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Abstract

Background: One of the most common causes of worldwide cancer premature death is non-small cell lung
carcinoma (NSCLC) with a very low survival rate of 8%-15%. Since patients with an early stage diagnosis can have
up to four times the survival rate, discovering cost-effective biological markers that can be used to improve the
diagnosis and prognosis of the disease is an important clinical challenge.
In the last few years, significant progress has been made to address this challenge with identified biomarkers
ranging from 5-gene signatures to 133-gene signatures. However, A typical molecular sub-classification method for
lung carcinomas would have a low predictive accuracy of 68%-71% because datasets of gene-expression profiles
typically have tens of thousands of genes for just few hundreds of patients. This type of datasets create many
technical challenges impacting the accuracy of the diagnostic prediction.

Results: We discovered that a small set of nine gene-signatures (JAG1, MET, CDH5, ABCC3, DSP, ABCD3, PECAM1,
MAPRE2 and PDF5) from the dataset of 12,600 gene-expression profiles of NSCLC acts like an inference basis for
NSCLC lung carcinoma and hence can be used as genetic markers. This very small and previously unknown set of
biological markers gives an almost perfect predictive accuracy (99.75%) for the diagnosis of the disease the sub-
type of cancer. Furthermore, we present a novel method that finds genetic markers for sub-classification of NSCLC.
We use generalized Lorenz curves and Gini ratios to overcome many challenges arose from datasets of gene-
expression profiles. Our method discovers novel genetic changes that occur in lung tumors using gene-expression
profiles.

Conclusions: While proteins encoded by some of these gene-signatures (e.g., JAG1 and MAPRE2) have been
showed to involve in the signal transduction of cells and proliferation control of normal cells, specific functions of
proteins encoded by other gene-signatures have not yet been determined. Hence, this work opens new questions
for structural and molecular biologists about the role of these gene-signatures for the disease.

Background
Currently, cancer is a leading cause of death in the Uni-
ted States, second only to cardiovascular diseases. Each
year, around 1.5 million people were diagnosed with
cancer and more than half of a million people died from
cancer, which makes cancer a major public health pro-
blem in the United States as well as many other parts of
the world [1,2]. The top five most common cancer-
related deaths were due to lung, breast, prostate, color-
ectal and pancreatic cancer. Together, these five diseases

accounted for over 50% of all cancer deaths in the Uni-
ted States in 2009. Lung cancer alone, with NSCLC as
the most common cause of worldwide cancer premature
death, killed over 160,000 people, more than the other
four cancers put together. The disease has a very low
survival rate of 8%-15%. Meanwhile, the survival rate for
patients with early-stage disease increases to 40%-55%
after surgery. That said, discovering cost-effective biolo-
gical markers that can be used to improve the diagnosis
and prognosis of the disease is an important clinical
challenge [3].
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NSCLC is sub-categorized as adenocarcinomas, squa-
mous cell carcinomas, and large-cell carcinomas, of which
adenocarcinomas are the most common [4]. The histo-
pathological sub-classification of lung adenocarcinoma is
challenging. For example, in one study independent lung
pathologists agreed on lung adenocarcinoma sub-classifi-
cation in only 41% of cases [5]. In another study, propor-
tional hazard models identified an optimal set of 50
prognostic mRNA transcripts using a 5-fold cross-valida-
tion procedure. This signature was tested in an indepen-
dent set of 36 squamous cell lung carcinomas (SCC)
samples and achieved 84% specificity and 41% sensitivity
with an overall predictive accuracy of 68% [6]. Combining
the SCC classifier with their adenocarcinoma prognostic
signature gave a predictive accuracy of 71% in 72 NSCLC
samples.
In the past few years, multiple techniques have evolved

allowing rapid measurement of gene expression and
simultaneous high-throughput measurement of thou-
sands of genes from several hundred samples. Different
parts of the gene-protein relationship can be measured
such as messenger RNA levels, protein expression and
cellular metabolic activity. Some of the available genomic
technologies include gene expression arrays, serial analy-
sis of gene expression, single-nucleotide polymorphism
analysis, and high-throughput capillary sequencing [3].
Gene-expression array analysis methodologies developed
over the last few years have demonstrated that expression
data can be used in a variety of class discovery or class
prediction biomedical problems including those relevant
to tumor classification [7-10]. Data mining and statistical
techniques applied to gene expression data have been
used to address the questions of distinguishing tumor
morphology, predicting post treatment outcome, and
finding molecular markers for disease [11-14].
However, gene expression profiles present many chal-

lenges for data mining both in finding differentially
expressed genes, and in building predictive models
because the datasets are highly multidimensional (12,600
dimensions in our study) and contain a small number of
records (197 records in our study). Although microarray
analysis tool can be used as an initial step to extract most
relevant features, one has to avoid over-fitting the data
and deal with the very large number of dimensions of the
datasets. The current challenges in analyzing gene-
expression profiles, is illustrated in a method recently
published in the Journal of Experimental & Clinical
Cancer Research in July 2009 [15] where it used prior
knowledge with support vector machine-based classifica-
tion in diagnosis of lung cancer. The authors of [15]
reported an accuracy of 98.51%-99.06% for their classifi-
cation algorithm using 5 marker genes on a dataset of 31
malignant pleural mesothelioma (MPM) and 150 lung
adenocarcinomas. Even though the method in [15] can

differentiate between MPM and lung adenocarcinomas
with high accuracy, it gives an accuracy of 70% when we
added other types of NSCLC lung cancer including ade-
nocarcinomas, squamous cell lung carcinomas and pul-
monary carcinoids into consideration. Other researchers
also limited themselves in differentiate two sub-types of
NSCLC lung cancer such as between adenocarcinomas
and squamous cell lung carcinomas.
This paper aims at a novel data mining method that

finds cost-effective genetic markers and uses the markers
to differentiate with very high accuracy all sub-types of
NSCLC lung cancer. Comparing with recent publications
in that the authors use currently available data mining
techniques to find biomarkers for NSCLC lung cancer, we
found that our new method finds significantly more cost-
effective genetic markers and provides more accurate sub-
classification of NSCLC lung cancer. Comparison with
SAM [16], a popular method for significance analysis of
microarrays, is also provided in this paper.
Our work is based upon the mRNA expression pro-

files in [17] in that a total of 203 snap-frozen lung
tumors (n = 186) and normal lung (n = 17) specimens
were used to create the dataset. Of these, 125 adenocar-
cinoma samples were associated with clinical data and
with histological slides from adjacent sections. The 203
specimens include histologically defined lung adenocar-
cinomas (n = 139), squamous cell lung carcinomas (n =
21), pulmonary carcinoids (n = 20), and normal lung
(n = 17) specimens. Total RNA extracted from samples
was used to generate cRNA target, subsequently hybri-
dized to human U95A oligonucleotide probe arrays
according to standard protocols.
Among the nine gene-signatures found by our new

method (JAG1, MET, CDH5, ABCC3, DSP, ABCD3,
PECAM1, MAPRE2 and PDF5), proteins encoded by
some of these gene-signatures (e.g., JAG1 and MAPRE2)
have been showed to involve in the signal transduction
of cells and proliferation control of normal cells [18]. It
has also been found that MAPRE2 is highly expressed in
pancreatic cancer cells, and seems to be involved in
perineural invasion [19]. However, specific functions of
proteins encoded by other gene-signatures have not yet
been determined. Hence, this work opens new questions
for structural and molecular biologists about the role of
these gene-signatures for the disease.

Results
Finding genetic biomarkers
We first select 250 genes with the highest LorenzGini
index values from a dataset of 12,600 gene-expression
profiles for 197 patients using the novel algorithm
described in Section Methods. Even though the genes
with highest index values have some impact in differen-
tiating the sub-types of NSCLC lung cancer (see Figure 1
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for a statistical analysis), a simple use of these genes as
biomarkers does not work because many of the genes are
correlated and hence resulted in low overall accuracy for
the predicting model. That said, one still has to look for
good combinations of the high impact genes in order to
find an accurate genetic biomarker subset.
To further reduce the size of the gene subsets and to

improve the prediction accuracy, we evaluate different
combinations of genes to identify an optimal subset in
terms of accuracy for the Bayesian Network classification.
Since it is infeasible to test all combinatorial possibilities
from 250 genes, the gene subsets to be evaluated are gen-
erated using different subset search techniques. We use
Best First and Greedy search methods in the forward and
backward directions. Greedy search considers changes
local to the current subset through the addition or
removal of genes. For a given parent set, a greedy search
examines all possible child subsets through either the
addition or removal of genes. The child subset that shows
the highest goodness measure then replaces the parent
subset, and the process is repeated. The process termi-
nates when no more improvement can be made. Best First

search is similar to greedy search in that it creates new
subsets based on the addition or removal of genes to the
current subset with the ability to backtrack along the sub-
set selection path to explore different possibilities when
the current path no longer shows improvement. To pre-
vent the search from backtracking through all possibilities
in the gene space, a limit is placed on the number of non-
improving subsets that are considered. In our evaluation
we chose a limit of five.
The algorithm returns a set of nine genes (JAG1, MET,

CDH5, ABCC3, DSP, ABCD3, PECAM1, MAPRE2 and
PDF5) from the dataset of 12,600 gene-expression profiles
of NSCLC. We exploit this small set of genes to differenti-
ate all sub-types of NSCLC lung cancer.
To build the classification model, we used Bayesian

Network (BayesNet), which is explained in Section Meth-
ods. Figure 2 shows the averaged accuracies of the gene
expression profile classification using Bayesian Network
classification together with their standard deviations. To
test the accuracy of classification models, we use k-fold
cross validation, which is a common method for estimat-
ing the error of a model on benchmark medical data sets.

Figure 1 Comparing the ROC curves of a gene with high Lorenz-Gini value (MAP4) and a gene with low Lorenz-Gini value (NME3) for
differentiating between lung adenocarcinomas and normal lung reveals the area under the curve, standard error and 95% confidence interval
for MAP4 are 0.888, 0.0576 and 0.828-0.933 in comparison with 0.518, 0.0568 and 0.437-0.599 for NME3, respectively.
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For a reliable evaluation of the accuracy, we test the clas-
sification algorithm for many values of k. More precisely,
we test for k = 5,6,7,8,9. For each value of k, the data set
D is randomly divided into k subsets D1, D2, ..., Dk. We
leave out one of the subsets Di, i = 1..k each time for
being used as a test data set for cross validation. The
remaining subset ∪j≠iDj is used to build the model. The
cross validation accuracy computed for each of the k test
samples are then accumulated to give the k-fold estimate
of the cross validation accuracy. To ease the effects of the
random partitions on the data set, this whole process is
repeated 50 times with different random seeds and the
results are then averaged to give the estimated overall
accuracy of the predicting model.
Notice that this testing approach separates the testing

data from the training data when a model is built and
hence avoiding the over-fitting situation. Furthermore, it
allows us to have a total number of 197 gene-expression
profiles as testing data.
During the validation process, all patients with lung

adenocarcinomas were correctly predicted, all patients

except one with squamous cell lung carcinomas were
correctly predicted, all patients with pulmonary carci-
noids were correctly predicted, and all patients with
normal lung specimens were correctly predicted. The
only false prediction for random seed 1 was a patient
with squamous cell lung carcinomas but incorrectly pre-
dicted as adenocarcinomas. As we can see, this very
small set of nine genes gives an almost perfect predictive
accuracy for the diagnosis of the disease. When the
number of genes is further reduced or increased, the
accuracy starts to declined. That said, this set of nine
genes acts like an inference basis for NSCLC lung carci-
noma and hence can be used as genetic markers.

Comparing with other gene selection methods
To investigate the classifying accuracy of the biomarkers
generated by our new method, we first show that a
method for molecular sub-classification is not a simple
combination of binary classification models. Experiment-
ing with binary classifications, we found that a biomarker
singleton set of one gene, the STXBP1, provides 100%

k-fold
Figure 2 Accuracy of sub-classifications with standard deviations.
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accuracy for differentiating between pulmonary carci-
noids and normal lung. Similarly, a biomarker singleton
set of one gene, the DOCK4, provides 100% accuracy for
differentiating between squamous cell lung carcinomas
and normal lung. A biomarker set of two genes, the
MAP4 and SPP1, provides 99.36% accuracy for differen-
tiating between lung adenocarcinomas and normal lung.
However, combining these four genes together just give a
molecular sub-classification model with 84.26% overall
accuracy in comparison with 99.75% accuracy by our
novel method.
Figure 3 shows the ROC curves of the genes STXBP1

and DOCK4.
Comparing with currently available data mining techni-

ques in Weka to find biomarkers for NSCLC lung cancer,
we found that our new method finds significantly more
cost-effective genetic markers and provides more accurate
sub-classification of NSCLC lung cancer. We also compare
our method with SAM using the same dataset for NSCLC
lung cancer. SAM combines t-test and permutations to
calculate a False Discovery Rate to provide a subset of
genes that are considered significant [16]. Using SAM, we
select four sets of 50, 100, 150, 200 and 250 most signifi-
cant genes by using the parameter values of 0.556. 0.458.
0.4188, 0.383 and 0.3568, respectively.
We then use the Bayesian Net classification in Weka to

check the accuracy of the most significant gene sets gener-
ated by LorenzGini and SAM [20]. Besides our fresh
implementation of LorenzGini algorithms, simple conver-
ters were written to connect SAM and Weka. For a reli-
able evaluation of the accuracy, we test the classification

algorithm for many values of k as specified in our valida-
tion plan.
Figure 4 shows the accuracy of the gene expression

profile classification using Bayesian Net algorithm on
SAM’s gene sets and on LorenzGini’s gene sets with 50
genes. These two sets of 50 genes have only three genes
in common: MEG3, CIRBP, and KCNK3. As we can see,
the classifying accuracy has been improved with the
LorenzGini’s gene selections. We also observed that the
accuracy of the gene expression profile classification
using Bayesian Network algorithm on SAM’s gene sets
declined when the number of genes is reduced to 50 or
smaller. In contrast, the accuracy of the gene expression
profile classification using LorenzGini’s gene sets is
stable even when the number of genes is reduced to 9,
which has the highest accuracy. This observation is also
true for other classification methods.

Conclusion
We presented a method that can find cost-effective biolo-
gical markers as quantifiable measurements for an almost
perfect predictive accuracy of NSCLC lung cancers. As
cancers are complicated, one can only predict the status
using a combination of many genes. The genes we dis-
covered as genetic markers (JAG1, MET, CDH5, ABCC3,
DSP, ABCD3, PECAM1, MAPRE2 and PDF5) are differ-
ent with previously known results. Furthermore, proteins
encoded by some of these gene-signatures (e.g., JAG1
and MAPRE2) have been showed to involve in the signal
transduction of cells and proliferation control of normal
cells while specific functions of proteins encoded by

Figure 3 The ROC curves of STXB1 gene (left figure) for differentiating between pulmonary carcinoids and normal lung, and the ROC curves of
DOCK4 gene (right figure) for differentiating between squamous cell lung carcinomas and normal lung.
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other gene-signatures have not yet been determined.
Therefore, this work opens new questions for structural
and molecular biologists about the role of these gene-sig-
natures for the disease.

Methods
An algorithm
Input: A gene-expression profiles dataset D
Output: A small subset of genes as genetic markers

and a prediction model for NSCLC lung cancer
Preparation: Discretize the gene-expression profile

values.
Step1: Pre-select 250 genes with highest ranking Lor-

enzGini. (A threshold can be used for controlling the
number of significant genes for genetic markers.)
Step2: Construct an optimal Bayesian network for a

small set of genes as genetic markers that gives the
highest overall accuracy for predicting all sub-type of
NSCLC lung cancer.

In the subsequent subsections, we will provide the
details for the steps of the algorithm

Ranking the genes for biological markers
In order to find a small subset of genes as accurate bio-
logical markers from a gene-expression dataset with
tens thousand of genes, one has to rank the genes with
respect to some criteria. The criteria will be chosen so
that the genes with highest index values have some
impact in differentiating the sub-types of NSCLC lung
cancer. However, current techniques in data mining
such as the Gini index or the entropy approaches have
limitation for this type of problem.
The first challenge that arose from the gene-expres-

sion datasets is the bias due to the order of cancer types
or classes in data mining’s terminology. Let’s consider a
simple example of expression profiles for a gene in
Table 1 where the gene dataset D has d = 100 patients
and three classes. The gene expression values were

Figure 4 SAM’s & LorenzGini’s gene sets classified by Bayesian Net.
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discretized into three ranges R1, R2 and R3 using for
example the expectation-maximization method in [21].
Clearly, the cancer types or classes can be labeled in any
order. When this gene is ranked by current microarray
analysis methodologies, for example by calculating the

Gini index giniA(D) = �m
i=1

|Ri|
d

· gini(Ri) , the first two

rows contribute equally to the Gini index because

gini (Ri) = 1 − ∑n
j=1 p2

i,j where pi,j =
|Ci,j|
|Ri| is the relative

frequency of class Cj in Ri, and |·| is the notation for
cardinality [22]. We have the same problem when
entropy is calculated instead of the Gini index. That
said, when one just considers the probability distribution
without taking into account the order of the classes, the
first two rows will be considered the same. Clearly, the
two rows should not be considered the same because
row R1 says that 75% of patients with gene expression
values within this range are classified into Class C3

while row R2 says that 75% of patients with gene expres-
sion values within this range are classified into Class C2.
Hence, in order to have a robust gene selection method,
one has to differentiate the partitions with different
class orders because they have different amount of
information.
To solve this problem, we generalized the well known

Lorenz curves, a common measure in economics to
gauge the inequalities in income and wealth. In Figure 5,
we illustrate how modified Lorenz curves and modified
Gini coefficients are calculated. The Equality Polygon
(Eq) is defined based on the percentages of elements in

|C1| , |C1..2| = |C1| + |C2| , ..., |C1..n| =
∑n

j=1

∣∣Cj
∣∣

at x-coordinates 0, 1/n,2/n, ..., 1, where n is the number
of classes and |C1| ≤ |C2| ≤, ..., ≤ |Cn|. The Lorenz curve
of a partition, say Ri, is defined based on the percentage

of elements in |Ci,1|,
∣∣Ci,1

∣∣ +
∣∣Ci,2

∣∣ , ...,
∑n

j=1

∣∣Ci,j

∣∣
at x-coordinates 0, 1/n,2/n, ..., 1. The Gini coefficient
of a partition, say Ri, is defined as(∫ 1

0 L(Ri) · dx − ∫ 1
0 Eq · dx

)
/
∫ 1

0 Eq · dx . One can easily

see that the partitions with different class orders are now
differentiated. After being normalized, the coefficients

can be used as weights in the calculation of the Gini

index giniA(D) =
∑m

i=1
αi · |Ri|

d
· gini (Ri) , where ai are

the normalized coefficients.
Another technical challenge for microarray analysis

methodologies comes from the order of discretized gene
expression values. Let’s consider another simple example
of gene-expression profiles for two genes in Table 2
with three classes. The gene expression values were dis-
cretized into four ranges. In contrast to the previous
challenge, the ranges of gene-expression values do fol-
low some order. When this genes are ranked by current
microarray analysis methodologies, for example by cal-
culating the Gini index of gene A using dataset D

giniA(D) =
∑m

i=1

|Ri|
d

· gini (Ri) where d = |D|, the two

genes would have the same rank. Clearly, the gene-
expression profiles on the right hand side of Table 2
have a more harmonic distribution with respect to the
rows in comparison with the gene on the left. That said,
these two genes should be ranked differently.
To solve this problem, we generalized the Gini coeffi-

cients by taking into account the splitting status and the
Gini ratio. The splitting status of D with respect to the
attribute A is calculated as

splitA(D) = 1 −
m∑

i=1

(
|Ri|
d

)
2

.

The Gini ratio of D with respect to the attribute A is
defined as LorenzGini(A) = Δgini(A)/splitA(D), where

�gini (A) = gini (D) − giniA (D) and gini (D) = 1 −
∑n

j=1
(
|Cj|
d

)
2

.

Furthermore, to take into account the gene expression
profiles with different value orders, the Gini coefficient

is calculated as giniA(D) =
∑m

i=1

|Ri|
d

· δ (i) · gini (Ri) ,

where δ(i) is the sum of the normalized distances
between the row i and rows i - 1, i +1. The coefficient
δ(i) is used as a weight to emphasize a row when it is
close to its neighbors.
The splitting status of dataset D with respect to a gene

can be calculated as a by-product when the reduction in
impurity of D with respect to the gene is calculated.
Therefore, the time complexity and space complexity of
the algorithm are the same as the complexities of Gini
index algorithm.

Bayesian networks
After ranking the genes, one still has to look for good
combinations of the high impact genes in order to find
an accurate genetic biomarker subset because simply
use the highest ranking genes as biomarkers does not

Table 1 Bias due to the order of classes.

Range/Class C1 C2 C3

R1 4 6 30

R2 6 30 4

R3 0 4 16

In this example, we consider the goodness ranking of a gene in a dataset
with 100 patients and 3 classes of cancer sub-types. The expression values of
the gene were discretized into 3 ranges R1, R2 and R3. There are 4 patients in
class C1 with expression values in the range R1, 6 patients in class C2 with
expression values in the range R1, and so on.
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work. The reason for this is that many of the highest
ranking genes are correlated and hence resulted in low
overall accuracy for the predicting model.
A Bayesian network (BN) is directed acyclic graph. The

directed acyclic graph has a node for each of the genes
and the class labels. Each node is associated with a color-
coded table for the corresponding probability distribution
related to the genes. In this example, we discretized the
gene-expression profiles to simplify the tables. Each table

has two parts. The left-hand side contains a column for
each parent node. Each row on the right-hand side con-
tains the probabilities that corresponds to one combina-
tion of values of the parents. To construct an optimal
Bayesian network, we need a method to evaluate the
goodness of a given network based upon the data and a
method to search through the space of possible networks.
We used the Akaike Information Criterion (AIC), which
is the negation of the log-likelihood plus the number of
parameters (i.e. 10 in this example) as a measuring score
for evaluating the quality of a network. To search for an
optimal network, we start with a given ordering of genes.
We then process each node in turn and greedily consider
adding edges that maximizes the network score. We also
used other different searching strategies such as the
Bayesian classification based method to compare the
resulting networks. This searching method considers to
add a second parent to each gene.
Once the predictive model is built as in Figure 6, we can

use the model to predict whether a patient has NSCLC
and the sub-type of cancer based upon the expression
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0.2

0.4
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m
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Figure 5 Lorenz curves.

Table 2 Bias due to the order of gene expression values.

Class/Range C1 C2 C3 Class/Range C1 C2 C3

R1 3 0 0 R1 3 0 0

R2 0 88 0 R2 4 0 0

R3 4 0 0 R3 0 88 0

R4 0 0 5 R4 0 0 5

In this example, we consider the goodness ranking of two genes in a dataset
with 100 patients and 3 classes of cancer sub-types. The expression values of
the genes were discretized into 4 ranges R1, R2, R3 and R4. There are 4
patients in class C1 with expression values of gene #1 in the range R3, 88
patients in class C2 with expression values of gene #1 in the range R2, and so
on.
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values of these nine genes. For instance, if the expression
values of these nine genes are all zeros, the probabilities
for this patient to be classified as normal is calculated as
Pr[aJAG1 = 0, aMET = 0, aCDH5 = 0, aABCC3 = 0, aDSP = 0, aABCD3 = 0, aPECAM1 = 0, aMAPRE2 = 0, aPDF5 = 0,

class = normal] =
∏9

i=1
Pr[ai|ai

′s parents] · pr[class = normal] = 0.95 · 0.92 · 0.03 · 0.92 · 0.95 · 0.03·
0.08 · 0.03 · 0.03 · 0.09 = 0.4454.10−8.

Similarly, the probabilities for this patient to be classified
as adenocarcinomas, squamous cell lung carcinomas and
pulmonary carcinoids are 0, 0.3615 · 10-4 and 0.2647 · 10-10,
respectively. That said, this patient is determined as having
squamous cell lung carcinomas.
Our method has been implemented in Maple, a C-like

language, and Weka [20]. Notice that our new method
works for any dataset with any number of classes. Even
when the number of classes is equal to 2, the new
method is completely different with other microarray
analysis methodologies.
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