d). Although responders tended to
show a greater reduction of RA odds in the transcript-based
model than inadequate responders, the difference did not reach
statistical significance level. This was not because the drug
treatments effectively normalized the transcriptional signatures

associated with RA both in responders and inadequate respon-
ders, but the treatment effects on transcriptional signatures were
limited even in responders, suggesting the presence of unmet
needs at the molecular level in transcriptomes. Taken together,
these results indicate that the drug treatments significantly nor-
malize the RA disease signatures of multiple molecular classes,
and the magnitude of the therapeutic effect on molecular profiles
reflects the clinical response, especially in proteins and cell-
counts-based models.

In addition to the model-based assessment of treatment
effects, we also characterized the effects of drug treatments at
the level of each transcript, protein, and cell type (Fig. 2e and
Supplementary Data 2). Approximately 600 transcripts were
differentially expressed (FDR <0.05) in patients treated with
IFX or TCZ, but no genes exceeded the significance criteria for
MTX treatment (Fig. 2e). In TCZ-treated patients, most
transcripts were altered in the direction toward the healthy
state. Conversely, in IFX-treated patients, a sizable number of
those transcripts were altered in the direction away from the
healthy state (Fig. 2e). This directional consistency corre-
sponded to a greater reduction in the RA odds in TCZ-treated
patients assessed by the transcript-based model (Fig. 2c).
Transcriptional changes induced by IFX and TCZ treatments
mainly occurred in genes that were expressed at high or low
levels in neutrophils (Supplementary Fig. 12a), suggesting that
the neutrophil signature was normalized by the drug
treatments. The decrease in neutrophil abundance was
confirmed by actual cell count data (Fig. 2f), indicating that
the drug treatments reduced the neutrophil left shift observed
in unmedicated patients with RA (Fig. 1f). TCZ treatment
showed a strong effect on serum proteins (Fig. 2e), which was
also indicated by the model-based analysis (Fig. 2c). MTX
affected a greater number of proteins than IFX, but a sizable
number of those proteins were altered in the direction away
from the healthy state (Fig. 2e). This directional inconsistency
corresponded to a moderate reduction of RA odds in MTX-
treated patients, as assessed by the protein-based model
(Fig. 2c). Pathway analysis of serum proteins showed that
proteins involved in complement pathways were enriched in
the proteins affected by IFX and TCZ, but not by MTX
(Supplementary Fig. 12b). Complement pathways are also
enriched in the proteins associated with unmedicated patients
with RA (Fig. 1h), suggesting that IFX and TCZ specifically
targeted pathways that were aberrantly activated in RA. IFX
and TCZ also affected a greater number of cell types than MTX
(Fig. 2e), including neutrophil and NK cells (Fig. 2f), the two
most informative cell types in the model (Fig. 1f).

Relations between molecular remission and disease severity.
Next, we evaluated MR states using RA diagnostic models. Spe-
cifically, we defined MR as a state in which the model classifies a
patient with RA as an HC (RA probability <0.5). We examined
the achievement of MR in good responders and inadequate
responders based on their molecular profiles at 24 weeks (Fig. 3a).
The three drugs had similar effects based on immunophenotypes,
whereas MR at protein and transcriptional levels is achieved only
by biologics (Fig. 3b). To clarify the relationships between MR
and CR or functional remission, we computed the correlation
between MR in each molecular class and CR or functional
remission indexes at 24 weeks of treatment. We used disease
activity score-28 for RA with the erythrocyte sedimentation rate
(DAS28-ESR) for general CR, the clinical disease activity index
(CDAI) for CR without considering acute phase response-
dependent parameters, and the health assessment questionnaire
disability index (HAQ-DI) for functional remission. Molecular
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Fig. 2 Evaluation of the effects of drug treatments on molecular profiles. a Sample collection design of the drug response cohort. Responders and

inadequate responders to the drug treatments were defined based on EULAR response criteria. Patients who displayed a good response via the criteria at
24 weeks after the first drug administration were classified as responders; others were classified as inadequate responders. The average DAS28-ESR and
sampling timing for each group are shown. b RA probability changes induced by the treatments. RA probability was transformed to log-odds, and the log-
odds at week O were compared with those at week 24 using the paired t-test (*p < 0.05) for each treatment arm (n =10 for each drug). ¢ The temporal
change in log-odds for being RA during the treatments. The temporal effects of RA odds (n =10 for each drug) were modeled with B-spline smoothing, in
which an individual was treated as a random effect. d Correlation between the model-based assessments of drug effects and the clinical definition of drug
response. The treatment effects on RA odds were compared between responders (n =30) and inadequate responders (n = 22) by Welch's t-test. e The
number of variables affected by drug treatments (24 vs O weeks). Treatment effect was tested for each drug (n =10) via limma by taking into account the
paired samples. RIN value was included in the regression model for testing transcripts. The criterion for significance was set at a p value <0.05 and FDR
<0.05. f Neutrophil and NK cell counts before and after treatment. The asterisk represents a p value <0.05 and FDR <0.05. The upper, center, and lower
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remission defined based on serum proteins were strongly corre-
lated with DAS28-ESR but not with CDAI and HAQ-DI (Fig. 3c).
Cell-count-based or transcript-based remission was not asso-
ciated with CR or functional remission, which suggested that
these measures reflected patient characteristics which are not
quantified in the clinical indexes. Then, we further examined the
individual parameters driving association between protein-based
remission and DAS28-ESR. We found that ESR was significantly
associated with molecular remission based on the proteins
(Supplementary Fig. 13).

To elucidate the benefits of MR, we next addressed whether
there were any differences between patients in CR only and those
in CR as well as MR. To achieve this goal, we conducted a follow-
up study for up to 90 weeks after the final omics profiling
(24 weeks), 114 weeks from the initial drug treatment, in the

biologics-treated patients who were in CR based on DAS28-ESR
at week 24. These patients had received the same treatments
during the follow-up period. At 90 weeks, the patients in MR with
multiple molecular classes had a lower DAS28-ESR (linear
regression; p =0.005) and HAQ-DI (linear regression; p = 0.03)
than those who were not in MR (Fig. 3d). To account for the
differences in initial disease activity, we included DAS28-ESR,
HAQ-DI, or CDALI at the initial time of follow-up in a regression
model. In this model, the associations of MR with DAS28-ESR
(p =10.006) and HAQ-DI (p =0.03) remained the same or even
strengthened for CDAI (p = 0.03). The patients who achieved MR
in more than two molecular classes exhibited inactive disease
states throughout the follow-up period (Fig. 3e). No significant
differences were found between IFX and TCZ in DAS28-ESR
(Welch's t-test; p =0.52) and HAQ-DI (Welch's ¢-test; p =0.14)
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indexes include DAS28-ESR, CDAI, HAQ, ESR, tenderness joint counts using 28 joints (TJC28), swollen joint counts using 28 joints (SJC28), physician
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evaluate the correlation between the number of biological levels that achieved remission states and the disease activities after 90 weeks in RA patients
who were treated with biologics (n = 20). The upper, center, and lower line of the boxplot indicates 75%, 50%, and 25% quantile, respectively. The upper
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ESR, CDAI, and HAQ values during the follow-up period, which was split into 10-week intervals. For each patient, the average of multiple measurements of

the DAS28-ESR, CDAI, and HAQ values within the same interval was calculated, and then the mean of these values from different individuals was

calculated

at 90 weeks, indicating that the correlations between MR and
DAS28-ESR and HAQ in the follow-up were not merely due to
the differences in long-term drug responses to IFX and TCZ. We
also examined the individual parameters of DAS28-ESR reflecting
the relationships between long-term CR and MR. The results
revealed an association of ESR and tenderness joint counts using
28 joints (TJC28) (p<0.05) with MR status (Supplementary
Fig. 14), suggesting that MR not only influenced ESR, but also
inflammation status in joints over the long term. These results
suggest that MR is associated with long-term stable disease
inactivation in patients with RA.

Identification of residual molecular signatures. The treatments
with biologics significantly normalized the molecular signatures
of RA; however, drug treatment did not completely normalize RA
odds to the levels seen in HCs (Fig. 2b). To identify these residual
RA signatures, we compared the levels of transcripts, proteins,
and cell counts in patients with RA at 24 weeks with those in
HCs. We found 800 transcripts and 13 serum proteins with

persistent significantly different levels (FDR <0.05) from those in
HCs after treatment with MTX, IFX, or TCZ, which we refer to as
residual molecular signatures (RMSs) (Fig. 4a and Supplementary
Data 3). There were fewer RMSs specific to TCZ treatment than
after treatment with IFX or MTX, suggesting that treatment with
TCZ could normalize molecular systems that were not affected by
IFX or MTX.

Next, we investigated clinical phenotypes associated with
RMSs. We calculated meta-features'> corresponding to the
averaged level of transcriptional RMSs and protein RMSs (see
Methods) in drug responders at 0 or 24 weeks (n =10 for each
drug). The levels of meta-features in RA were significantly
different compared with those in HC, and transcriptional RMSs
were not significantly normalized by any drug (Fig. 4b). Then, the
meta-features were compared with clinical parameters each week.
We found that transcriptional RMS and protein RMS showed
weak correlations with DAS28-ESR and CDAI at week 0 (Fig. 4c)
and other disease indexes (Supplementary Figs. 15 and 16).
However, these trends were not observed at week 24. Conversely,
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morning stiffness was associated with transcriptional RMS at
week 24, but this association was not present at week 0
(Supplementary Fig. 15). Together, these results indicated that
RMSs were molecular characteristics of patients with RA that
were not associated with specific known disease severities but
could not be normalized completely with current symptomatic
treatments.

Cellular alterations explain residual molecular signatures. We
next investigated the cell types associated with RMS using
reference transcriptomes and proteomes'* from purified immune
cells. Transcriptional RMS upregulated in RA was highly
expressed in neutrophils and monocytes, and transcriptional
RMS that was downregulated in RA was weakly expressed in
these cell types (Fig. 5a). The same trend was also seen at the
protein level (Supplementary Fig. 17). In contrast, protein RMS
did not show specific expression in particular cell types (Sup-
plementary Fig. 18). We then examined whether cell counts could
explain the expression levels of transcriptional and protein RMSs
by using a regularized multivariate regression model (see Meth-
ods). Cell counts were estimated to explain 40% and 48% of the
variation of up- and downregulated transcriptional RMSs and
33% and 37% of the variation of up- and downregulated protein
RMSs, respectively. These fractions are significantly higher than
random expectations (permutation p value <0.001). The increase
in neutrophils and monocytes and the decrease in NK cells largely
explained the levels of transcriptional and protein RMSs (Fig. 5b).
Considering both expression specificity and associations with cell
counts, the increases in neutrophil and monocytes counts would
be the major driver for transcriptional RMS. Indeed, we found
significant correlations between transcriptional RMS and neu-
trophil or monocyte counts at week 0 (Fig. 5¢). However, at week
24, correlations between transcriptional RMS and neutrophil
counts were weaker than those of week 0, while the relationship
with monocytes remained the same (Fig. 5¢). This finding sug-
gests that transcriptional RMS after drug treatments is not only
due to the left shift in neutrophil, but also the left shift in
monocytes, as recently demonstrated in RA%!.

Next, we asked whether cell composition variabilities could
explain the observed differences in the levels of RMSs between
RA and HC. To evaluate this possibility, we removed cell count
effects from RMSs and contrasted the residuals between RA and
HC. Given the cell counts, the variabilities in RMSs explained by
RA diagnosis decreased but remained significantly high (p < 0.05)
(Fig. 5d), raising the possibility that expression changes at cellular
levels might also contribute to RMS. To test this option, we
compared the expression profiles of purified immune cells from
RA and HC (Supplementary Table 5) and calculated meta-
features for the expression levels of transcriptional RMSs.
Although transcriptional changes in each cell type were small,
transcriptional RMS tended to be differentially expressed in a
direction that was concordant with whole blood in the range of
cell subsets tested (Fig. 5e). To investigate a fixed effect shared
across cell types, we used a mixed-effect model and found that the
fixed effect for the transcriptional RMS upregulated in RA was
significant (p =0.008) but that for the one that was down-
regulated in RA was not (p=0.23). Together, these results
indicate that cellular-level expression changes contribute to a
fraction of the transcriptional RMS in RA, in addition to the
major effect from cell composition alterations.

Disease-wide landscape of the transcriptional RMS in RA.
Finally, we examined whether the transcriptional RMS observed
herein was exhibited by patients with other diseases because
molecular signatures shared across diseases often implicate
common molecular mechanisms, which would further increase
the clinical value of targeting transcriptional RMS. First, we
screened the blood transcriptomes of 45 disease conditions using
the NextBio database (Supplementary Fig. 19) and identified
inflammatory bowel disease (IBD) and obesity as conditions in
which transcriptional RMS was increased compared with the
controls; uremia was a condition in which transcriptional RMS
was decreased compared with the controls (Fig. 6a and Supple-
mentary Data 4). Further investigations revealed that the fold
changes in expression of the 800 genes in transcriptional RMS in
samples from patients with IBD or obesity relative to their con-
trols considerably resembled those between patients with RA and
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Fig. 6 The presence of the RA-associated RMS in other disease conditions. a The disease-wide landscape of RA RMS. The comparisons of the RA
untreatable transcript signature and publicly available disease signatures from whole blood or PBMCs were assessed by Fisher's exact test in the NextBio
database. The p values from multiple studies of the same diseases were combined by Stouffer's z-score method. The size of the dots is proportional to the
number of overlapped genes with the RA-associated untreatable transcript signatures. The red dot represents diseases with z-scores that were higher than
the top 5% of z-scores over all diseases examined. b The changes in expression were similar for the transcriptional RMS between RA and the most
associated diseases. The fold changes in the 800 transcriptional RMS between patients and controls were calculated using the raw data from the IBD study
(GSE33943; n= 45 for IBD and n=15 for controls) and the obesity study (GSE18897; n= 29 for obese and n =20 for controls). The fold changes from
each study were then compared with those determined for our RA cohort (n =45 for RA and n=35 for HCs)
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HCs than those in patients with uremia (Fig. 6b and Supple-
mentary Fig. 20). This commonality of molecular signatures
suggests that understanding molecular mechanisms underlying
transcriptional RMS might be helpful in the treatment of other
disorders in addition to RA.

Discussion

Here, we report the multi-omics analyses of cohorts of untreated
and treated patients with RA and HCs. Our longitudinal omics
data elucidate the effects of drug treatments at the molecular level.
Additionally, an integrative analysis that combines data from
different molecular classes and detailed clinical parameters has
led to a deep understanding of molecular and cellular systems
associated with drug treatment and disease severity. Our
approach of profound molecular phenotyping for well-
characterized patients is complementary to a large-scale clinical
study, which is often achieved at the expense of limited pheno-
typing and permissive inclusion criteria. Therefore, the relation-
ships between molecules and phenotypes given drug
perturbations generated from our multi-omics cohort will assist
in the implementation of successful future clinical studies or re-
interpretation of existing results.

Deep molecular phenotyping upon drug treatment revealed
that TCZ and IFX normalized the molecular profiles in patients
with RA more efficiently than MTX at transcriptome, protein,
and cell levels (Fig. 2c, e). Furthermore, TCZ could normalize
molecular signatures that could not be affected by MTX and IFX
(Fig. 4a), suggesting that TCZ is a more potent treatment for RA
at molecular levels than the other drugs. We should note, how-
ever, that since our molecular measurements were based on
peripheral blood, the extent to which the associated molecular
signatures reflect those in inflamed joints is unclear. Indeed, TCZ
did not induce CR defined by CDAI, a disease index that focuses
on joint status, and functional remission defined by HAQ-DI to
the same extent as IFX (Fig. 3a). Therefore, further investigations
are required to determine whether TCZ can also effectively
normalize the molecular signatures in the inflamed joints of
patients with RA compared with MTX and IFX.

Our protein-based model shows consistency between the pre-
viously developed biomarkers for predicting disease activity in
RA!? regarding the proteins used. Specifically, among the
12 serum proteins used in a model from Bakker et al., ten were
measured in our protein panel, and seven of them were within the
top 25% influential proteins in the model (Supplementary
Data 1). Additionally, both our serum-protein-based model and
Bakker’s model showed a good correlation with CR (Fig. 3c). The
concordance with previous results supports the reliability of our
approach.

Multi-layer molecular phenotyping also revealed greater vari-
eties in the types and levels of MR in patients with CR (Fig. 3a).
In a prospective follow-up study, we found that the number of
molecular classes in MR was associated with stable lower-disease
activity over 90 weeks of follow-up (Fig. 3e). As we described
above, Bakker’s model and our protein-based model use the same
proteins as predictors. Interestingly, the risk score from Bakker’s
model can predict radiographic progression over 2 years of
follow-up??, supporting the potential of peripheral molecular
profiles as a predictor of disease progression. However, we should
note that the sample size of our follow-up study was limited
(n =20) and the number of patients in each subgroup was small;
for instance, among the patients treated with TCZ, three patients
achieved MR in all three molecular assessments, and only one was
without MR. Thus, it is difficult to investigate relationships
between MR and clinical outcomes in each treatment and inter-
action effects of three MR indexes with outcomes. Therefore, a

large-scale study with sufficient statistical power is necessary to
validate this finding and to evaluate benefit of MR indexes for
practical implementation in clinical settings.

We identified treatment-resistant signatures in transcripts and
serum proteins (Fig. 4a), and significant fractions of the tran-
scriptional and protein RMSs were explained by cell counts
(Fig. 5b). This result indicates that transcriptional and protein
RMSs are not caused by alteration of the single cell type but by
composite effects of multiple cell types, especially the left shift in
neutrophils and monocytes. Transcriptional RMS observed in RA
was also observed in IBD and obesity (Fig. 6b). Interestingly, the
transcriptomes from patients with IBD originated from the
patients in CR??, suggesting that transcriptional RMS in RA was
also not completely normalized in IBD. Because transcriptional
RMS is mainly caused by an altered cell composition, especially
neutrophils and monocytes, the presence of transcriptional RMS
suggests that neutrophil or monocyte counts are also increased in
these conditions. Indeed, body mass index shows a positive cor-
relation with neutrophil counts?*?°, and increases in both neu-
trophil and monocyte counts have been reported in IBD?®.
Interestingly, there are relationships among RA, IBD, and obesity
in terms of their development and symptoms. For instance,
obesity has been reported to be a risk factor for the development
of RA%. Additionally, obesity reduces the response to IFX?8
and hinders the achievement of CR?°. Obesity is also closely
associated with the pathogenesis of IBD with respect to comor-
bidity and responses to drugs®’. These results suggest that the
clinical importance of transcriptional RMS is not limited to RA.

In summary, this study has revealed how the effects of MTX,
IFX, or TCZ on three biological levels—transcripts, proteins, and
immunophenotypes—are aligned with alterations of disease
activities in patients with RA. This knowledge will facilitate the
identification of biomarkers for precision therapies for these
patients. Our results also clarify the molecular signatures of
unmet needs in RA and will contribute to the development of
innovative medicines toward the achievement of a deeper MR.

Methods

Cohorts. Sixty-eight patients with RA and 42 HCs who did not have autoimmune
diseases or were not receiving any drugs were enrolled from March 2012 to June
2014 (Supplementary Data 5). Of these individuals, 67 patients with RA and 35
HCs were used for analysis of the whole-blood transcriptome, serum proteome,
and immunophenotyping, and 45 drug-naive patients with RA who were not being
treated with moderate-to-high doses of corticosteroids, immunosuppressants, or
biological agents were used for the training models. Of 68 patients, 49 were treated
with MTX, IFX, or TCZ, and the whole-blood transcriptome, serum proteome, and
immunophenotypes were measured at multiple time points. Of note, two patients
were both inadequate responders to IFX and responders to TCZ, and one patient
was an inadequate responder to both IFX and TCZ. Of 68 patients with RA and 42
HCs, 14 patients with RA and 16 HCs were used for the transcriptome analysis of
immune cell subsets. All procedures were approved by the medical ethics com-
mittee of Keio University Hospital and followed the tenets of the Declaration of
Helsinki. All samples and information were collected after the patients and HCs
provided written informed consent. No statistical methods were used to pre-
determine sample size.

Disease phenotyping. In patients with RA, serum levels of rheumatoid factor (RF)
and anti-citrullinated protein antibody (ACPA) were measured before drug
treatment. Follow-up evaluations included tenderness and swollen joint counts
using 28 joints (TJC28 and SJC28 values, respectively), CRP levels (mg/dl), ery-
throcyte sedimentation rates (ESRs; mm/h), matrix metalloproteinase 3 (MMP-3)
levels (ng/ml), the 28-joint disease activity score (DAS28) with inclusion of the
CRP (DAS28-CRP) value or ESR value (DAS28-ESR)!, the simplified disease
activity index (SDAI)*?, the clinical disease activity index®?, and the health
assessment questionnaire disability index (HAQ-DI)34,

Transcriptome measurements. For whole-blood transcriptome analysis, blood
samples collected from healthy human donors and individuals with RA in PAX-
gene tubes were frozen and stored at —80 °C. Total RNA was isolated using the
PAXgene Blood miRNA Kit (763134, Qiagen, Valencia, CA, USA). Globin-
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encoding transcripts were removed from the total RNA by using the Ambion
GLOBINClear kit (AM1980, Ambion, Austin TX, USA).

For transcriptome profiling in immune subsets, human whole blood was
collected using heparin blood collection tubes (TERUMO, Shibuya, Tokyo, Japan),
and immune cell subsets were purified as follows. Peripheral CD8 and CD4 T cells
were purified with the CD8 T Cell Isolation Kit and the CD4 T Cell Isolation Kit
(130-096-533 and 130-096-495, Miltenyi Biotec, Bergisch Gladbach, Germany),
respectively. Monocyte subsets were isolated according to Cros et al.*>. B cells were
magnetically isolated using human CD19 microbeads (130-050-301, Miltenyi
Biotec, Bergisch Gladbach, Germany). After staining with Brilliant Violet 421
(BV421)-conjugated anti-CD19 (clone HIB19, BioLegend), allophycocyanin
(APC)- and Cyanine 7 (Cy7)-conjugated anti-CD27 (clone 0323, BioLegend),
fluorescein isothiocyanate (FITC)-conjugated anti-CD38 (clone HIT2, BioLegend)
and phycoerythrin (PE)-conjugated anti-human-IgD (clone IA6-2, BioLegend),
each subset was isolated with a FACSArialll instrument. CD56"CD3~ and
CD567CD3" NK cells were magnetically isolated using human CD56 microbeads
(130-050-401, Miltenyi Biotec, Bergisch Gladbach, Germany). After staining with
APC-Cy7-anti-CD3 (clone UCHT1, BioLegend) and PE-anti-CD56 (clone
HCD?56, BioLegend), each subset was isolated using a FACSArialll instrument. For
neutrophil isolation, pellets were collected after Ficoll gradient centrifugation and
then treated with red blood lysis solution (130-094-183, Miltenyi Biotec, Bergisch
Gladbach, Germany). Total RNA from the sorted cells was extracted with the
miRCURY RNA Isolation Kit (300110, Exiqon, Vedbaek, Denmark), purified with
the RNeasy MinElute Cleanup Kit (74204, Qiagen, Hilden, Germany) and
amplified with the Ovation Pico WTA System V2™ (3302-A01-NUG, NuGEN
Technologies, San Carlos, CA, USA).

The RNA samples were then run on an Agilent 2100 BioAnalyzer using the
RNA NanoChip (Agilent, Palo Alto, CA, USA). We further confirmed that the
RNA integrity numbers (RINs) were all >7.0. All the RNA samples were hybridized
to the Affymetrix human genome U133 plus 2.0 arrays (Affymetrix, Santa Clara,
CA, USA).

Transcriptome data preparation. Expression values for the probe sets in the
Affymetrix human genome U133 plus 2.0 arrays were estimated using frozen
robust multiarray analysis (RMA), and their presence call was calculated with the
MASS algorithm. The systematic bias from experimental batches was normalized
for the whole-blood transcriptome data as described below, and stepwise quality
control for the probes was conducted as follows. First, the probes that did not
match any genes or that targeted multiple genes were removed. The probes that
were considered to be absent in more than one-third of samples from HCs and
patients with RA were then filtered out. In the case in which multiple probes
hybridized to the same gene and were positively correlated with a Pearson’s cor-
relation coefficient of more than 0.3, the probe that showed the maximum average
signals across the samples was used. Finally, less variable probes with interquartile
ranges in the bottom 20% of all probes were filtered out. After application of these
quality-control steps, 12,486 probes (corresponding to 10,527 genes) remained. The
same procedure was applied to the transcriptomes of the immune cell subsets. The
numbers of remaining probes were as follows: 14,964 probes (12,468 genes) from
central memory CD4 T cells, 14,632 probes (10,850 genes) from effector memory
CD4 T cells, 14,272 probes (10,129 genes) from naive CD4 T cells, 15,403 probes
(10,736 genes) from CD45RO™ memory CD8 T cells, 15,403 probes (10,736 genes)
from central memory CD8 T cells, 15,144 probes (10,876 genes) from effector
memory CD8 T cells, 14,763 probes (10,750 genes) from naive CD8 T cells, 13,271
probes (10,844 genes) from CD14TCD16~ monocytes, 12,958 probes (10,896
genes) from CD147CD16™ monocytes, 13,083 probes (10,953 genes) from
CD144MCD161 monocytes, 15,923 probes (11,999 genes) from NK cells, 14,938
probes (11,632 genes) from NKT cells and 12,268 probes (9914 genes) from
neutrophils.

Batch effect normalization. We performed transcriptome and proteome experi-
ments using two separate experimental batches. To estimate the batch effect, the
identical RNA or protein samples were included in both batches (n =8 HCs and
n =12 patients with RA for the transcriptome analysis; n =8 HCs and n =11
patients with RA for the proteome analysis). Based on the replicated samples, the
batch effects were removed from the transcriptome and proteome data using the
ComBat method®®. When replicates were available, the data from the second batch
were used for further analyses.

Serum proteome. Serum protein concentrations were measured using a slow-off-
rate-modified DNA aptamer (SOMAmer)-based capture array (SOMAscan;
SomaLogic, Inc., Boulder, CO, USA)®. The level of relative fluorescence units
(RFUs) that corresponded to a serum protein concentration of 1100 was log,-
transformed and used for the analysis>’.

Immunophenotyping. Human whole blood was collected using heparin blood
collection tubes (TERUMO, Shibuya, Tokyo, Japan) and mixed with fluorochrome-
conjugated monoclonal antibodies against human cell surface antigens. To lyse and
fix erythrocytes, FACS Lysing Solution (BD Biosciences, San Jose, CA, USA) was
used. Flow cytometry data were obtained with a FACSArialll instrument (BD

Biosciences, San Jose, CA, USA). We followed standard immunophenotyping
protocols from the Human Immunology Project®® and the ONE Study™.

Differential expression analysis. The identification of transcripts or proteins that
were differentially expressed between patients with RA and HCs was conducted
based on the empirical Bayes method using the limma R package. Age was used as
the covariate in the linear model. For the transcripts, the RIN value was also
included in the model. The false discovery rate was controlled based on q values
that were estimated with the g value R package. We set the criterion for statistical
significance at a p value <0.05 and g value <0.05. To test the expression data from
immune cell subsets, surrogate variables estimated from transcriptional data from
each subset were utilized to represent potential confounders because the RNA
quality metric was not available for all samples. The single surrogate variable was
estimated using the SVA method* with default parameters and used as a covariate
in a linear model.

The RA probabilities calculated at each time point were fitted to the time after
initiation of drug treatment via the cubic B-spline basis, and individuals were
treated as a random effect using the duplicate Correlation function in limma*!. The
significance of the coefficients of the B-spline basis was tested by ANOVA.

Development of RA diagnostic models. We first regressed out the age effect from
the gene expression, protein abundance, and cell abundance matrices because the
age of the subject was potentially confounded by the disease label, as observed in
Supplementary Table 1. The age effects were estimated based on the data from
treatment-naive individuals of 45 patients with RA, 30 patients with primary
Sjogren's syndrome (pSS), and 35 HCs, after removing batch effects for the
expression and protein data. To increase confidence in the estimates of age effects,
30 pSS samples profiled with the same experimental batch with 30 patients with RA
and 30 HCs*? were included in the analysis. Each variable was fitted using the
linear model with age and biological covariates, including gender and disease label.
The estimated age and gender effects were regressed out from the data matrices. In
the case of gene expression data, we also removed the effect of the RIN value from
the data.

Based on an inspiration from the data-splitting procedure previously
proposed®?, data were split into five subsets; four subsets were used for training,
and the remaining subset was used as test data to estimate the accuracy of the
model. By changing the groups used for testing and training, five models with
potentially different parameters were generated. To avoid bias from the initial data
split, we repeated this process three times. Thus, in total, 15 models were obtained
for each data set. A partial least-squares regression (PLSR) was utilized to construct
a diagnostic model, which allowed us to handle a large number of variables without
prior feature selection and to interpret the model based on existing biological
knowledge such as gene ontologies and reference transcriptomes of purified
immune cells. PLSR does not select particular genes for prediction, but it identifies
lateral predictive factors embedded in the data. These lateral factors potentially
reflect biological systems such as cell abundance. Then, we can evaluate the
importance of each gene in the prediction by assessing its contribution to lateral
factors. In the PLSR model, the number of lateral components used for the
prediction is a pre-defined parameter that must be specified. We performed tenfold
cross-validation within the training set and optimized the number of components
(from 1 to 10) based on the kappa statistic. We used the mean RA probability
derived from those produced from the 15 model ensembles as a final output. The
caret R package was used for PLSR modeling.

The PLSR models that were trained with data sets from the unmedicated
individuals were applied to the drug-treated cohort to enumerate the RA probability
for each sample. Before applying the PLSR model, the data were normalized with
respect to age, gender, and/or the RIN value using the same coefficients that were used
for normalization of the data from unmedicated individuals.

Calculation of the variable contribution to the prediction. The mathematical
formulation of the PLSR model can be described as

X = TP + ¢,
Y =TB" + &y,

where X is an 7 x m matrix of the omics measurement, Y is an outcome vector of
length n, T is an # x | matrix of orthogonal scores, P is an m x | matrix of loading,
B is a loading vector of length /, &x and ey are the error terms, # is the number of
individuals, m is the number of variables in the omics measurement, and [ is the
number of orthogonal components. To estimate the relative variable contribution
to the prediction, we first estimated the contribution of each orthogonal compo-

nent to the prediction. The predictive function of the diagnosis given orthogonal
components of kth individual is defined as

fi(k) = Z tix by,

where t; is an orthogonal score in the kth row and ith column of matrix T, b; is a
loading score for the ith orthogonal component, and s is the number of orthogonal
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components used for prediction. The mean squared error of prediction (MSEP)
using s orthogonal components is then estimated as

1 n
MSEP, =3 (f,(k) = y)°
k=1

where yj is a diagnosis for the kth individual and # is the number of individuals.
The relative contribution of the sth orthogonal component to the prediction is
estimated as

MSEP, — MSEP,_,
Ei:l (MSEP; — MSEP, )

s =

where [ is the number of orthogonal components in the model and MSEP,, cor-
responds to MSEP of the model including only the intercept. Finally, the con-
tribution of the ith variable to the prediction, g;, is estimated as a weighted average
of its loadings, and then g; is normalized to determine the relative contribution, r;,
as follows,

1
— 1
&= TZPijijx

j=1

8
: -
PO

where p;; is a loading in the ith row and sth column of matrix P. We further
normalized r by scaling the maximum r as 100. After calculating r for each model
in ensembles, we took the average of r for each variable across models and applied
it for the evaluation of influential variables. The procedure of MSEP estimation is
described in ref. ** and is implemented in the caret R package.

Gene set overlap analysis. The significance of the overlap between two gene sets
was assessed with Fisher’s exact test. For enrichment analysis with the MSigDB gene
set collection'$, the Enrichment Map*® was used for visualization of the results.

Defining the residual molecular signature. We first extracted variables with
levels that were significantly different from the levels in HCs at the beginning of
drug administration in responders to MTX, IFX, and TCZ (p value <0.05 and

q value <0.05). The significant variables that were differentially expressed in the
same direction compared with HC in all three treatment groups were defined as
consensus RA signatures. Then, the consensus RA signatures were re-evaluated at
week 24 after drug treatment for each treatment arm. The variables that continued
to deviate (p value <0.05 and q value <0.05) in the same direction from the levels in
HCs were defined as residual molecular signatures.

Quantification of meta-expression features. Meta-features for residual mole-
cular signatures or pathway-level expression were estimated by the ssGSEA
method'? using the R GSVA package®® with default parameters.

Preparation of proteome reference. The imputed intensity of label-free quanti-
fication for proteomes in 26 immune cells was obtained from the publication'*.
NCBI gene ID was assigned to each protein based on gene symbol and we kept
proteins with NCBI gene ID for subsequent analysis. If the same gene ID was
assigned to multiple proteins, the protein with the highest average intensity across
immune cells was used. As a result of the filtering, the proteome reference contains
9379 proteins for 26 immune cells.

Estimation of cell count contributions to RMSs. The levels of residual molecular
signatures quantified by the ssGSEA method!? were then fitted to the 26 immu-
nophenotypes using a multivariate linear regression model. Because the abundance
of subsets of immune cells was highly correlated with each other, the coefficients of
a linear model were potentially unidentifiable. To handle the collinearity problem,
we first performed feature selection of model variables using the elastic net. The
regularization parameter (1) and mixing parameter («) that showed the best RMSE
(root mean-squared error) in three repeated tenfold cross-validations was used.
The actual parameters were as follows: « = 0.4 and A = 0.01 for protein residual
molecular signatures (RMSs) downregulated in RA, @ =0 and A = 0.03 for protein
RMSs upregulated in RA, « =0 and A = 0.01 for transcriptional RMSs down-
regulated in RA, and & =0 and A = 0.03 for transcriptional RMSs upregulated in
RA. To assess the goodness of fit of the elastic net model, the sample labels of the
transcriptome data were permuted 1000 times and fed into the same workflow,
which included the step for hyperparameter tuning. Then, RMSEs from the per-
muted data were used as the null distribution to enumerate the p value for the
goodness of fit of the model. To estimate the variance of residual molecular sig-
natures explained by the immunophenotypes, we re-fit a multivariate linear
regression model with the immunophenotypes with none-zero coefficients in the
elastic net model. The contribution of each cell type to residual molecular sig-
natures was evaluated b_}l averaging the sequential sums of squares over all
orderings of regressors?’.

Analysis of transcriptional RMS in other disease conditions. Transcriptional
RMSs were imported into NextBio (http://www.nextbio.com/) as of September 2016.
Then, transcriptional RMS was compared with the public transcriptome studies
conducted with Affymetrix GeneChip Human HG-U133 Plus 2.0 using the Running
Fisher algorithm*®. We retrieved comparative results for the public transcriptomes
with the tag of “gene blood fraction” and “disease vs. normal”. Next, we further
manually removed studies related to any genetic modifications such as mutations,
those with any compound treatments, those using purified immune cells or cultured
immune cells, and those for non-disease conditions such as altitude change. Finally,
the studies with a sample size less than ten were filtered out, resulting in the
remaining 100 studies (Supplementary Fig. 19). The comparative statistics (p values)
for the studies with the same disease tagged by the NextBio database were merged
using Stouffer’s z-score method (Supplementary Data 4). The diseases for which the z-
score fell into the upper and lower 2.5% quantiles of the overall distribution were
designated as candidates for further investigation.

Code availability. R codes for RA diagnostic models have also been deposited in
Synapse repository under accession code syn8483403.

Data availability. Accession codes: mRNA microarray, protein array, and
immunophenotyping data have been deposited in the Gene Expression Omnibus
(GEO) Data Bank under accession code ID GSE93777 and Synapse repository
under accession code syn8483403.
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