
sensors

Article

Product Inspection Methodology via Deep Learning:
An Overview

Tae-Hyun Kim 1,† , Hye-Rin Kim 1,† and Yeong-Jun Cho 2,*

����������
�������

Citation: Kim, T.-H; Kim H.-R;

Cho, Y.-J. Product Inspection

Methodology via Deep Learning: An

Overview. Sensors 2021, 21, 5039.

https://doi.org/10.3390/s21155039

Academic Editor: Kim Phuc Tran

Received: 28 June 2021

Accepted: 21 July 2021

Published: 25 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Data Science Team, Hyundai Mobis, Seoul 06141, Korea; th@mobis.co.kr (T.-H.K.);
hyerin.kim@mobis.co.kr (H.-R.K.)

2 Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Korea
* Correspondence: yj.cho@jnu.ac.kr; Tel.: +82-62-530-3432
† These authors contributed equally to this work.

Abstract: In this study, we present a framework for product quality inspection based on deep
learning techniques. First, we categorize several deep learning models that can be applied to product
inspection systems. In addition, we explain the steps for building a deep-learning-based inspection
system in detail. Second, we address connection schemes that efficiently link deep learning models to
product inspection systems. Finally, we propose an effective method that can maintain and enhance
a product inspection system according to improvement goals of the existing product inspection
systems. The proposed system is observed to possess good system maintenance and stability owing
to the proposed methods. All the proposed methods are integrated into a unified framework and
we provide detailed explanations of each proposed method. In order to verify the effectiveness
of the proposed system, we compare and analyze the performance of the methods in various test
scenarios. We expect that our study will provide useful guidelines to readers who desire to implement
deep-learning-based systems for product inspection.

Keywords: defect inspection; deep learning; machine vision; product inspection; smart manufacturing;
smart factory

1. Introduction

Many manufacturing companies apply product inspection systems to detect product
defects and to evaluate product quality. The inspection systems examine the possibility of
functional problems of the product and determine the location of the defects on the surface
of the product. To this end, the inspection system generally uses several camera sensors to
examine all or key parts of the products. Some systems that automatically find defects in
products based on image-processing technologies can save human effort and labor.

Unfortunately, many conventional methods for defect detection following rule-based
algorithms have performed poorly in finding defects in products [1,2]. For example,
conventional methods have difficulty dealing with subtle changes in the environment (e.g.,
small changes in product location or illumination). In addition, they often fail to detect
new types of defects owing to their simple criteria. If some defective parts are not detected
in the current manufacturing step, they will proceed to the consecutive assembly step and
result in significant financial losses. Furthermore, field workers should always be able to
manage and adjust the parameters of the system. In this case, the first-time yield (FTY)
(The number of good units (i.e., products) produced divided by the number of total units
entering the process.) of the products is also reduced.

In order to overcome the limitations of rule-based methods, several methods applying
deep learning [3–6] have been studied in recent years. Deep learning has the following
main advantages and strengths: (1) no need for feature engineering; (2) large network
capacity to learn from low-level features to high-dimensional representations; and (3)
superior performance under various conditions (e.g., illumination changes and noisy

Sensors 2021, 21, 5039. https://doi.org/10.3390/s21155039 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1671-2075
https://doi.org/10.3390/s21155039
https://doi.org/10.3390/s21155039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21155039
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21155039?type=check_update&version=2

Sensors 2021, 21, 5039 2 of 19

images). However, to adopt a deep learning algorithm for a product inspection system,
various issues should be considered and are listed as follows:

• A series of steps to train and utilize deep learning models for the product inspection
system in detail;

• Choosing proper deep learning models for the system;
• Connecting deep learning models to existing systems;
• User interface and maintenance schemes.

Although there are many issues, there are only a few studies that have been conducted
on how to address these issues and apply deep learning models to the existing product
inspection system.

In this work, we efficiently handle all issues based on our knowledge and experience
in the real manufacturing field. We aim to build a framework for automatic product
inspection based on deep learning techniques and the overall proposed system hierarchy
is shown in Figure 1. Edge servers are assigned for each production line and a main server
manages each edge server. There are three main stages for applying deep learning to the
product inspection system: (1) model training stage, (2) model applying stage, and (3)
model managing stage.

FIGURE2

Main
Server

Edge
server

Edge
server

Edge
server

Existing
Inspection

System

Existing
Inspection

System

Existing
Inspection

System

Stage 1.

Stage 2.

Stage 3.

Model
Applying

Model
Training

Model Managing

Production line 1 Line 2 Line N

Figure 1. System hierarchy for automatic product inspection via deep learning and proposed three
stages for the systems.

In the model training stage, we explain the all steps to train the deep learning models
for the product inspection system in Section 3.1. We also provide detailed explanations
and guidelines for each step, including data collection, data pre-processing, and choosing
proper deep learning models for the system’s purposes.

In the model applying stage, we propose connecting schemes that link the trained deep
learning models to the existing inspection system in Section 3.2.1. In general, the majority
of equipment such as product inspection systems in old factories are out of date and their
resources are limited, e.g., the computing power and storage capacity are insufficient.
Therefore, it is difficult to operate deep learning models that require a considerable number
of resources in old systems. Instead, we set another workstation as a main server for
deep learning and set several workstations as edge servers that are connected with the
existing inspection system. To this end, in this study, we propose connection schemes that
efficiently link the edge servers with the existing inspection systems to improve the goals
of the existing systems.

As a result, deep-learning models can be operated with maximum performance. Moreover,
all functions of the existing inspection system such as product management and control units,
inspection equipment (e.g., jigs, cameras, and lights), and software can be utilized very stably.
Once we successfully trained and applied a deep learning model, we recycled and expanded

Sensors 2021, 21, 5039 3 of 19

the trained model to other production lines, as described in Section 3.2.2). This model expansion
method reduces the human effort required to train additional deep learning models.

Finally, in the model management stage, we propose an effective model update
method that can maintain and enhance the deep learning models of the product inspection
system. In order to perform this, we first employed Grad-cam [7], which provides visual
explanations from deep networks and helps system managers to understand predictions
of deep learning (Section 3.3.1). The proposed model update method includes the model
fine-tuning and re-training processes, as described in Section 3.3.2). The proposed system is
fully automated. Moreover, it exhibits outstanding system maintenance, performance, and
stability. Owing to the proposed system, even system managers who do not understand
deep learning techniques can manage the system very easily.

In order to verify the effectiveness of the proposed system, we compared and analyzed
the performance of methods in various test scenarios. Consequently, we can build an
automatic product inspection system based on deep learning in a unified framework.
The main contributions of this paper can be summarized as follows: (1) This is the first
attempt to provide complete steps for building a production quality inspection system
based on deep learning, including many helpful guidelines and technical know-how; (2) an
introduction to selecting appropriate deep learning models for building product inspection
systems; (3) proposing connection schemes that efficiently link deep learning models to
existing inspection systems according to system improvement goals; (4) proposing very
practical and effective model update methods for system maintenance; and (5) intensive
verification of the proposed methods and comparison with other conventional methods.

We hope that our study will provide useful guidelines to readers who desire to
implement deep-learning-based systems for product inspection.

2. Related Work
2.1. Conventional Product Inspection Systems

When visual inspections are conducted by humans, inspection errors may occur owing
to factors such as fatigue, inconsistency, and inability to unify the test criteria. In order to
reduce human error, many simple methods [1,2,8] have been studied to perform product
inspection that automatically determines the location of the defects or classifies the types
of defects in the products. They employ simple image-processing technologies, such as
image thresholding and binarization [9]. Unfortunately, these methods are too simple to
confront subtle changes in the environment (e.g., small changes in product location or
illumination) and demonstrate low inspection performance. Recently, some studies [10,11]
tried to exploit the conventional image-processing methods for quality inspection of steel
and slate slabs. However, it is still difficult to handle the challenges and their applications
are quite limited.

In order to overcome the limitations of the simple methods, Chang et al. [12] proposed
a more sophisticated method known as the two-phase methodology. In addition, several
works [13,14] employed machine learning techniques to propose a high-performance defect
detection system. Although machine learning techniques have shown positive results in
improving inspection system performance, it is still difficult to manually grasp features
that are suitable for defect detection and there are difficulties in terms of generating new
models each time a situation where new types of defects occur constantly.

2.2. Product Inspection with Deep Learning

With the recent development of deep learning, many attempts to adopt deep learning
into product inspection systems have been presented. In particular, not only object recog-
nition and classification studies are conducted [15,16], which are conducted to determine
the quality of products based on product image data, but also defect detection technique
studies are being performed, which find the location of product defect occurrence.

Studies related to object recognition and classification include the use of AlexNet [17]
to recognize defects in dyed fibers or fabrics [4] and the use of VGGNet [18] based model

Sensors 2021, 21, 5039 4 of 19

to classify defects on the surface of steel [19]. In addition, a study [6] performed defect
detection using sliding window methods to distinguish poor surface conditions (such as
scratches and poor junctions). Furthermore, in the case of finding the locations of the
defects, there are studies [5,20,21] on the detection of defects on the surface of steel based
on yolo series [22,23], variational auto-encoder (VAE) [24], or R-CNN series [25], such as
Fast R-CNN [26] and Mask R-CNN [27]. Similarly, [28] applied 3DCNN to analyze three
dimensional point cloud data. In [29], they use RetinaNet [30] to detect the location of
the defect and classified the type of defect for the surface of the metal parts. In [31], the
authors present a methodological approach based on the fusion model with two types of
the deep networks and random forest models.

In addition, there are papers that help researchers apply deep learning by creating
open datasets. Teh NEU surface defect database is a steel plate defect inspection dataset
opened by [32] and the aforementioned papers [19,20] also used the dataset. Moreover,
KolektorSDD(Kolektor Surface-Defect Dataset) was created by [33] and PCB scans dataset,
which are laser scans of PCBs, were generated by [28]. In this paper, we did not use open
datasets because we focused on comparing which model is better to use rather than making
the state-of-the-art model. However, one of the biggest problems encountered when using
deep learning in the defect detection system is the lack of data and, in order to make models
work well in industrial applications, pre-training with the open datasets is the best method
to improve the quality of the model. Alternatively, there exists study [34] that reduces data
usage by applying a few-shot learning method to solve the problem of data shortage.

However, in addition to building an algorithm or model for product inspection, it is
necessary to select an appropriate deep learning model that fits the characteristics of the
product, connects the deep learning model to the existing system, and to investigate the
question of how the design of the new system should proceed so that system managers can
manage it without difficulty. However, few studies have been conducted relative to how to
address these issues and in applying deep learning models to the existing system. In this
study, we propose a new framework that considers all these issues.

3. Proposed Automatic Product Inspection Framework via Deep Learning

In order to check the quality of products, systems such as automatic optical inspection
(AOI) systems and vision inspection systems have been introduced in the field of manu-
facturing. In general, these systems use visual sensors, such as RGB cameras or infrared
cameras, with various illumination conditions to examine the key parts of the products.

In this section, we explain the overall process of the proposed product inspection
system. We categorize the proposed process into three main stages: (1) the deep learning
model training stage in Section 3.1; (2) deep learning model applying stage in Section 3.2;
and the deep learning model managing stage in Section 3.3. The overall processes of the
first and second stages are summarized in Figure 2.

FIGURE3

Data
Collection

Data
Pre-processing

Model Selection
Training

Model Training Stage (Section 3.1) Model Applying Stage (Section 3.2)

Connecting
Model

Model
Expansion

Section 3.1.1 Section 3.1.2 Section 3.1.3

Data acquisition
Data labeling

ROI cropping
Data augmentation

Defect classifier
Defect detector

Section 3.2.1 Section 3.2.2

Partial improvements
Full improvement

Fine tuning
Domain adaptation

Figure 2. Deep learning model training and applying stages for a product inspection system.

3.1. Model Training Stage
3.1.1. Data Collection

It consists of two main parts as follows.
• Image data acquisition. Building a deep-learning model requires a considerable

amount of image data. However, in the case of an inspection system, the quantity of data
that can be collected depends on various manufacturing conditions, such as production

Sensors 2021, 21, 5039 5 of 19

volume, period, and data storage. Since data are generated only when a product is
manufactured, it is difficult to create as much data as desired. Thus, the quantity of data is
limited. In addition, as images generated by the inspection system generally require a large
storage space, there is a limit in the number of images that can be stored. Note that the
amount data storage space remaining should be checked regularly and data should either
be backed up or more storage space should be added in order to avoid data being deleted.

• Data labeling. After the data acquisition step, the collected data should be labeled
as “1” (OK: non-defective) or “0” (NG: defective) according to its surface condition. We
denoted the collected images as xi, where i is an index of the image and the labels of
the ith images as yi. As the quality and reliability of training data have a substantial
effect on the performance of the deep learning model, the labels of the data should be
decided very carefully. To this end, many experts such as product quality engineers and
deep learning engineers need to collaborate. Potential defects in products are classified in
advance according to their type. In addition, evaluation methodologies and policies are
clearly established. The collected images are then labeled according to predefined rules for
building a training dataset as follows:

D =
{(

xi, yi
)
| yi ∈

{
0, 1
}

, i = 1, . . . , N
}

, (1)

where N is the total number of collected images.
The steps mentioned previously will not only increase the reliability of models but

also provide clear guidelines for system engineers. For example, when an unseen type of
defect occurs in the future, we can easily categorize the defect based on the policies.

3.1.2. Data Pre-Processing

Initially, images acquired from the inspection system are usually not optimized and are
not sufficient to train deep learning models. In this section, we discuss data pre-processing
that refines and augments image data for training deep learning models.

• ROI cropping. Many defect inspection systems contain conveyor belts to transport
products and contain many jigs for fixing products to examine their qualities. In general,
they consistently fix the products and capture the product images. We call the initial
product image the raw image. However, the raw image may include an unnecessary
background depending on the inspection system, as shown in Figure 3a. In this case, we
need to set the region of interest (ROI) of the manufactured product. The ROI denotes the
boundaries of the product in the raw image. We usually set the center position (cx, cy) and
size (H, W) of the product. Then, ROI can be represented as b =

{
cx, cy, H, W

}
.

FIGURE4

(a) Raw image

FIGURE4

(b) Cropped image

Figure 3. Example of ROI selection: (a) raw image, where the shaded area denotes a background
region, the solid line denotes a product, and the red box denotes a ROI; (b) cropped image according
to ROI.

Specifying the locations of products (i.e., ROIs) is simple but very effective; it rejects
many unnecessary regions and allows the analysis methods (Section 3.1.3) to focus entirely
on the products, as shown in Figure 3b. Setting ROIs is dependent on the product fixing and
localizing accuracy of the inspection system as follows. When products are always located

Sensors 2021, 21, 5039 6 of 19

in the same region in the image, we can strictly set the ROIs of the products. Meanwhile,
when the product localization is unstable, we have to set ROIs with a loose range so that
the cropped image based on the ROIs does not miss the product. Otherwise, one possible
solution is to apply object detection methods such as Yolo v3 [22] to set the ROIs under the
unstable product position in the raw image.

• Data augmentation. As mentioned in Section 3.1.1, the amount of data collected
depends on the manufacturing conditions. Therefore, a sufficient amount of data for
training deep learning models may not be ensured. Unfortunately, deep neural networks
commonly require a large amount of training data to learn many network parameters
(i.e., weights and bias). In order to tackle the lack of data and to create a training dataset
covering various data distributions, we can introduce data augmentation techniques that
generate new training data from the existing data. Shorten et al. [35] describes image data
augmentation for deep learning and we summarized several possible data augmentation
methods in Table 1. There are two categories of data augmentation methods and they are
described as follows.

• Image transformation is a traditional data augmentation method that changes or trans-
forms the given images to augment new image data by the following methods. (1)
Perspective transformation changes an image in terms of its size, rotation, and perspec-
tive. It has eight degrees of freedom (DOFs) and transforms the image as if the camera
observed the images from different viewpoints. (2) Color transformation changes the
color distribution of images and color space (e.g., RGB, HSV, etc.) of images. (3) Noise
addition adds various kinds of noise to images, such as salt-and-pepper, Gaussian,
and Poisson noise. We can add these noises using kernel filtering.

• Image generation creates new images based on the distribution of acquired images. A
generative adversarial network [36] was used. Specifically, you can use CycleGAN
[37] or ProgressiveGAN [38]. If you already have multiple defect images on different
lines, you can use CycleGAN to create defect images by using good images of the line
you want to apply deep learning to(basically good images can be collected very easily).
In addition, when images are created using a general GAN, it may be classified as
defective by using the form of distortion and this problem can be reduced by using
ProgressiveGAN.

In Section 5.1, we present the image classification results before and after data augmentation.

Table 1. Methods of image data augmentation [35].

Category Method

Image
transformation

Projective transformation

Color transformation

Noise addition

Image
generation

Generative Adversarial Network [36]

3.1.3. Model Selection and Training: Classifier versus Detector

We expect that the training dataset D for learning deep neural networks will be
prepared as described in the previous sections (Sections 3.1.1 and 3.1.2). It is necessary
to select a proper deep learning model to build the product inspection system. The types
of products and defects inspected by the product inspection system are very diverse and
different types of inspection methods are required for each. In this study, we categorize the
deep learning models into two types: defect classifier and defect detector.In this section,
we discuss the selection of proper deep learning models according to the characteristics of
defects in products.

A common case of product defects is that they appear in the overall area of the product.
Figure 4 shows examples of non-defective (OK: 1) and defective (NG: 0) soldered pins. As

Sensors 2021, 21, 5039 7 of 19

can be observed, the exteriors of defective soldered pins (NG) have been modified or the
lead is completely missing. In such cases, defect classifiers are effective. The distribution
of two classes and trained optimal classifiers that distinguish between non-defective and
defective parts were compared. Based on a large training dataset D, we can train the
weights (wc) of a defect classifier. The defect classifier can be represented by a conditional
probability distribution as follows:

p
(
y|x; wc

)
, (2)

where x is an input image and y is the predicted label of the given image x. The classifier
p
(
y|x; wc

)
predicts the label of a given image and lies on [0, 1]. We can decide the predicted

labels of the sample according to probability as follows.

ypred =

{
1 if p

(
y|x; wc

)
≥ 0.5,

0 otherwise.
(3)

We can utilize several deep neural network models such as ResNet [39], GoogleNet [40],
and VGGNet [18] as the backbone network for defect classifiers.

Figure 4. Examples of non-defective (OK) and defective (NG) soldered pin. The blue area in the side
view shows the result of soldering. Defects appear in the overall product part.

By contrast, many defects would occur partially or locally in the ROI of the product
(Figure 5a). For example, foreign matter (e.g., dust, hair, and pollutants) on products and
abnormal short circuits are considered as defects. Unfortunately, their locations are not
specified but they occur partially or locally on the product, as shown in Figure 5b. The
actual defect only accounts for a very small portion of the product’s ROI; therefore, the
defect classifier that compares the overall area of products to classify non-defective or
defective products is not effective.

In this case, we can employ defect detectors that directly detect the location of defects
in the products. In general, the types of foreign matter are not diverse; thus, the defects
(e.g., dust, hair, pollutants, and abnormal short circuits) to train defect detectors can be
specified easily. By using the training dataset D, we train the weights (wd) of a defect
detector. In order to train the defect detector, defect positions (b =

{
cx, cy, H, W

}
) of the

training samples in D should be prepared in advance. Refer to Section 3.1.2 and check ROI
cropping processes that are exactly the same as the defect positions of each sample. The
defect detector can be represented by a conditional probability distribution as follows:

p
(
b|x; wd

)
, (4)

where x is an input image and b is the predicted position of a defect. The detector
p
(
b|x; wd

)
predicts the defect positions of a given image and lies on [0, 1]. If the probability

of the detector is larger than 0.8, it can be said that a defect occurs at the position b. When
any defect is found, the product (i.e., sample image x) is considered defective. For the
defect detectors, Yolo v3, v4 [22,23], and efficient-Det [41] show superior performance in

Sensors 2021, 21, 5039 8 of 19

terms of both detection accuracy and speed. As mentioned previously, defect detectors
that directly find the location of defects are very effective when there are partial defects on
products. In Section 5.2, we show the effectiveness of defect detectors.

(a) (b)

Figure 5. Examples of partial defects on a product. (a) Side view: red shaped area denotes ROI. The
system finds defects in the ROI. (b) Top view: red boxes denote detected defects: abnormal short
circuit and hair.

Note that we must consider not only the accuracy but also the operating speeds of the
models. The accuracy and operating speed of the deep learning model generally follow
a trade-off relationship. For example, a model may exhibit good inspection accuracy but
requires significant operating time. Then, the model cannot be applied to the inspection
system because products should be manufactured within cycle time. This trade-off must be
considered before applying deep learning models. We summarized some practical models
for defect classification and detection in Table 2.

Table 2. Differences between classification and detection.

Defect Classifiers Defect Detectors

Type of defect Overall and various types of defects Local and similar forms

Output Predict a class (OK/NG) of the image Detect defects in the images

References ResNet [39], GoogleNet [40],
VggNet [18], and AlexNet [17]

Yolo v3 [22], Yolo v4 [23], and
EfficientDet [41]

3.2. Model Applying Stage
3.2.1. Connecting Deep Learning Models to Existing Systems

Many product inspection systems in old factories are out of date and their resources,
such as computing power and storage capacity, are insufficient. Thus, it is difficult to
operate deep learning models that require many resources in old systems. Instead, a
possible simple solution is to set another workstation as an edge server for operating
deep learning models and to connect the server with the existing inspection system. Since
we have separated each system, the deep learning model can operate with maximum
performance. Moreover, all functions of the existing system, such as product managing
software, control units, and inspection systems including equipment (e.g., jigs, cameras,
and lights), can be utilized very stably. In this work, we call the workstation that is running
deep learning models the edge server.

According to the current drawback of the existing inspection system, we must clearly
define the application purpose of deep learning and the improvement goal of the existing
system. The application steps are categorized into three different goals as follows:

Sensors 2021, 21, 5039 9 of 19

1. Reducing false-positive rates of the existing system;
2. Improving true-positive rates of the existing system;
3. Replacing the existing system with deep learning models.

When false defects (i.e., false-positive rates) occur frequently in the existing system,
a deep learning model that prioritizes the reduction in false defects can be applied. This
model improves worker productivity and product yield: Workers do not need to perform
unnecessary product re-inspections. Meanwhile, the poor defect detection rate (i.e., true-
positive rates) of the existing system can be improved by deep learning models to enhance
the detection rate. Therefore, the product stability and reliability are improved. In summary,
goals 1 and 2 are partial improvements of the system. When both goals are achieved by
the trained deep learning model, a complete replacement of the existing inspection system
(goal 3) by deep learning will naturally follow. After setting the improvement goals, a
connection between the edge server and an existing system is required. In general, the
product inspection system mainly consists of three manufacturing parts: (1) machine vision
inspection (an existing inspection system), (2) manufacturing execution system (MES), and
(3) programmable logic controller (PLC). Please refer to the Appendix A for details on the
MES and PLC.According to the improvement goals, connection schemes are divided into
two types.

First, when aiming to partially improve the old system (goals 1 and 2), a connection
scheme follows the flowchart in Figure 6. In order to reduce false-positive rates (goal 1), an
edge server with a deep learning model only predicts the samples confirmed as defective
by machine vision inspection. Non-defective samples confirmed by the machine vision
are sent to the PLC and MES. Similarly, in order to improve the true-positive rates (goal 2),
the edge server only predicts the samples confirmed as non-defective by visual inspection.
Defective samples confirmed by the machine vision are sent to the PLC and MES. Note that
each goal aims to enhance the drawbacks of existing machine vision systems. When label
predictions are performed by an edge server, the edge server directly sends the inspection
results to the PLC and MES.
FIGURE7

Deep model
Prediction

Test result

Test result

time

Image Sending

Shooting Trigger

Edge Server
(Deep learning)

Machine
Vision

Programmable
Logic Controller

Manufacturing
Execution system

Machine vision
Prediction

Test result

Test result

Figure 6. System flowchart to improve the existing system based on deep learning. In order to
achieve partial improvements (goals 1 and 2), whole processes (blue arrows and red-dotted arrows)
in the flowchart are required. To achieve complete replacement of the old system by deep learning
(goal 3), only few processes (blue arrows) are required.

Second, for the complete replacement of the old machine vision system (goal 3), the
connection scheme only requires blue arrows in the flowchart in Figure 6. Compared
with goals 1 and 2, it is much simpler because it does not consider the prediction results
of the old machine vision system, which does not carry out inspection and only records
product images to send them to the edge server. Then, the deep learning model inspects
the products and sends the results to the PLC and MES. In order to communicate between
different systems, we designed a simple socket program in the C# language based on
TCP/IP protocols. All terminology used in the flowcharts is summarized in Table 3.

Sensors 2021, 21, 5039 10 of 19

Table 3. Explanation of terminology.

Terminology Description

Shooting trigger Requesting the machine vision to start the inspection

Image sending Sending images taken by machine vision to edge server

Machine vision prediction Product inspection by machine vision

Deep model prediction Product inspection by deep learning model

Test result Inspection result of whether the product is non-defective (OK) or
defective (NG)

Even when a deep learning model is successfully connected to an old system, it cannot
be applied to production immediately. A validation period of at least one month is required
to confirm the stability and accuracy of the system and model. During this period, the
system should be monitored consistently for any data bottlenecks or abnormal shutdowns.

3.2.2. Model Expansion

If we successfully train a deep learning model for a specific product inspection system,
we can consider “model expansion” to improve deep learning models in other inspection
systems. In general, mass production plants produce similar types of products in parallel
on different lines. However, to train the deep learning models of each production line
separately, we need to collect a large amount of data for each inspection system, which
requires a significant amount of time and manpower.

In order to address these challenges, we can first leverage a simple transfer learning
technique called fine-tuning [42]. Fine-tuning is one of the methods to reduce the amount of
data required to learn target inspection models while expanding deep learning inspection
systems to other lines. We first set the initial values of the deep learning network with
parameters of a trained model, which is already used in another line, and then we perform
additional training and parameter modification with the training data obtained from a
target inspection system. In this case, it has the advantage of ensuring a certain level of
performance, even if there is only a small amount of training data because training does
not start from random parameters. However, if the difference between defect types of each
line is considerable or there are many environmental gaps, such as illumination or location
of parts, it can be difficult to expect simple fine-tuning will result in a great effect.

Domain adaptation can be used to overcome such challenges [43]. This technique
adapts two different domain distributions to reduce the discrepancies. This allows the
domain distribution of target lines to be adapted to the distribution of a pre-trained deep
learning model that is already used in different lines. Specifically, in the research introduced
in [44], the domain adaptation technique is effectively used for model expansion in real-
world manufacturing lines.

3.3. Model Managing Stage

It is highly likely that system managers will lack an understanding of artificial intelli-
gence and deep learning technologies. Since deep learning models are generally not easy
to modify intuitively, it is difficult for system managers to maintain and supplement deep
learning models. Although conventional product inspection systems can be easily main-
tained by adjusting a few system parameters, a deep learning model requires much more
complex tasks. The system managers need to re-train the deep learning model regularly to
render the model robust to unseen data. In addition, they should check whether a proper
re-training process has been carried out. In this study, we propose a deep learning model
management system aimed at easier and more flexible system maintenance.

Sensors 2021, 21, 5039 11 of 19

3.3.1. Explainable System: Grad-Cam

System managers who do not have any background knowledge of deep learning can
have difficulty in managing the product inspection system based on deep learning. The
biggest challenge is that they cannot judge whether the deep model is properly trained. In
this study, we exploit Grad-cam [7] to alleviate the challenge and use the results to build
an efficient model update system.

Grad-cam [7] provides visual explanations from deep networks and highlights the
important regions in the image for predicting the labels. Therefore, managers with no deep
learning knowledge can easily analyze the Grad-cam results. Figure 7 shows examples of
non-defective (OK) and defective (NG) cylinder bonding images with Grad-cam results.
The bond should be evenly covered inside the cylinder: if the bond is broken or lumped
together, then it is defective. When the deep networks are trained well, the Grad-cam
focuses on important regions (i.e., bonding regions) to classify whether the product is
defective. Otherwise, Grad-cam focuses on unimportant regions such as background (see
Training FAIL cases in Figure 7).

FIGURE8

Input images GradCAM images
Well-trained

Label: OK

Label: NG

Training FAIL

Figure 7. Grad-cam images of cylinder bonding. A warm color indicates high importance.

Although the deep model succeeded in classifying the labels, if the Grad-Cam result
of the sample is not reliable, then the model cannot cover the sample. In order to render
the deep model more robust, system managers collect the image samples with unreliable
Grad-Cam and re-train the deep network model with the samples. We explain the proposed
model update system in the following Section 3.3.2.

3.3.2. Model Update System

In general, deep learning models perform better than traditional methods, but they
are not permanently perfect. For example, the trained model p

(
y|x; w

)
is perfect for the

training dataset D; however, there is no guarantee that the model will always be perfect for
consecutive testing samples. We expect that the distribution of the test samples is the same
as that of the training samples D. Unfortunately, the distribution of the test samples begins
to change subtly over a long period of time owing to many factors (e.g., machines becoming
obsolete or raw material of products changing). Therefore, continuous maintenance and
model updates are required.

In order to update the deep learning model, we can consider two types of update
strategies: (1) re-training and (2) fine-tuning [42]. First, re-training re-trains the deep
model (i.e., all weights w) from the beginning using the entire training dataset D and
new failed samples. It is reliable but requires a large amount of computation owing to the
significant training data. Conversely, fine-tuning [42] simply adjusts the trained weights
w using only new failed samples. Fine-tuning is very efficient, but it is likely to cause a

Sensors 2021, 21, 5039 12 of 19

fatal problem called catastrophic forgetting (Catastrophic forgetting is a phenomenon in
which deep learning models forget previously learned information upon learning new
information.) [45] when fine-tuning is repeated often. In order to avoid the challenges in
updating the deep learning model, we exploit both strategies that complement each other to
build an efficient model update system. As shown in Figure 1, we first separated the main
server and edge servers for efficiency and stability. The main server is a high-performance
workstation (nvidia tesla V100) and performs model re-training. The edge servers have
nvidia RTX2080 equipped and they perform fine-tuning tasks for each product inspection
system maintenance.

• Failed sample collection. Assume that a trained classifier p
(
y|x; w

)
has tested new

samples so that we obtain a set of test samples. Among them, we chose a set of unreliable
test samples as follows:

Du =
{(

xi, ypred
i
)
|0.5− α ≤ p

(
yi|xi; w

)
≤ 0.5 + α

}
,

where i = 1, . . . , Nt,
(5)

where Nt is the total number of tested samples and ypred is the predicted label of the ith
sample (refer to Equation (3)). Note that all testing samples are unseen data (xi /∈ D). We
defined the samples with prediction probabilities around 0.5 as unreliable samples. This is
because the samples near the decision boundary (0.5) are not clearly distinguished by the
classifier p

(
y|x; w

)
. We set α as 0.2 empirically.

There are many uncertainty-based active learning [46] algorithms and we can change
the failed sample collection algorithm with them. However, even with this naive sample-
collecting logic, we experimentally found that it confirms robustness.Then, the system
managers verify the unreliable samples Du by using two-stage verification. To this end,
we designed a simple WINDOWS application that demonstrates the tested sample images
with two buttons, as shown in Figure 8). In the first stage, system managers verify that the
predicted label of the tested sample is correct or incorrect (Figure 8a). If there are incorrect
samples, they can build a set of prediction failed samples as follows:

Du
f =

{(
xj, ygt

j
)
|Du, ypred

j 6= ygt
j
}

, (6)

where j is an index of the sample and ygt
j is the ground-truth label of the jth sample.

Although the predicted label of the test sample is correct, the system managers verify the
sample one more time. As shown in Figure 8b, they checked the Grad-cam images of
samples to verify that the deep learning model predicted the label properly, as explained in
Section 3.3.1. According to the result of the Grad-cam, we can also build a poorly trained
sample set as follows:

Du
g =

{(
xj, ygt

j
)
|Du, ypred

j = ygt
j , G

(
xj
)
= 0

}
, (7)

where G
(
xj
)

denotes a Grad-cam verification result for sample xj. If the system manager
pushed the “Well-trained” button, G

(
xj
)

would be “1”. By contrast, if the “Training
FAIL” button was pushed, G

(
xj
)

is assigned as “0”. Thanks toEquation (7), we consider
ambiguous samples as well. Finally, we obtain a set of failed samples during the test
as follows.

D = Du
f ∪D

u
g . (8)

It can be represented by D
(
t
)
, where t is a time index. For example, when we set

a time slot as 2 days for collecting failed samples, D
(
1
)

is a failed sample set collected
during the first and second days. Similarly, D

(
2
)

denotes the third and fourth days’ failed
sample set.

Sensors 2021, 21, 5039 13 of 19

•Model update methods. A current deep model p
(
y|x; w

)
cannot perfectly classify

the samples in D
(
t
)
. To make the model more accurate, we need to update the model

weights w based on D
(
t
)
. We perform fine-tuning to the model on an edge computer (Fine-

tuning should be performed when the production line is idle) as follows:

w+ ← w− µ

∂ED
(

t
)

∂w
, (9)

where µ is the learning rate and ED
(

t
) is the loss function of the deep model with respect

to the dataset D
(
t
)
. After the fine-tuning process, the updated model p

(
y|x; w+

)
classifies

the failed samples and can better handle upcoming test samples. It is simple but very
effective in that it requires a small amount of computation and it significantly improves the
model performance through a small adjustment in the model weight distribution.

FIGURE9

Tested Image Confirmation

Right

Wrong

TEST VERIFICATION

Predicted label
NG (0)

GradCAM Image

Well-trained

Training FAIL

MODEL REVIEW

Confirmation

(a) Label verification

FIGURE9

Tested Image Confirmation

Right

Wrong

TEST VERIFICATION

Predicted label
NG (0)

GradCAM Image

Well-trained

Training FAIL

MODEL REVIEW

Confirmation

(b) Grad-cam verification

Figure 8. User interface program for verifying unreliable test samples.

However, repeating the fine-tuning process often causes catastrophic forgetting [45].
Then, the model performance begins to deteriorate because the model fails to classify the
samples trained in the past. In order to prevent the catastrophic forgetting problem, we
periodically perform re-train under the following conditions. First, we measure a failed
sample ratio as follows:

FSR =

∣∣⋃
t=1D

(
t
)∣∣∣∣D∣∣ , (10)

where
∣∣ · ∣∣ is a cardinality of a dataset. If the measured FSR is larger than β, we update

the training dataset as follows:

D+ ← D ∪
(⋃

t=1

D
(
t
))

. (11)

This includes not only the original training datasetD but also newly collected samples(⋃
t=1D

(
t
))

during system testing. Then we re-train the model by the following:

w+ ← w− µ
∂ED+

∂w
, (12)

where ED+ is the loss function of the deep model with respect to the new datasetD+. The re-
training process is performed on the main server because it requires significant computing
resources. When model re-training is performed, the model weights are transferred to the
edge computer.

Fine-tuning and re-training processes complement one another and they are repeated
continuously during the model maintenance. We show several results of the proposed
model update system in Section 5.3. The proposed system renders maintaining a model
very easy and effective for system managers.

Sensors 2021, 21, 5039 14 of 19

4. Datasets

Owing to company confidentiality, it was difficult to open the original images of the
data. Instead, we provide details and illustrations of each dataset. According to the types
of production lines, we collected PCB parts, Cylinder bonding, and Navigation icon
datasets as follows.

• The PCB parts dataset contains two types of components in PCB, soldered pins (see
Figure 4), and micro-control units (see Figure 5). We collected both defective and
non-defective samples for each class, as summarized in Table 4.

• The Cylinder bonding dataset contains images of cylinders with bond applied. As
shown in Figure 7, the bonds should be evenly applied inside the cylinders unless the
bonding between the parts will not work properly. If the bond is broken or lumped
together, we consider the cylinder as defective. We collected 651 non-defective and
651 defective images.

• The Navigation icon dataset is a set of icon images in the car navigation software. It
includes 20 classes of icons. The size of each icon was normalized to 64× 64 pixels.
This dataset is insufficient for training deep learning models. In Section 5.1, we present
some classification results using the Navigation icon dataset.

Table 4. PCB parts dataset.

Parts Type # of Defective # of Non-Defective

Soldered pin 1000 1000

MCU 2200 2200

5. Experimental Results
5.1. Data Augmentation

Table 5 shows the results of classification performances before and after the data aug-
mentation process. We tested the Navigation icon dataset and classified 20 different types
of common icon images in a mobile application. In order to augment images, we utilized
color transformation methods in [47] and produced 10 times as many samples. As can
be observed, the classification results after data augmentation improved the classification
performance by 22.2%. This implies that data augmentation is highly beneficial. When
data are insufficient or unbalanced, we recommend performing simple data augmentation
to handle the lack of data problems.

Table 5. Performance enhancement by using data augmentation.

Class Number of Images Accuracy

20 272 (Original data) 0.632%

20 2720 (Original data + augmented data) 0.854%

5.2. Defect Classification Results

In this section, we address the experimental results on defect classification in terms of
datasets: PCB parts and Cylinder bonding.

5.2.1. PCB Parts Dataset

By training the classification networks, we first tested the classification performance
of the soldered pins. In order to find the model with the best performance, a total of five
networks were used: ResNet [39], vgg16 [18], and GoogleNet [40]. These models were
trained in the same environment (e.g., training and test datasets and hyperparameters).
ResNet [39] showed the highest accuracy for the classification of soldered pins (Table 6).
Based on the results, we used ResNet [39] as the basic model to verify the performance of
the other datasets.

Sensors 2021, 21, 5039 15 of 19

Table 6. Performance comparison of PCB parts: soldered pin dataset.

Methods Xception [48] ResNet-50 [39] vgg16 [18] vgg19 [18] GoogleNet [40]

Accuracy 0.954 0.985 0.954 0.972 0.963

In order to find defective MCU in the PCB parts dataset, we trained the defect detec-
tion model based on Yolo v3 [22]. Figure 5 shows examples of defects on the MCU part and
the defects occur partially. As explained in Section 3.1.3, using a defect detection model is
very effective when defects occur partially. Table 7 lists performance comparisons between
classification-based models and detection-based model. Yolo v3 [22] showed the highest
performance in detecting defective MCU samples. Conversely, the classification-based
model, which is used for classifying soldered pins, often fails to detect partial defects in
the MCU parts. Based on these experimental results, we verified the proper deep learning
models (e.g., defect classifier and defect detector) for each dataset.

Table 7. Performance comparison of PCB parts: MCU dataset.

Classification-Based Detection-Based

Methods Xception [48] ResNet-50 [39] vgg16 [18] vgg19 [18] GoogleNet [40] Yolo v3 [22]

Accuracy 0.89 0.83 0.90 0.85 0.85 0.998

5.2.2. Cylinder Bonding Dataset

Adhesive bonding is a process in which a classification algorithm can be applied.
Bond is applied to combine two parts and visual inspection is mostly carried out in this
process. The errors that occur in this process include over-gluing, insufficient gluing, air
bubbles, and slipping [49]. The classification algorithm is more favorable to this process
than the detection algorithm, unless the bonding area is wide. This is not only because
the inspection duration of classification is normally shorter than detection, but it is also
important to see the overall shape of a part for certain types of defects.

As we tested in Section 5.2.1, ResNet [39] showed the best performance for defect
classification. Therefore, we employed the deep learning model ResNet [39] as the baseline
model for this experiment. In addition, we compared the latest ResNeXt-50, Se-ResNet-50,
and Se-ResNeXt-50 algorithms while considering the cycle time of the process. For the
used images, we used 20 defective, 20 non-defective for learning, 110 defective, 110 non-
defective for testing, and changed the image size to 224× 224× 3 before comparison. In
order to assess the reliability of the test performance assessment, we conducted five rounds
of random verification of accuracy and loss. The results are summarized in Table 8. The
reason for this result is assumed to be that as this requires focusing on certain defect areas
instead of seeing the overall shape and Se-ResNet-50 with attention lines showed a better
performance than ResNeXt-50.
Table 8. Performance comparison of Cylinder bonding.

Method Average Loss Mean Accuracy GFLOPs

ResNet-50 [39] 0.28260 0.941% 3.86

ResNeXt-50 [50] 0.58632 0.915% 4.24

Se-ResNet-50 [51] 0.17950 0.969% 3.87

Se-ResNeXt-50 [51] 0.12076 0.975% 4.25

5.3. User Systems

We first designed an experiment to obtain an experimentally appropriate FSR rate.
The experiment was conducted using cylindrical bonding images collected over the past
two years. The initial training was performed using 60 images (good: 30; defective: 30)

Sensors 2021, 21, 5039 16 of 19

collected in the first two months and the test accuracy was calculated using 262 images
(good: 131; defective: 131), where are also obtained within the first 2 months that were not
used for training. It was assumed that for every 15 days (one tick in Figure 9), 20 additional
images (good: 10; defective: 10) were obtained and used for training. Figure 9 shows
the accuracy comparison graph for the existing image according to the number of fine-
tunings. We also set fine-tuning parameters to find the right FSR rate, which indicates the
frequency of re-training with the entire data. For example, three fine-tuning parameters
means that one whole re-training is performed every three fine-tunings, WT only means
whole re-training only, and FT only means fine-tuning only.

0 10 20 30 40 50
Tick

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Accuracy according to fine-tuning parameters

WT only (96.97%)
FT only (76.89%)
3 (96.06%)
5 (95.89%)
7 (94.71%)
10 (94.16%)
15 (90.88%)
20 (87.61%)

(a) Tick range: 0–50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Tick

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Accuracy according to fine-tuning parameters

WT only (96.97%)
FT only (76.89%)
3 (96.06%)
5 (95.89%)
7 (94.71%)
10 (94.16%)
15 (90.88%)
20 (87.61%)

(b) Tick range: 0–22

Figure 9. Model accuracy according to update ticks.

As can be observed in the graph, there are some dramatic deteriorating points with
an accuracy below 90%. When the accuracy was below the expected percentage, it was
considered inaccurate, as the system failed to recognize previous images. Thus, a “forget-
ting problem” is considered to have occurred. For example, 11 ticks with 5 fine-tuning
parameters, 40 ticks with 10 fine-tuning parameters, and FSR rates of both points were
0.375 and 0.220, respectively. The forgetting problem does not occur with all points of less
than 0.2 FSR rate. When performing fine-tuning, it has been verified experimentally that
full re-training must be conducted with a less than 0.2 FSR rate to prevent the forgetting
problem and we applied it to the system. If the FSR rate reaches 0.2, the server will
perform full re-training. In the experiment, we also confirmed that as

∣∣D∣∣ increases, the
model becomes much more robust; thus, the training loss for

∣∣⋃
t=1D

(
t
)∣∣ decreases and

even if a large number of
∣∣⋃

t=1D
(
t
)∣∣ are newly trained; however, the deterioration of the

model performance appears later. As can be observed in the detailed graph in Figure 9b,
all accuracy is deteriorated at 9 tick. It means that there are some changes (e.g., product
location or illumination) and something happened with the images. However, even at the
tick, the accuracy at 7 fine-tuning parameters is 93.44% and only less than 0.2 FSR rate.
We can find out that robustness can be secured by

∣∣D∣∣.
6. Conclusions

In this study, we have proposed a unified framework for product quality inspection
using deep learning techniques. We categorized several deep learning models that can be
applied to product inspection systems. In addition, we have studied which deep models
were suitable for each system. The steps for building a proposed framework for a product
inspection system via deep learning have been explained in detail. In addition, we have
addressed several connection schemes for linking deep learning models to existing product
inspection systems. Finally, we proposed effective model management methods that
efficiently maintain and enhance deep learning models. The results showed good system
maintenance and stability.

We have tested and compared the performance of the state-of-the-art methods to
verify the effectiveness of the proposed methods in various test scenarios. We expect that

Sensors 2021, 21, 5039 17 of 19

our studies will be helpful and will provide guidance for those who want to apply deep
learning techniques to product inspection systems.

Author Contributions: Formal analysis, H.-R.K.; Methodology, T.-H.K., H.-R.K. and Y.-J.C.; Project
administration, Y.-J.C.; Software, T.-H.K.; Supervision, Y.-J.C; Validation, T.-H.K. and H.-R.K.; Visual-
ization, Y.-J.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Hyundai Mobis and Department of Artificial Intelligence
Convergence, Chonnam National University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Product Manufacturing Systems

A defect detection system is connected to various process systems. A comprehensive
understanding of various process systems is required to apply deep learning to defect
detection systems. Although there are many different systems according to the size or the
existing systems of a factory, the following are the key systems relevant to our research:

• Manufacturing execution system (MES) [52];
• Programmable logic controller (PLC) [53].

MES [52] is an information system that helps decision-making by storing and provid-
ing multiple data generated in a series of production activities from the first to the last
process of a planned product. The results of the quality inspections of each process are also
saved in the MES. Therefore, to apply deep learning to production processes, a connection
between a deep learning system and a MES is required.

PLC [53] refers to a control device or system that allows the input/output of equipment
to operate according to a certain sequence. The product inspection results are closely
intertwined with the next process of the product and controlled by the PLC. For example,
products that are defective will be piled up on a buffer for scrap or repair and non-defective
products will be sent to the next process (assembly or packaging) by the PLC.

References
1. Putera, S.I.; Ibrahim, Z. Printed circuit board defect detection using mathematical morphology and MATLAB image processing

tools. In Proceedings of the 2010 2nd International Conference on Education Technology and Computer, Shanghai, China, 22–24
June 2010.

2. Dave, N.; Tambade, V.; Pandhare, B.; Saurav, S. PCB defect detection using image processing and embedded system. Int. Res. J.
Eng. Technol. (IRJET) 2016, 3, 1897–1901.

3. Wei, P.; Liu, C.; Liu, M.; Gao, Y.; Liu, H. CNN-based reference comparison method for classifying bare PCB defects. J. Eng. 2018,
2018, 1528–1533. [CrossRef]

4. Jing, J.; Dong, A.; Li, P.; Zhang, K. Yarn-dyed fabric defect classification based on convolutional neural network. Opt. Eng. 2017,
56, 093104. [CrossRef]

5. Li, J.; Su, Z.; Geng, J.; Yin, Y. Real-time detection of steel strip surface defects based on improved yolo detection network.
IFAC-PapersOnLine 2018, 51, 76–81. [CrossRef]

6. Li, X.; Zhou, Y.; Chen, H. Rail surface defect detection based on deep learning. In Proceedings of the Eleventh International
Conference on Graphics and Image Processing (ICGIP 2019), Hangzhou, China, 12–14 October 2019.

7. Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 618–626.

8. Soini, A. Machine vision technology take-up in industrial applications. In Proceedings of the 2nd International Symposium on
Image and Signal Processing and Analysis (ISPA 2001), Pula, Croatia, 19–21 June 2001; pp. 332–338.

9. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
10. Iglesias, C.; Martínez, J.; Taboada, J. Automated vision system for quality inspection of slate slabs. Comput. Ind. 2018, 99, 119–129.

[CrossRef]

http://doi.org/10.1049/joe.2018.8271
http://dx.doi.org/10.1117/1.OE.56.9.093104
http://dx.doi.org/10.1016/j.ifacol.2018.09.412
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1016/j.compind.2018.03.030

Sensors 2021, 21, 5039 18 of 19

11. Zhang, X.; Zhang, J.; Ma, M.; Chen, Z.; Yue, S.; He, T.; Xu, X. A high precision quality inspection system for steel bars based on
machine vision. Sensors 2018, 18, 2732. [CrossRef]

12. Chang, P.C.; Chen, L.Y.; Fan, C.Y. A case-based evolutionary model for defect classification of printed circuit board images.
J. Intell. Manuf. 2008, 19, 203–214. [CrossRef]

13. Chaudhary, V.; Dave, I.R.; Upla, K.P. Automatic visual inspection of printed circuit board for defect detection and classification.
In Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET),
Chennai, India, 22–24 March 2017; pp. 732–737.

14. Schmitt, J.; Bönig, J.; Borggräfe, T.; Beitinger, G.; Deuse, J. Predictive model-based quality inspection using Machine Learning and
Edge Cloud Computing. Adv. Eng. Inform. 2020, 45, 101101. [CrossRef]

15. Benbarrad, T.; Salhaoui, M.; Kenitar, S.B.; Arioua, M. Intelligent Machine Vision Model for Defective Product Inspection Based on
Machine Learning. J. Sens. Actuator Netw. 2021, 10. [CrossRef]

16. Yang, Y.; Pan, L.; Ma, J.; Yang, R.; Zhu, Y.; Yang, Y.; Zhang, L. A High-Performance Deep Learning Algorithm for the Automated
Optical Inspection of Laser Welding. Appl. Sci. 2020, 10, 933. [CrossRef]

17. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of
the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105.

18. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
19. Guan, S.; Lei, M.; Lu, H. A steel surface defect recognition algorithm based on improved deep learning network model using

feature visualization and quality evaluation. IEEE Access 2020, 8, 49885–49895. [CrossRef]
20. Hao, R.; Lu, B.; Cheng, Y.; Li, X.; Huang, B. A steel surface defect inspection approach towards smart industrial monitoring.

J. Intell. Manuf. 2020, 1–11. [CrossRef]
21. Wang, X.; Gao, Y., II; Dong, J.; Qin, X.; Qi, L.; Ma, H.; Liu, J. Surface defects detection of paper dish based on Mask R-CNN. In

Proceedings of the Third International Workshop on Pattern Recognition, Beijing, China, 26–28 May 2018.
22. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
23. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
24. Yun, J.P.; Shin, W.C.; Koo, G.; Kim, M.S.; Lee, C.; Lee, S.J. Automated defect inspection system for metal surfaces based on deep

learning and data augmentation. J. Manuf. Syst. 2020, 55, 317–324. [CrossRef]
25. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

26. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December
2015; pp. 1440–1448.

27. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

28. Dimitriou, N.; Leontaris, L.; Vafeiadis, T.; Ioannidis, D.; Wotherspoon, T.; Tinker, G.; Tzovaras, D. Fault diagnosis in microelec-
tronics attachment via deep learning analysis of 3-D laser scans. IEEE Trans. Ind. Electron. 2019, 67, 5748–5757. [CrossRef]

29. Block, S.B.; da Silva, R.D.; Dorini, L.B.; Minetto, R. Inspection of Imprint Defects in Stamped Metal Surfaces Using Deep Learning
and Tracking. IEEE Trans. Ind. Electron. 2021, 68, 4498–4507. [CrossRef]

30. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007.

31. Kotsiopoulos, T.; Leontaris, L.; Dimitriou, N.; Ioannidis, D.; Oliveira, F.; Sacramento, J.; Amanatiadis, S.; Karagiannis, G.; Votis,
K.; Tzovaras, D.; others. Deep multi-sensorial data analysis for production monitoring in hard metal industry. Int. J. Adv.
Manuf. Technol. 2020, 1–14. [CrossRef]

32. Song, K.; Yan, Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects.
Appl. Surf. Sci. 2013, 285, 858–864. [CrossRef]

33. Tabernik, D.; Šela, S.; Skvarč, J.; Skočaj, D. Segmentation-based deep-learning approach for surface-defect detection.
J. Intell. Manuf. 2020, 31, 759–776. [CrossRef]

34. Bao, Y.; Song, K.; Liu, J.; Wang, Y.; Yan, Y.; Yu, H.; Li, X. Triplet-Graph Reasoning Network for Few-shot Metal Generic Surface
Defect Segmentation. IEEE Trans. Instrum. Meas. 2021. [CrossRef]

35. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [CrossRef]
36. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

networks. arXiv 2014, arXiv:1406.2661.
37. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In

Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232.
38. Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv 2017,

arXiv:1710.10196.
39. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

http://dx.doi.org/10.3390/s18082732
http://dx.doi.org/10.1007/s10845-008-0074-8
http://dx.doi.org/10.1016/j.aei.2020.101101
http://dx.doi.org/10.3390/jsan10010007
http://dx.doi.org/10.3390/app10030933
http://dx.doi.org/10.1109/ACCESS.2020.2979755
http://dx.doi.org/10.1007/s10845-020-01670-2
http://dx.doi.org/10.1016/j.jmsy.2020.03.009
http://dx.doi.org/10.1109/TIE.2019.2931220
http://dx.doi.org/10.1109/TIE.2020.2984453
http://dx.doi.org/10.1007/s00170-020-06173-1
http://dx.doi.org/10.1016/j.apsusc.2013.09.002
http://dx.doi.org/10.1007/s10845-019-01476-x
http://dx.doi.org/10.1109/TIM.2021.3083561
http://dx.doi.org/10.1186/s40537-019-0197-0

Sensors 2021, 21, 5039 19 of 19

40. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,7–12 June
2015; pp. 1–9.

41. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790.

42. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
43. Ben-David, S.; Blitzer, J.; Crammer, K.; Pereira, F. Analysis of representations for domain adaptation. In Proceedings of the

Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 3–6 December 2007; pp. 137–144.
44. Kim, T.H.; Cho, Y.J.; Kim, H.R. A PCB Inspection with Semi-Supervised ADDA Networks. KIISE Trans. Comput. Pract. 2020,

26, 150–155. [CrossRef]
45. French, R.M. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 1999, 3, 128–135. [CrossRef]
46. Tong, S.; Chang, E. Support vector machine active learning for image retrieval. In Proceedings of the Ninth ACM International

Conference on Multimedia, Ottawa, ON, Canada, 30 September–5 October 2001; pp. 107–118.
47. Jung, A.B.; Wada, K.; Crall, J.; Tanaka, S.; Graving, J.; Reinders, C.; Yadav, S.; Banerjee, J.; Vecsei, G.; Kraft, A.; et al. Imgaug. 2020.

Available online: https://github.com/aleju/imgaug (accessed on 1 February 2020).
48. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
49. Haniff, H.; Sulaiman, M.; Shah, H.; Teck, L. Shape-based matching: Defect inspection of glue process in vision system. In

Proceedings of the 2011 IEEE Symposium on Industrial Electronics and Applications, Langkawi, Malaysia, 25–28 September 2011;
pp. 53–57.

50. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.

51. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141.

52. Kletti, J. Manufacturing Execution System-MES; Springer: Berlin/Heidelberg, Germany, 2007.
53. Reis, R.A.; Webb John, W. Programmable Logic Controllers: Principles and Applications; Prentice Hall: Hoboken, NJ, USA, 1998;

Volume 4.

http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.5626/KTCP.2020.26.3.150
http://dx.doi.org/10.1016/S1364-6613(99)01294-2
https://github.com/aleju/imgaug

	Introduction
	Related Work
	Conventional Product Inspection Systems
	Product Inspection with Deep Learning

	Proposed Automatic Product Inspection Framework via Deep Learning
	Model Training Stage
	Data Collection
	Data Pre-Processing
	Model Selection and Training: Classifier versus Detector

	Model Applying Stage
	Connecting Deep Learning Models to Existing Systems
	Model Expansion

	Model Managing Stage
	Explainable System: Grad-Cam
	Model Update System

	Datasets
	Experimental Results
	Data Augmentation
	Defect Classification Results
	PCB Parts Dataset
	Cylinder Bonding Dataset

	User Systems

	Conclusions
	Product Manufacturing Systems
	References

