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To improve the spatial resolution, dense multichannel electroencephalogram with more than 32 leads has gained more and more
applications. However, strong common interferencewill not only conceal the weak components generated from the specific isolated
neural source, but also lead to severe spurious correlation between different brain regions, which results in great distortion on
brain connectivity or brain network analysis. Starting from the fast independent component analysis algorithm, we first derive
the mixing matrix of independent source components based on the baseline signals prior to tasks. Then, we identify the common
interferences as those components whose mixing vectors span the minimum angles with respect to the unitary vector. By assuming
that both the common interferences and their corresponding mixing vectors stay consistent during the entire experiment, we apply
the demixing and mixing matrix to the task signals and remove the inferred common interferences. Subsequently, we validate the
method using simulation. Finally, the index of global coherence is calculated for validation. It turns out that the proposed method
can successfully remove the common interferences so that the prominent coherence of mu rhythms in motor imagery tasks is
unmasked. The proposed method can gain wide applications because it reveals the true correlation between the local sources in
spite of the low signal-to-noise ratio.

1. Introduction

Electroencephalogram (EEG) collected from the scalp is the
integration of the electrical activities of amounts of cortex
neurons blurred by the skull [1]. Although it is widely
accepted that EEG has the advantage of high temporal
resolution, the spatial resolution remains as a problem [2]. To
improve the spatial resolution, densemultichannel EEG (with
more than 32 channels) and high-density EEG (with more
than 128 channels) have gained more and more applications.
However, themore the channels are used, themore the redun-
dant information is involved. It directly results in the fact that
the weak components generated from the specific isolated
neural source are deeply concealed by the common com-
ponents from the surrounding sources [3]. Moreover, these
redundancies can lead to a spurious correlation/coordination
between different brain regions while in fact little or none is
present. It will greatly distort the result of the brain connec-
tivity or brain network analysis, which becomes more and

more popular [4–15]. Therefore, it is of great importance to
unmask the isolated source-corresponding component from
the originally collected signals with too much redundant
information or common interferences.

Among multichannel EEG redundancy-removal meth-
ods, one representative is surface Laplacian reference scheme
[16, 17]. After subtracting the average potential in the local
neighborhood, the original signals referencing to one or two
common locations are converted to referencing to the respec-
tive local one. Typically, the signal amplitude will greatly
decrease, with the expected return of redundancy removal.
The surface Laplacian reference scheme is theoretically sim-
ple and easy to implement. However, using the arithmetical
mean within the neighborhood as the local reference may
be a little bit rough, regardless of the conduction differences
among the neighbor leads. In addition, great attention should
be paid to the selection of the neighborhood.

Another representative is independent component anal-
ysis (ICA) [18, 19]. In fact, ICA has long been applied to EEG
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preprocessing [20–27] including electrooculography arti-
facts removal. Recently, Whitmore and Lin have succeeded
in removing distal electrical reference as well as volume-
conducted noises from local field potentials using ICA [25].
It greatly motivates us to step further, trying a more general
common interference removal.

In the presented manuscript, we do not identify the
source or the frequency of the common interference. Instead,
we only assume that the common interference will affect
the different channel most evenly and the mixing vectors
keep constant during the whole experiment, regardless of the
mental activities. In addition, by regarding both the common
interferences and their transfer vectors as identical in the
entire experimental circumstance, we adopt the component
extracted from the baseline data. We validate the proposed
method on BCI competition dataset 1 [28, 29]. It turns out
that the method can successfully unmask the coherence in
mu rhythm during a motor imaginary task. Since high-
density EEG and brain connectivity or brain network are the
trends in neuroscience, the proposed method can gain wide
applications.

In the manuscript, we first describe the method in
Section 2, and then in Section 3 the method is validated using
simulation series aswell as experimental data provided in BCI
Competition IV, and finally results are discussed in Section 4.

2. Methods

The method includes three steps in order: independent
components decomposition, the common interference iden-
tification, and removal and inverse transformation.

2.1. Independent Component Decomposition. Mathematically,
given the independent 𝑀 sources as S = (𝑠𝑖,𝑗), 𝑖 =
1, 2, . . . ,𝑀, 𝑗 = 1, 2, . . . , 𝐿, in which 𝑗 represents the
sampling time index, theN-channel (𝑁 ≥ 𝑀) collected signal
denoted as X = (𝑥𝑖,𝑗), 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝐿, can be
calculated as

X = AS, (1)

in which A is the N-by-Mmixing matrix. Theoretically, each
row of A represents a set of combination weights of the 𝑀
different sources on the specific channel, and each column of
A, denoted as⇀A𝑗, reflects the relative impacts of the jth source
on all the𝑁 different channels.

The independent component decomposition is to resolve
(1) to obtain

S = A−1X =WX, (2)

where W is called demixing matrix. Because neither W nor
S is known a priori, the maximization of non-Gaussianity
or minimization of mutual information principle is conven-
tionally employed to approximate theW as well as S through
iteration [12].

Herein, we adopt FastICA algorithm proposed by
Hyvärinen [13] for independent component decomposition.
The fixed-point iteration scheme as well as the maximum-
negative entropy principle is employed to find the orthogonal

rotation matrix W with the maximal non-Gaussian measure
of the prewhitened data. And then the mixing matrix A can
be calculated as

A =W−1. (3)

2.2. Common Interference Identification and Removal. Sub-
sequently, we try to identify and remove the common
interference through analyzing the mixing matrix A.

The putative common interference component is
assumed as a distal signal that has approximately same
effect on all electrodes. In order to obtain local brain
activities more accurately, these distal common interference
components should be removed. To do this, the vector
angles are calculated between each ⇀A𝑗 and a unit vector,
and the smaller the angle is, the more uniform the impacts
of the corresponding source (independent component)
across channels are and the more likely the corresponding
source is a common interference. We delete this source
through setting the corresponding kth independent source
𝑠𝑘,𝑗, 𝑗 = 1, 2, . . . , 𝐿 as 0, obtain the processed Ŝ, and finally
derive the deabundancy signals as

X̂ = AŜ (4)

3. Experiments

3.1. Simulation. To validate the proposed method, we first
applied it to simulation series. We define the three collected
channel signals which are determined by three independent
components, i.e., 𝑠1 = sin(2𝜋 × 10𝑡), 𝑠2 = cos(2𝜋𝑡), and
random Gaussian noises with 𝜇 = 0, 𝜎 = 10, and the mixing
matrix A = [ 1 −0.5 0.190.2 1 0.21

−0.4 0.4 0.2
]. As described in Section 2, the

collected signals are derived by X = AS. The Gaussian com-
ponent is deliberately set with great amplitude and is treated
as the common interference. Theoretically, we can obtain the
pure signal without common interference via setting the 3rd
column elements as 0 s. We plot the pure signal of Channels
1 and 2 in Figure 1(a), and the collected contaminated signals
in Figure 1(b). Then, we apply the proposed method to 𝑋.
After common interference removal, signals of Channels 1
and 2 are plotted in Figure 1(c). To quantitatively evaluate
the signal quality, we also calculate the linear correlation
coefficient between the collected signals and the pure signals,
both before and after common interference removal.

Figure 1 shows that the proposed method nearly doubles
the correlation coefficient with the pure signals, and wave
formalso indicates the signal quality is greatly improved, even
in such low signal-to-noise ratios.

3.2. Application to Scalp EEG

3.2.1. DataDescription. Weapply the proposedmethod to the
calibration data in dataset 1 of BCI Competition IV, provided
by the Berlin BCI group [20, 21].

This dataset includes three artificial data (#c, #d, and #e)
as well as four data pieces recorded from 4 healthy subjects
(#a, #b, #f, and #g) in motor imagery experiments. Each data
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Figure 1: Simulation results ((a) is the pure signal, (b) is the contaminated signal, and (c) is the postprocessed signal. As we can see, although
the noise is strong, the proposed method greatly improved the signal quality by doubling the correlation coefficient with the pure signal.Thus
it validates the proposed method).

includes 59-channel continuous EEG or artificial simulated
EEG, with a sampling rate of 1000Hz and high cut-off
frequency of 200Hz. To compress the data size, the provider
downsampled the data to 100Hz after low-pass filtering them
with stopband edge frequency 49Hz [21]. According to the
data information, we plot the lead locations in Figure 2.

In each experiment, before the first cue was given, the
very first duration of 16 s can be considered the baseline
signal, and then 200 trials of cue-response with 8 s duration
were followed. Each trial consists of 4 s cue and motor
imagery task, 2 s blank screen, and 2 s fixation.Motor imagery
can be movement of left hand, right hand, or feet, and for
each subject two classes of motor imagery were chosen. The
first 2.56 s sections beginning with the cue are used for the
following analysis.

3.2.2. Common Interference Removal. Thebaseline signals are
firstly taken as original data to calculate the best orthogonal
rotation matrix𝑊 and nomore than 59 independent compo-
nents 𝑆 by FastICA [13]. The stopping criterion of FastICA is
set as the minimum weight change of 10−5.

Although the brain activities related independent sources
might be different between the baseline and task trials, both
the common interference signal itself and its corresponding
transfer vector are assumed to be identical in the entire exper-
iment. Therefore, the putative common interference compo-
nents calculated by the baseline signals can be extended to
the following task state of the EEG treatment. That is, W is
applied to task trial signals:

Stask =WXtask (5)
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Figure 2: Lead locations for signals in dataset 1 ((a) presents the lead label, and (b) presents the lead number, in case we would refer to it in
the manuscript).
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Figure 3:The vector angle of demixed independent component (the
light blue marks the two components that are treated as common
interference and removed).

After deleting the common interference, we obtain the
processed signal as

X̂task = AŜtask (6)

3.2.3. EEG Results. We apply the proposed method to EEG.
As a representative, we present the vector angle derived
from #a in Figure 3, in which the light blue marks the two
components treated as the common interference and then
removed. As seen, these two components are not of the
two smallest vector angles. However, we set an additional
restriction that all elements in the mapping vector should be
of the same sign. Therefore, in this case components 2 and 4
are determined as the common interference.

We also examined the EEG series before and after the
processing. As a representative, we plot two leads of subject
#a in Figure 4. As shown in Figure 4, the original signals
collected from leads 5 (F1) and 7 (F2) are highly correlated.
And the eye movement artifacts are obvious, occurring from
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Figure 4: A representative EEG series result of subject #a. (Frontal
EEG is usually contaminated by ocular and eye movement artifacts.
This section includes two obvious ocular artifacts, occurring from
4.3 s to 5 s. After processing, the eye movement artifacts are success-
fully removed, and the correlation between F1 and F2 is alleviated)

4.3 s to 5 s. After processing, the correlation is alleviated, and
the eye movement artifacts are removed.

It is difficult to provide an accurate signal quality eval-
uation, because we in fact do not know the “real” signal.
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Figure 5: The relative power comparison between the original signal and the common interference removed signal. (Color represents
the specific rhythm power relative to the power of the entire frequency band. As we see, after processing, the relative power reveals more
distribution characteristics. It proves that we do uncover the intrinsic isolated neural activities, which were concealed by the strong common
interference)
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Figure 6: Coherence heatmap comparison between the original signal and the common interference removed signal. (As we can see, before
processing, theta and gamma rhythm both present strong coherence for nearly all lead pairs. After processing, coherence differences among
different pairs become obvious. In addition, the brighter lines parallel to the diagonal line diffuse to wider region after processing. It implies
that after the common interference removal coherences between some far-away lead pairs become unconcealed and prominent)

However, we tried to calculate relative power as well as
coherence andmade comparison between the original signals
(preprocessing) and processed signals with common inter-
ference removed (postprocessing). Taking the subject #a as
an example, we present the relative power in Figure 5 and
coherence heatmaps in Figure 6 for the commonly defined
EEG rhythms.

As we can see from Figure 5, maps of the original signals
have bigger connected regions, whereas after processingmaps
reveal more distribution characteristics. It proves that we do
uncover the intrinsic isolated neural activities, which were
concealed by strong common interference.

As we can see from Figure 6, for the original signal,
the common interference imposes strong coherence on the
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Figure 7: Continued.
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Figure 7: Comparison of the index of global coherence between the original and the processed signals. (The horizontal axis represents the
frequency, and the vertical axis represents the index of global coherence. In the original data, all human subjects, i.e., (a), (b), (f), and (g),
present high coherences in both low frequency band and high frequency band, which indicates a universal conductance induced consistency
on scalp. However, as for the processed data, the high coherences in that two frequency bands are both suppressed while a coherence peak in
mu rhythms (the green shade area) becomes prominent except for subject #b. It implies that although we did not mean to filter the specific
frequency, the spurious high coherences caused by the common interferences are greatly alleviated. We cannot observe mu coherence in the
artificial signals, i.e., (c), (d), and (e))

leads in the same neighborhood. That leads to the brighter
lines parallel to the diagonal line in the heatmap, which
may conceal coherence between leads that are not close in
location. However, after being processed by the proposed
method, the bright neighborhood diffused, and coherences
between some far-away lead pairs become unconcealed and
prominent.

We further calculated an interesting index, i.e., the global
coherence [3, 22], and made comparison. All global coher-
ence results for the data sets 1 are presented in Figure 7, in
which the horizontal axis represents the frequency, and the
vertical axis represents the index of global coherence.

As shown in Figures 7(a), 7(b), 7(f), and 7(g), in the
original data, all human subjects present high coherences in
both low frequency band and high frequency band, which
indicates a universal conductance induced consistency on
scalp. However, as for the processed data, the high coherences
in that two frequency bands are both suppressed while a
coherence peak in mu rhythms (the green shade area in
Figure 7) becomes prominent except for subject #b. It implies
that although we did not mean to filter the specific frequency,
the spurious high coherences caused by the common inter-
ferences are greatly alleviated. Meanwhile, the coherence in
mu rhythms, which are intrinsically related to the motor
imaginary, is unmasked. And as to the artificial signals in
Figures 7(c), 7(d), and 7(e), we cannot observe mu coherence.
Since these signals are artificial, we consider it reasonable.
Therefore, the above results demonstrate that the proposed
method is successful.

4. Discussions and Conclusion

Coherence is the equivalence of correlation in frequency
domain. In active brains, correlation analysis in time domain
is difficult because the EEG amplitude is very weak for
desynchronization. In these cases, coherence is the appro-
priate substitute. However, whether in time domain or in
frequency domain, the spurious correlation brought by the
common interference imposes a big problem on unmasking
the true cooperation between the weak neural sources. In
the presented work, we propose an independent compo-
nent decomposition based method; the two most crucial
innovations include the following: (1) the angle between
the mixing vector and the unitary vector rather than the
frequency or morphology is used to identify the common
interference; and (2) the independent component source
and the mixing vectors derived from the baseline signal are
applied to the following task signals. As to (2), sincemost EEG
experiments are implemented in stimulus-locking paradigm,
the proposed method can gain wide applications. In brief,
the proposed method presents successful application in the
motor imaginary EEG of BCI Competition IV and reveals the
coherence peak in motor related mu rhythms.

Appendix

The cross-spectral matrix C is calculated as

C𝑋𝑖𝑗 (𝑓) =
1
𝐾
𝐾

∑
𝑘=1

𝑋𝑘𝑖 (𝑓)𝑋𝑘𝑗 (𝑓)
∗ , (A.1)
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in which𝑋𝑘𝑖 (𝑓) and𝑋𝑘𝑗(𝑓) are the spectrums calculated from
channels 𝑖 and j, respectively, at frequency 𝑓. Then the cross-
spectral matrix is singular value decomposed as C = USV,
where S is the diagonal matrix with each diagonal element,
denoted as 𝜆𝑖, being an eigenvalue, and 𝜆1 ≥ 𝜆2 ≥ ⋅ ⋅ ⋅ ≥ 𝜆𝑁.
Finally, the global coherence is calculated as

CohGlobal =
𝜆1
∑𝑁𝑖=1 𝜆𝑖
. (A.2)
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