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Objectives. The current study presents a clinical evaluation of Vox4Health, an m-health system able to estimate the possible
presence of a voice disorder by calculating and analyzing the main acoustic measures required for the acoustic analysis, namely,
the Fundamental Frequency, jitter, shimmer, and Harmonic to Noise Ratio. The acoustic analysis is an objective, effective, and
noninvasive tool used in clinical practice to perform a quantitative evaluation of voice quality. Materials and Methods. A clinical
study was carried out in collaboration with medical staff of the University of Naples Federico II. 208 volunteers were recruited
(mean age, 44.2 ± 13.9 years), 58 healthy subjects (mean age, 36.7 ± 13.3 years) and 150 pathological ones (mean age, 47 ± 13.1 years).
The evaluation of Vox4Health was made in terms of classification performance, i.e., sensitivity, specificity, and accuracy, by using
a rule-based algorithm that considers the most characteristic acoustic parameters to classify if the voice is healthy or pathological.
The performance has been compared with that achieved by using Praat, one of the most commonly used tools in clinical practice.
Results. Using a rule-based algorithm, the best accuracy in the detection of voice disorders, 72.6%, was obtained by using the jitter or
shimmer value.Moreover, the best sensitivity is about 96% and it was always obtained by using jitter. Finally, the best specificity was
achieved by using the Fundamental Frequency and it is equal to 56.9%. Additionally, in order to improve the classification accuracy
of the next version of the Vox4Health app, an evaluation by using machine learning techniques was conducted. We performed
some preliminary tests adopting different machine learning techniques able to classify the voice as healthy or pathological. The
best accuracy (77.4%) was obtained by the Logistic Model Tree algorithm, while the best sensitivity (99.3%) was achieved using the
Support Vector Machine. Finally, Instance-based Learning performed the best specificity (36.2%). Conclusions. Considering the
achieved accuracy, Vox4Health has been considered by the medical experts as a “good screening tool” for the detection of voice
disorders in its current version. However, this accuracy is improved when machine learning classifiers are considered rather than
the rule-based algorithm.

1. Introduction

Voice signals are sounds produced by air pressure vibrations
exhaled from the lungs and modulated and shaped by the
vibrations of the vocal folds and the resonance of the vocal
tract. The physiological process that leads to the production
of the voice involves several structures, such as

(i) the respiratory system, themain component that influ-
ences the intensity of the voice thanks to modulation
of an expiratory flow with a variable pressure below
the vocal folds;

(ii) the larynx, the cornerstone of the production of
the voice, especially through the vocal folds whose
vibration determines the sound;
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(iii) the vocal tract, constituted by the pharynx and
nasal and paranasal cavities, responsible for sonority,
changes in the timbre, and resonance of the laryngeal
sounds.

In addition, there are the auditory and central nervous
systems. The former plays an important role in regulating
the intensity of the voice interacting with the central ner-
vous system that participates in the management of several
mechanisms involved in the production of the voice, such as
breathing or pneumophonic coordination [1].

An alteration, functional or morphological, of this mech-
anism can cause a degradation of the quality and intensity of
the voice, due to specific diseases. Dysphonia, the medical
word that indicates a voice disorder, affects about 10% of
the population at least once in their lifetime [2] and the
percentage increases to 50% among voice professionals, such
as teachers or singers. Vocal abuse or incorrect lifestyle habits,
such as smoking or alcohol abuse, constitute risk factors for
the development of the disorder.

For the clinical evaluation of the voice several medical
examinations are required. In accordance with the SIFEL
(Società Italiana di Foniatria e Logopedia, the Italian Society
of Logopedics and Phoniatrics) protocol [3], the Italian
medical protocol approved by the Committee for Phoniatrics
of the European Society of Laryngology, it is necessary to
perform

(i) a direct observation of the vocal tract through a
laryngoscope;

(ii) a self-assessment of the patient’s state of health;
(iii) an accurate anamnestic investigation;
(iv) an objective estimation of the characteristic parame-

ters required for the acoustic analysis.

This latter aims to quantify and characterize a voice
quality in a noninvasive manner, processing a voice signal of a
vocalization of the vowel /a/ of five seconds in length. Several
studies existing in literature, such as [4, 5], have demonstrated
the relationship between the acoustic measures and laryngeal
functionality.

The main acoustic measures are

(i) the Fundamental Frequency (F0) that represents the
vibration of the vocal folds;

(ii) perturbation measurements that consist in an exami-
nation of the variability of the glottal cycles in terms
of frequency (jitter) and amplitude (shimmer);

(iii) noise measures, such as the Harmonic to Noise Ratio
(HNR) that evaluates the presence of noise in the
voice signal.

Smart computer-based systems can be used as an ade-
quate support for the assessment and detection of voice
disorders.

Vox4Health is an m-health solution able to estimate the
main acoustic parameters [6]. It is capable of acquiring the
user’s vocal signal by using the microphone of a mobile
device, of elaborating this signal by calculating in real time

the acoustic parameters, and of identifying any possible
alteration due to the presence of a voice disorder.

The aim of this clinical study is to evaluate its accuracy
in the detection of voice disorders. An experimental phase
was carried out in collaboration with the specialized medical
staff of the University of Naples Federico II. We developed
an appropriate trial protocol, a detailed document, realized
in accordance with the guidelines of medical specialists,
the SPIRIT (Standard Protocol Items: Recommendations for
Interventional Trials) 2013 Statement [7], and the SIFEL
protocol, to define all the procedures to be followed for the
evaluation of Vox4Health.

2. Related Work

Several systems are able to perform the acoustic analysis.
Some of them are widely used in clinical practice, such as
the Multidimensional Voice Program (MDVP) [8] or Praat
[9, 10]. The former was developed by the Computerized
Speech Lab (Kay Elemetrics Corporation, Lincoln Park, NJ,
USA) and is currently one of the most commonly used
and cited acoustic analysis software packages in literature.
The latter, Praat (its name corresponding to the imperative
form of “praaten”, “to speak” in Dutch), was realized by
Paul Boersma and David Weenink of the Phonetic Sciences
Department of the University of Amsterdam. These systems
are capable of estimating several acoustic parameters useful
for voice assessment, such as F0, jitter, shimmer, HNR, and
the percentage of unvoiced segments. It is important to note
that these systems are limited to estimating these parameters
while their interpretation, such as if they are indexes of
possible laryngeal alterations, is the responsibility of medical
specialists.

In the scientific literature other computer systems have
been presented, such as BioVoice, a solution proposed by
Manfredi et al. [11]. It is able to evaluate several voice indexes,
such as the F0, jitter, Relative Average Pertubation (RAP),
and Adaptive Normalized Noise Energy (ANNE), to analyze
pathological adult voices. The proposed approach was tested
using three parameters, i.e., jitter, RAP, and ANNE, on a very
limited set of only 15 patients suffering from cysts and polyps
and 9 healthy subjects.

The Voice Analysis and Screening System (VASS) [12]
is another computer system for acoustic analysis aimed at
distinguishing pathological voices from healthy ones. This
software calculates somewidely used acoustic parameters and
proposes two new indexes, the Turbulent Noise Index (TNI)
and Normalized First Harmonic Energy (NFHE).

Hossain et al. [13] introduced a smart healthcare moni-
toring framework useful to voice pathology detection. Two
types of input signals were used, the voice signal acquired
by a recording device or a smartphone and an electroglot-
tographic (EGG) signal captured by an EGG device. Local
features from the voice signal and the shape and cepstral
features from the EGGsignal are extracted in the cloud.Using
these features, the GMM-based classifier outputs a decision
on the pathology detection.

It is important to note that most of the systems here
reported cannot be considered as a personal and portable
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Figure 1: Screenshots of Vox4Health for the voice signal analysis procedure: (a) home screenshot, where the user must select the “Audio
Capture” functionality to perform the voice acquisition; ((b) and (c)) Audio Capture screenshots, necessary to acquire the voice signal; and
(d) voice signal analysis screenshot, where the estimates of characteristic acoustic parameters are shown.

instrument, because they have been developed as desktop-
based applications. The use of mobile devices, instead, can be
a rapid and valid support to improve patient care, motivating
individuals to obtain and analyze their health data, and, con-
sequently, increasing interest in an underestimated pathology
like dysphonia.

There are a few numbers of m-health systems capable of
achieving an acoustic analysis. OperaVox [14] is an iOS-based
app which estimates several voice parameters, including the
F0 and perturbation measures (jitter and shimmer). One
hundred voice samples were considered to evaluate the
degree of agreement between OperaVox and MDVP, limiting
to comparing the values of estimated parameters and not
evaluating its capability of voice disorders detection. The
signals were selected from among volunteers and patients at
the Royal National Throat Nose and Ear Hospital, London. A
wide range of voice disorders were included: muscle tension
dysphonia, laryngopharyngeal reflux, vocal fold paralysis,
spasmodic dysphonia, sulcus vocalis, and vocal fold lesions.
The experimental tests showed that the performance of
OperaVox is comparable to that of MDVP mainly in terms
of measuring the F0, jitter, and shimmer of the voice, while
the Noise to Harmonic Ratio (NHR) measurement shows a
major difference.

Van Leer et al. [15] developed amobile application for iOS
devices designed to estimate the F0, jitter, and Cepstral Peak
Prominence (CPP). In this preliminary study, only fourteen
individuals, suffering from a variety of voice disorders, were
recruited at the University of Cincinnati Voice and Swallow-
ing Clinic limiting to test the usability of the proposed m-
health solution.

It is important to note that the presented software
solutions for the acoustic analysis use different algorithms
for the calculation of the voice characteristic parameters,
namely, the F0, jitter, shimmer, and HNR. There are no
standard algorithms in literature for their estimation and this
influences the classification accuracy of each system.

It is possible, for example, to estimate the F0 by using
the Spectral Analysis [16], the Hilbert-Huang transform [17],
the Robust Algorithm for Pitch Tracking (RAPT) [18], or
the autocorrelation method [19]. In particular, this latter has
been used by several systems, such as MDVP, Praat, and
OperaVox. BioVoice, instead, estimates F0 by using a two-step
procedure based on Simple Inverse Filter Tracking (SIFT)
[20] and Average Magnitude Difference Function (AMDF)
[19]. Vox4Health uses a personalized methodology described
in [21], which we have designed and developed.

Additionally, the different methods used for calculating
the F0 influence the measurements of jitter and shimmer,
since their calculation is directly linked to the F0 value,
although the main systems use the same characteristic for-
mulas reported in the following section. Moreover, the HNR
can be estimated using different methods, such as de Krom’s
algorithm or d’Alessandro’s algorithm [22], in addition to
using an autocorrelation approach as performed by Praat.
Vox4Health uses de Krom’s algorithm.

3. Vox4Health

Vox4Health is an Android application developed using the
Java Programming Language through the use of Eclipse IDE
and the Android Software Developer Kit (SDK). This app
provides several functionalities, both to provide information
about dysphonia and preventive healthy lifestyle behav-
iors and to complete specific self-assessment questionnaires
required by the SIFEL protocol. The main functionality is
to acquire the user’s voice signal by using the microphone
of a mobile device, such as a smartphone or tablet, to
elaborate this signal (the vocalization of the vowel /a/ of
five seconds in length), and to estimate in real time the
characteristic parameters required by the SIFEL protocol,
useful to identify possible alterations to the laryngeal tract.
Finally, the estimation and evaluation of these parameters are
shown to the user, as shown in Figure 1. In the current version



4 BioMed Research International

of the app, a rules-based evaluation, specified in theMaterials
and Methods, of each parameter is implemented.

In detail, the app version evaluated in this clinical study
is an improvement of the version described in [6]. In fact,
the proposed solution estimates not only the F0, with a
methodology improved from that implemented in our previ-
ous version, but also three other specific parameters required
by the clinical protocol. The choice of how many and which
parameters to estimate and their unit of measurement was
discussed and agreed with the medical specialists involved in
this study. The acoustic parameters estimated are as follows:

(i) Fundamental Frequency (F0): this constitutes an
important index of laryngeal function since it repre-
sents the rate of vibration of the vocal folds. The F0 is
estimated with the methodology described in [21], an
optimization of the Yin algorithm [23], that takes into
account two of the main factors that influence the F0,
namely, the gender and age of the subject.

(ii) Jitter: this indicates the changes in the F0 cycle-to-
cycle, representing the instabilities of the vocal folds.
It is estimated, as indicated in [24], as the average
difference between consecutive periods divided by
the average period and expressed as a percentage,
represented in

𝐽𝑖𝑡𝑡𝑒𝑟 (%) = (1/ (𝑁 − 1)) ∑
𝑁−1

𝑖=1

󵄨󵄨󵄨󵄨𝑇𝑖 − 𝑇𝑖+1󵄨󵄨󵄨󵄨
(1/𝑁)∑𝑁

𝑖=1
𝑇𝑖 (1)

where Ti are consecutive periods and N is the number
of extracted F0 periods.

(iii) Shimmer: this denotes the instabilities of the vocal
folds quantifying the changes in amplitude cycle-to-
cycle. It is expressed in decibels (dB) and calculated,
according to [24], as indicated in (2), which is the
average absolute base 10 logarithm of the difference
between the amplitudes of consecutive periods, mul-
tiplied by 20:

𝑆ℎ𝑖𝑚𝑚𝑒𝑟 (𝑑𝐵) = 1𝑁 − 1
𝑁−1

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨20 log(
𝐴 𝑖+1
𝐴 𝑖 )
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (2)

where Ai are the extracted peak-to-peak amplitudes
and N is the number of extracted F0 periods.

(iv) Harmonic to Noise Ratio (HNR): this indicates the
presence of noise in the signal due to an incomplete
vocal fold closure, typical of some voice disorders.
It is expressed in dBs and estimated according to de
Krom’s algorithm [22].

In our preliminary pilot study described in [25], the
usability and user satisfaction of Vox4Health were evaluated.
Here a previous version of the app was tested using two
well-knownusability test questionnaires, the SystemUsability
Scale (SUS) [26] and the User Experience Questionnaire
(UEQ) [27].The first is a simple, reliable, and Likert scale tool
able to provide an evaluation about the usability of the m-
health system. UEQ, instead, assesses six basic aspects of the

app: the attractiveness, perspicuity, dependability, efficiency,
novelty, and stimulation. A pilot study was conducted in two
regions of Italy, Campania and Calabria. At the end of this
study, the users were encouraged to discuss any difficulties
encountered using this app, the perceived quality of the
information provided, and any preferences for different fea-
tures. Based on these considerations, we have improved our
solution and we have tested in the current study its reliability
to estimate the presence of voice disorders analyzing a voice
signal.

The Vox4Health app has been installed and tested on
several Android devices, such as Mediacom Phone Pad duo,
Samsung S4, Asus Zenfone 3, LG l70,One PlusOne, Samsung
S5, Samsung Galaxy Nexus, Samsung S6, andHuaweiMate 10
Lite.The operative system versions of the tested devices range
from Android 4.1 to Android 8.0. The sampling rate of the
recordings, processed to extract the characteristic acoustic
parameters, is fixed in the app to a value of 8000 Hz, just as
the range of measurements is similarly fixed.

4. Design of the Clinical Study

The conducted clinical study has been performed following
a specific trial protocol approved by the Federico II Uni-
versity Ethics Committee. This protocol was developed in
accordance with the guidelines of the SPIRIT 2013 [7] and
SIFEL protocol and evidence from medical staff involved in
the study.

The adopted protocol consists of several sections. The
Administrative Information section, where all the administra-
tive information is reported, such as the title that identifies
the trial design and the roles and responsibilities of the
contributors to the process. In the Methods section, all the
plans to be followed during the clinical study are indicated,
such as the period and study setting, the recruitment and
eligibility criteria for the participants, and the procedures for
the collection and evaluation of the data. The plans for the
ethical approval of the trial process are, instead, defined in
the Ethics and Dissemination section, where there are, also,
the behavior norms and rules of the participants indicated
in the informed consent and the processing of the personal
data specified in the appropriate form. Finally, all documents
are contained in the Appendix section, such as the informed
consent, authorization for the processing of personal data, the
information sheet for the process, and the anamnestic form.
In detail, the procedures for the evaluation of Vox4Health are
divided into several phases, as indicated in Table 1.

5. Materials and Methods

5.1. Participants. The clinical study started on May 16, 2016,
and ended on May 15, 2017. The ambulatory surgeries of
Phoniatrics and Videolaryngoscopy of the Hospital Univer-
sity of Naples “Federico II” and the medical room of the
“Institute of High Performance Computing and Networking
(ICAR-CNR)” were selected as the locations where the trial
was conducted. People who met the inclusion criteria, those
who had an age between 18 and 70 years and who were
able to follow all phases of the clinical study, were invited
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Table 1: Procedures for the evaluation of Vox4Health.

Phase Description

Recruitment
The recruitment of the participants was performed by means of publicizing of the trial process,
involving a suitable number of people, through information campaigns, using posters, brochures
andmeetings. Subjects whomet the criteria for inclusion were invited to participate in the process.

Registration of
participants

In this phase three documents were delivered to the participants. The first one was the
information sheet to indicate the aim of the study, the procedures involved, the benefits and the
possible risks of the examinations. Additionally, two forms were signed by the participants, the
informed consent and the authorization for the processing of personal data, in order to protect
the participants’ privacy.

Medical phoniatric
examinations

All recruited subjects were examined by medical experts involved in the study to diagnose the
presence or not of a voice disorder. In accordance with the guidelines of the SIFEL protocol, they
performed a scrupulous anamnesis to collect information relating to lifestyle (for example
smoking status, alcohol consumption, voice use and professional activity) and previous or
concomitant diseases, such as gastro-esophageal reflux, together with other data of interest to
perform a correct diagnosis. Subsequently, the specialists performed a laryngoscopy, an invasive
examination necessary to investigate the anatomical structure and any possible alterations of the
larynx [44–46]. Figure 2 shows an image of a doctor performing this examination.The
instruments employed were a Storz Laryngoscope, the 6.0 mm autoclavable 70∘ stiff model, used
in most cases, and the 2.8 mm flexible model to perform laryngoscopies via the nose for more
sensible subjects.
Finally, the participants were invited to compile two self-assessment questionnaires required by
the SIFEL protocol, the Voice Handicap Index (VHI) [47] and Reflux Symptom Index (RSI) [48],
to evaluate, respectively, the psycho-social consequences of any voice disorders and the presence
of gastro-esophageal reflux.

Vox4Health testing

The tests, conducted individually, were carried out in a quiet room (<30 dB of background noise)
which was not too dry (humidity greater than 30-40%).The subjects recorded the vowel /a/ with a
constant intensity, having been trained two or three times before the vocal acquisition. After the
audio capture the estimation of each acoustic parameter was shown.
The app was installed on a Samsung Galaxy S4, Android version 5.0.1. The distance between the
microphone of the mobile device and patient was about 20 cm with an inclination angle of about
45∘.
All the voice samples were saved in Wave files, sampled at 8000 Hz, and their resolution was 32
bits, recorded in a mono-channel format.

Figure 2: Representation of a laryngoscopic examination per-
formed during the clinical study.

to participate in the process. Subjects under 18 and over 70
or with diseases, such as colds or upper respiratory tract
infections, or neurological disorders were excluded.

We recruited 208 volunteers, 58 with a healthy voice (21
males and 37 females) and 150 with a pathological voice (52
males and 98 females), suffering from several different voice
disorders. The average age of the subjects involved is about
40 years, both for the women and men, while people with
an age between 40 and 60 years represent the category of

subjects that suffer the most from voice disorders. Some of
these subjects have been diagnosed with a dysphonia by the
medical experts, so we can divide the voice signals into four
groups, one related to healthy voices and other three relating
to three specific types of diseases:

(i) Hyperkinetic dysphonia (70 subjects, 47 women and
23 men)

(ii) Hypokinetic dysphonia (41 subjects, 32 women and 9
men)

(iii) Reflux laryngitis (39 subjects, 19 women and 20men).

The first disorder is characterized by a striving and
shrieking voice due to a muscular hypercontraction of the
pneumophonic apparatus. The incomplete closure of the
vocal folds causes, instead, a weak and breathless voice in
patients suffering from hypokinetic dysphonia. Finally, a
chronic hoarseness is the most common symptom of reflux
laryngitis.

In Table 2, we have reported the number of collected
voice samples, specifying how many voices we fall within
each category (healthy or pathological), recording this infor-
mation also by gender. Additionally, we have calculated the
percentage for each category compared to the whole dataset.
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Table 2: Details of the voice signals collected in the study.

Category Gender Number %

Healthy Female 37 17.8%
Male 21 10.1%

Pathological Female 47 22.6%
Hyperkinetic Male 23 11.1%
dysphonia
Pathological Female 32 15.4%
Hypokinetic Male 9 4.3%
Dysphonia
Pathological Female 19 9.1%
Laryngitis Male 20 9.6%
Reflux

Total Female 135 64.9%
Male 73 35.1%

Table 3: VHI obtained results.

VHI Score Category Number %
0 ≤ VHI ≤ 32 No perceived voice disorder 155 74.5 %
33 ≤ VHI ≤ 43 Mild perceived voice disorder 19 9.1 %
44 ≤ VHI ≤ 60 Moderate perceived voice disorder 16 7.7 %
61 ≤ VHI ≤ 180 Severe perceived voice disorder 18 8.7 %

Thecompletion of two self-perception questionnaires, the
Voice Handicap Index (VHI) and Reflux Symptom Index
(RSI), was required by all participants.

The first questionnaire, the VHI, through the completion
of 30 questions, evaluates the self-perception of impairment
due to a voice disorder. Each question is assigned a score
based on the severity of the symptom; the overall score
allows a classification of the self-perception of disorder as
mild, moderate, or severe. The obtained results in our study
are shown in Table 3, where we indicate for each category
of subjects the VHI score, necessary to classify the severity
of the symptoms, the number of subjects that achieved
the considered results, and the percentage (%) of subjects
calculated compared to the whole dataset.

The RSI, instead, is a questionnaire to provide a self-
perception for the assessment of laryngopharyngeal reflux,
a risk factor for voice disorders. Also, in this case, each
question is assigned a score from 0 (no problem) to 5 (severe
problem). An overall score higher than 13 is considered
abnormal; that is, the person has perceived symptoms of
laryngopharyngeal reflux. We have summarized in Table 4
the obtained results, indicating for each category of subjects
the RSI score, necessary to classify the severity of symptoms,
the number of subjects that achieved the considered results,
and the percentage (%) of subjects calculated compared to the
whole dataset.

It is important to note that although the VHI and
RSI evaluations are required by the SIFEL protocol, they
are not used in clinical practice for the diagnosis. In fact,
medical experts detect voice disorders through the objective

evaluation provided by the acoustic analysis and through
the direct vision of the vocal folds by performing the
laryngoscopy. The VHI, as also the RSI, is not considered
when making the diagnosis. In the same way, Vox4Health
does not use these indexes to classify the voice as healthy or
pathological. Therefore, the number of abnormal VHI results
is not a source of bias, because the voices were classified
considering only the estimations of the acoustic parameters.

However, these indexes are the demonstration that people
who may suffer from dysphonia often underestimate its
symptoms and therefore delay consulting a speech therapist
for accurate voice assessment and treatment. A sore throat
or a lowering of the voice are often underrated and not
carefully treated, as indicated by the medical experience of
the specialists involved in our study.

5.2. Analysis. To classify a voice as pathological or healthy,
we evaluated the four voice features estimated by the app,
namely, the F0, jitter, shimmer, and HNR, by using IF/THEN
rules, and then we compared the results obtained with those
achieved by Praat, one of main systems currently used in
clinical practice, by using the same IF/THEN rules.

Both systems, Vox4Health and Praat, are able to esti-
mate the characteristic parameters required by the acoustic
analysis, although they use different algorithms to achieve
that objective. In fact, for the estimation of the F0 value
Vox4Health uses a personalized methodology described in
[21], which we have designed and developed. Moreover,
for the HNR value, Vox4Health uses de Krom’s algorithm
[22]. On the other hand, these two acoustic parameters (F0
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Table 4: RSI obtained results.

RSI Score Category Number %

0 ≤ RSI ≤ 12
No perceived

laryngopharyngeal
disorder

112 53.8 %

13 ≤ RSI ≤ 45
Perceived

laryngopharyngeal
disorder

96 46.2 %

and HNR) are estimated by Praat using the autocorrelation
method [28]. The jitter and shimmer are, instead, estimated
by both systems using the same formulas, as reported in the
Vox4Health. The different methods for calculating F0 directly
influence the measurements of jitter and shimmer, since their
calculation is linked to the F0 value.

Additionally, it is important to note that Praat only calcu-
lates the main characteristic parameters but does not provide
any suggestion or interpretation of these parameters (it does
not classify if a voice is pathological or not). Vox4Health,
instead, provides this interpretation by showing to the user a
green circle if the value is within the healthy range and a red
one in the other case. Moreover, another difference between
the two systems is that Vox4Health is an m-health solution,
portable and accessible anywhere and at any time from a
mobile device, such as a smartphone or tablet. Praat, instead,
is a desktop-based application and it is not accessible by a
mobile system.

To identify the presence or not of a pathology it is possible
to use a rule-based approach: the estimated parameters are
evaluated according to IF/ELSE rules, comparing the values
obtained with a fixed healthy range. Unfortunately, for these
parameters, a standard healthy range does not exist [29],
due to the dependence of some acoustic parameters on
deterministic physiological factors. In this study, the healthy
ranges necessary to perform the rule-based analysis were
chosen in accordance with the indications of the medical
specialists involved in the project and the main studies
existing in literature, as indicated in the following subsection.

Details about the rule-based analysis are specified in the
following subsections.

Rule-Based Analysis. The values obtained for each parameter
were compared with a fixed healthy range of values applying
the following IF/THEN rules to evaluate the ability of each
acoustic parameter to identify possible alterations, indices of
a pathological voice:

IF (estimated value of acoustic parameter iswithin the
healthy range)

THEN Voice classified as healthy

ELSE

Voice classified as pathological

The determination of the healthy ranges, shown in
Table 5, was made in accordance with the indications of

Table 5: Healthy range for the acoustic parameters considered.

Parameter Gender Healthy range

F0 (Hz)
Female 189-280 (Hz)
Male 104-158 (Hz)

Jitter (%) Female <1.04 %
Male <1.04 %

Shimmer (dB) Female <0.35 dB
Male <0.35 dB

HNR (dB) Female >20 dB
Male >20 dB

the medical specialists involved in the project and the main
studies existing in literature. In detail, we have considered the
healthy ranges indicated in [28–30] for jitter, shimmer, and
HNR. Meanwhile there is no standard healthy range for F0,
because, asmentioned previously, this is influenced by several
factors, and so it is difficult to define a healthy range.

In one of our previous studies, we used the ranges
provided by the medical experts from the Department of
Otorhinolaryngology at the “University Magna Graecia” of
Catanzaro, as indicated in [6]. However, deepening our
studies, also in collaboration with the medical team of the
University Hospital (Policlinico) Federico II of Naples, we
understood that the healthy and pathological F0 ranges
needed to be improved. For this reason, we have conducted
a new more in-depth study in the scientific literature about
this issue, and, based on the considerations contained in [31–
33], we have suggested adopting different ranges from those
indicated in [6]. The new healthy range used was calculated
considering the mean and standard deviation values of the F0
indicated in these studies [31–33].

To compare the performance of Vox4Health and Praat,
the same voice samples were processed by both systems and
evaluated considering the same feature ranges to detect a
voice as healthy or pathological.

6. Results and Discussion

The performance of Vox4Health was evaluated in terms of
reliability and portability, that is, the capability of our system
to achieve stable and consistent results for repeatable tests,
evaluating the variations of each acoustic parameter, namely,
F0, jitter, shimmer, andHNR, between severalmeasurements.
Additionally, we conducted a series of tests to evaluate
the classification performance to discriminate between a
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pathological and a healthy voice. In the following subsections,
the details of the performed analyses are explained.

6.1. Reliability Analysis. To evaluate the reliability of the app
in the calculation of the acoustic parameters, we conducted
a series of tests where we collected several voice recordings.
Two voice signal acquisitions for each enrolled subject were
recorded.

In 14% of cases (29 voices/208 = 0.139), the acoustic
parameters calculated by the Vox4Health app diverge, in
terms of classification results, between the different voice
signals of the same user. This means that, in 14% of cases,
one voice signal was classified as healthy and the other one
of the same user was classified as pathological. However, it
is extremely important to highlight that all these cases are
due to the presence of a clearly audible noise in the files,
such as the user coughs or laughs during the recording, or
not completing correctly the vocalization, such as the signal
having duration of less than 5 seconds.

Therefore, if we exclude the corrupted files from the reli-
ability evaluation, the Vox4Health app is able to achieve the
same classification result in the repeated signal acquisition.
Please note that this means that the classification of the
voice is exactly the same. However, the numerical values of
the calculated acoustic parameters are not exactly the same
because the signals from which they are calculated are not
identical. In Table 6, we have reported, for the sake of brevity,
only the values relative to a subset of enrolled subjects.

6.2. Portability Analysis. In order to demonstrate that the
classification results do not change among the different
Android devices and versions, we performed some tests in
a quiet room where the same audio file was reproduced and
acquired by four different devices, placed at the same distance
from the audio file source: a Samsung S4 (Android version
5.0.1), a Huawei Mate 10 Lite (Android version 7.0.0), an
Asus Zenfone 3 (Android version 8.0.0), and a One Plus One
(Android version 8.0.0). As shown in Tables 7 and 8, the
numerical values calculated by the devices are very similar
and the classification results are exactly the same. Therefore,
nomismatching caseswere observed in terms of classification
results. By evaluating the classification performance using
different devices, it is possible to confirm that our system is
stable and portable.

6.3. Classification Analysis. In this subsection, the results in
terms of classification are presented. These were evaluated
by means of an assessment of the True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN).
The first group, the TPs, indicates cases when the voice
sample is pathological and the acoustic parameter estimation
recognizes this; the second, the TNs, indicates cases when the
voice sample is healthy and the acoustic parameter estimation
recognizes this; the third, the FPs, indicates cases when the
voice sample is healthy and the acoustic parameter estimation
regards it as pathological; and, finally, the fourth group, the
FNs, indicates cases when the voice sample is pathological
and the acoustic parameter estimation regards it as healthy.

The performances were estimated in terms of the follow-
ing:

(i) Accuracy: the percentage of samples classified cor-
rectly, calculated as indicated in

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = TP + TN
TP + TN + FP + FN (3)

(ii) Sensitivity: the system’s ability to correctly classify a
voice sample as diseased, expressed as

𝑆𝑒𝑛𝑠𝑖𝑡𝑖V𝑖𝑡𝑦 = TP
TP + FN (4)

(iii) Specificity: the system’s ability to correctly classify a
voice sample as healthy, calculated with

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = TN
TN + FP . (5)

Rule-Based Analysis Results. The results achieved from the
comparison betweenVox4Health and Praat by using the rule-
based analysis are shown in Table 9.

The results obtained show that the proposed system pro-
vides a better accuracy in discriminating pathological voices
from healthy ones, evaluating the F0, jitter, and shimmer
better than Praat. In particular, instabilities of the vocal
folds, typical of pathological voices, are well identified by
the perturbations measures (jitter and shimmer), as indicated
by the values of sensitivity, 96.0% for jitter and 89.3% for
shimmer. Unfortunately, this instability also characterizes
healthy voices, influencing the specificity obtained with
the proposed m-health system. Praat, instead, has a better
capability to classify correctly a voice sample as healthy,
the specificity results obtained for F0, jitter, and shimmer
being higher than those achieved with Vox4Health. However,
the better specificity obtained in estimating the HNR was
achieved using Vox4Health (51.7% versus 41.4%), with the
accuracy values comparable between the two systems (61.1%
for Vox4Health and 63.0% for Praat).

The voice disorders are distinguished in three groups:
hyperkinetic or hypokinetic dysphonia and reflux laryngi-
tis. The results achieved for these different pathologies are
shown in Tables 10, 11, and 12. These results indicate that
hyperkinetic dysphonia is well detected using Vox4Health,
the accuracy achieved in estimating all acoustic parameters
being higher than that achieved by Praat, a result confirmed
when the sensitivity percentages are considered. However,
for subjects suffering from hypokinetic dysphonia Praat pro-
vides a better accuracy than the proposed system, although
the high sensitivity values indicate that the proposed sys-
tem has a lower number of false negatives, which means
that fewer pathological voices are erroneously evaluated as
healthy. Additionally, considering subjects suffering from
reflux laryngitis, the obtained sensitivities are higher than the
values achieved with Praat for the F0, jitter, and shimmer.
The HNR sensitivity obtained with Praat is better than that
achieved with Vox4Health, but the percentages achieved for
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Table 9: Classification results obtained with Vox4Health and Praat.

Parameter System Accuracy (%) Sensitivity (%) Specificity (%)

F0 (Hz)
Vox4Health 54.3 53.3 56.9

Praat 50.0 44.0 65.5

Jitter (%) Vox4Health 72.6 96.0 12.1
Praat 40.4 20.0 93.1

Shimmer (dB) Vox4Health 72.6 89.3 29.3
Praat 57.7 58.7 55.2

HNR (dB) Vox4Health 61.1 64.7 51.7
Praat 63.0 71.3 41.4

Table 10: Classification results obtained for subjects suffering from hyperkinetic dysphonia.

Parameter System Accuracy (%) Sensitivity (%) Specificity (%)

F0 (Hz)
Vox4Health 58.2 59.4 56.9

Praat 54.7 45.7 65.5

Jitter (%) Vox4Health 59.4 98.6 12.1
Praat 48.4 12.9 91.4

Shimmer (dB) Vox4Health 62.5 90.0 29.3
Praat 57.0 58.6 55.2

HNR (dB) Vox4Health 63.6 73.2 51.8
Praat 55.5 67.1 41.4

Table 11: Classification results obtained for subjects suffering from hypokinetic dysphonia.

Parameter System Accuracy (%) Sensitivity (%) Specificity (%)

F0 (Hz)
Vox4Health 57.6 58.6 56.9

Praat 57.6 46.3 65.5

Jitter (%) Vox4Health 43.4 87.8 12.1
Praat 72.7 46.3 91.4

Shimmer (dB) Vox4Health 54.5 90.2 29.3
Praat 67.7 85.3 55.2

HNR (dB) Vox4Health 55.6 61.0 51.7
Praat 61.6 90.2 41.4

Table 12: Classification results obtained for subjects suffering from reflux laryngitis.

Parameter System Accuracy (%) Sensitivity (%) Specificity (%)

F0 (Hz)
Vox4Health 52.6 46.2 56.9

Praat 54.6 38.5 65.5

Jitter (%) Vox4Health 45.1 88.6 12.1
Praat 55.7 2.6 91.4

Shimmer (dB) Vox4Health 52.6 87.2 29.3
Praat 45.4 30.7 55.2

HNR (dB) Vox4Health 51.5 51.3 51.8
Praat 48.4 58.9 41.4

accuracy and specificity by Vox4Health are higher than those
of Praat.

A possible reason for the different accuracy classification
obtained by the two systems is due to use of different
algorithms for the estimation of these parameters and the
consequent different estimated values. As already mentioned

in the subsection Analysis, Vox4Health and Praat use differ-
ent algorithms to estimate these parameters, influencing the
capability of correctly classifying a voice signal.

Machine Learning Analysis. To improve the classification
accuracy obtained with the rule-based detection algorithm
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we have studied the use of some machine learning (ML)
techniques. The idea is to identify the algorithm that obtains
the best classification accuracy in order to integrate it in
our mobile system. The advantage of machine learning
techniques is that they allow an evaluation of the state of
voice health using simultaneously all four considered acoustic
parameters, namely, F0, jitter, shimmer, and HNR. Addi-
tionally, these techniques are able to classify a voice sample
as healthy or pathological analyzing only these parameters
and not considering a range of variability. In doing so, they
remove the influence of the choice of an appropriate range
on the classification accuracy, choice not easy to make, given
the lack of a standard range of variability where the acoustic
parameters can be evaluated as healthy or pathological.

During the last few years, several methodologies based
on machine learning techniques have been used in many
biomedical applications [34]. These techniques are capable
of learning and/or adapting their structure to the observed
data to optimize the classification of a sample. Evaluating a
set of data, their aim is to build a model, which approximates,
according to the values assumed by independent variables
corresponding to the measurable characteristics of each sam-
ple, the so-called features, the values assumed by a dependent
variable, corresponding to a characteristic of interest, the
class, available for a set of samples necessary for the learning
of the model.

In literature various studies exist, which classify the voice
signal as pathological or healthy [35–37]. In this study, several
machine learning techniques were used to evaluate the
capability of each parameter to classify a voice as pathological
or healthy. The algorithms employed include the Support
Vector Machine (SVM) [38], one of the main techniques
used in the literature, and Decision Tree (DT) [39], an
algorithm easy to interpret where the Decision Tree repre-
sents the learned function. The tree structure is combined
with logistic regression models in the Logistic Model Tree
(LMT) classifier [40]. The other techniques evaluated are
Bayesian classifier (BC) [41] that estimates the probabilistic
model that represents a set of random variables and their
conditional dependencies and the Instance-based Learning
(Ibk) algorithm that achieves a classification through specific
instances [42].

In detail, we have the following:
(i) SVM [38]: this is a classifier where data belonging to

different classes are divided by a separating hyper-
plane. The identification of the class of belonging of
several data is the aim of this algorithm, identifying
the optimal hyperplane, equally distant from the
support vectors from different classes. The optimal
hyperplane is selected tomaximize themargin, that is,
the distance between the hyperplane and its support
vectors.

(ii) DT [39]: this is a hierarchical model for supervised
learning, composed of internal decision nodes and
terminal leaves.Thebranches are labeledwith discrete
outcomes of function that each decision node imple-
ments. Given an input, a test is applied at each node

and one of the branches is considered depending on
the outcome.

(iii) LMT [40]: this consists of a Decision Tree structure
with logistic regression functions at the leaves. Unlike
ordinary decision trees, these leaves have not associ-
ated a class label, but a logistic regression function.

(iv) BC [41]: this uses a probabilistic model for the
classification, where a set of random variables and
their conditional dependences are, respectively, rep-
resented as nodes and strings.

(v) Ibk [42]: this implements the K-nearest neighbors
classifier. This is based on the concept that the
instances of a set of data that share certain charac-
teristics generally appear to be near in the multidi-
mensional space. The classification of a new element
is carried out by looking for the class that appears with
the largest number of times in all its k neighbors.

All the analyses have been performed using the WEKA [43]
tool, one of the most commonly used tools for data mining
tasks due to its efficiency, flexibility, and accessibility.

Machine Learning Analysis Results. For each technique, a 10-
fold cross-validation was used to evaluate the considered
classifiers. The achieved results are shown in Table 13.

Comparing the accuracy obtained using the machine
learning classifiers considered, Vox4Health achieves better
results than Praat, with a great difference in some cases, such
as with BC and DT. The best performance was achieved by
using the LMT classifier. The obtained accuracy is equal to
77.4%, while the sensitivity is about 95% and specificity is
31%. These last two values shown are not the best obtained
by observing the different ML techniques, but LMT is the
technique able to offer the best proportion between the two.

Also in this case we have analyzed the performance for
each category of pathology: hyperkinetic and hypokinetic
dysphonia and reflux laryngitis, as shown in Tables 14, 15, and
16.

The results obtained indicate that our proposed sys-
tem provides a good estimation of the acoustic parame-
ters considered, being able to classify correctly voices as
healthy or pathological. Reflux laryngitis and hyperkinetic
dysphonia are the pathologies better detected, considering
the performances of the main machine learning techniques,
in particular of the Decision Tree algorithm and Bayesian
classifier.

Observing the results obtained, we can note that there
was an improvement of classification accuracy using the ML
algorithms rather than the rule-base analysis. In particular,
the LogisticModel Tree (LMT) achieved an accuracy of about
77% while the best accuracy obtained with single acoustic
parameters was achieved by jitter and shimmer (72%).There
were improvements also in the specificity percentages (31%
for LMT versus 12 % for jitter and 29% for shimmer).
This increase of specificity was remarked observing the
performance for each category of pathology. Decision Tree
achieved a specificity of about 81% for voices suffering from
hyperkinetic dysphonia while the Bayesian classifier achieved
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Table 13: Classification results obtained by using machine-learning techniques over a database containing all parameters.

Machine
Learning
Techniques

System Accuracy (%) Sensitivity (%) Specificity (%)

SVM Vox4Health 72.6 99.3 3.4
Praat 71.6 99.3 0

DT Vox4Health 75.5 96.7 20.7
Praat 69.7 85.3 29.3

BC Vox4Health 76.0 95.3 26.0
Praat 67.3 86.0 19.0

LMT Vox4Health 77.4 95.3 31.0
Praat 76.9 94.7 31.0

Ibk Vox4Health 63.9 74.7 36.2
Praat 63.9 73.3 39.7

Table 14: Classification results obtained by usingmachine-learning techniques over a database containing all parameters for subjects suffering
from hyperkinetic dysphonia.

Machine
Learning
Techniques

System Accuracy (%) Sensitivity (%) Specificity (%)

SVM Vox4Health 62.5 56.9 67.1
Praat 63.3 58.6 67.1

DT Vox4Health 66.4 48.3 81.4
Praat 53.9 75.7 27.6

BC Vox4Health 58.6 93.1 30
Praat 50.0 90.0 1.7

LMT Vox4Health 64.1 55.2 71.4
Praat 63.3 64.3 62.1

Ibk Vox4Health 56.2 46.5 64.3
Praat 56.2 64.3 46.5

Table 15: Classification results obtained by usingmachine-learning techniques over a database containing all parameters for subjects suffering
from hypokinetic dysphonia.

Machine
Learning
Techniques

System Accuracy (%) Sensitivity (%) Specificity (%)

SVM Vox4Health 64.4 46.4 77.6
Praat 73.7 48.8 91.4

DT Vox4Health 61.6 53.6 67.2
Praat 63.6 68.3 60.3

BC Vox4Health 66.7 21.9 98.3
Praat 73.7 70.7 75.9

LMT Vox4Health 60.6 43.9 72.4
Praat 72.7 53.6 86.2

Ibk Vox4Health 53.5 43.9 60.3
Praat 59.6 58.5 60.3
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Table 16: Classification results obtained by usingmachine-learning techniques over a database containing all parameters for subjects suffering
from reflux laryngitis.

Machine
Learning
Techniques

System Accuracy (%) Sensitivity (%) Specificity (%)

SVM
Vox4Health 73.2 56.4 84.5

Praat 68.0 51.3 79.3

DT
Vox4Health 64.9 71.8 60.3

Praat 61.8 84.6 46.5

BC
Vox4Health 62.9 23.1 89.6

Praat 64.9 100 41.4

LMT
Vox4Health 61.8 53.8 67.2

Praat 63.9 51.3 72.4
Ibk Vox4Health 68.0 66.7 69.0

Praat 67.0 59.0 72.4

specificities equal to 98.3% and 89.6%, respectively, for voices
suffering from hypokinetic dysphonia and reflux laryngitis.

7. Conclusions

Voice disorders can have a significant negative impact on
the social and professional life of those afflicted. Although
such disorders are often underestimated, their early detec-
tion and accurate diagnosis are necessary to reduce serious
consequences. Computer-based systems, such as m-health
solutions, provide an opportunity to improve and support the
main medical techniques necessary to diagnose the presence
of these disorders. Vox4Health is an m-health solution, able
to estimate in real time the characteristic parameters of the
acoustic analysis. This is an important medical examination,
useful for the quantitative characterization of vocal dysfunc-
tions.

In this paper, we have presented a clinical study con-
ducted to evaluate the classification accuracy of the proposed
m-health solution in assessing a voice as healthy or pathologi-
cal, comparing the performances obtained with Praat, one of
the most commonly used tools for voice analysis in clinical
practice. Using a rule-base algorithm to classify a voice as
healthy or pathological, the results show that Vox4Health is
more effective in identifying the presence of a pathological
voice when a pathology is indeed present than Praat, in
particular observing the performance of jitter and shimmer.
This result is not confirmed when a healthy voice is evaluated.
To improve this, we have tested several machine learning
techniques to evaluate the state of voice health. In fact, the
Logistic Model Tree (LMT) achieved an accuracy of about
77% while the best accuracy obtained with single acoustic
parameters was achieved by jitter and shimmer (72%).There
were improvements also in the specificity percentages (31%
for LMT versus 12 % for jitter and 29% for shimmer).
This increase of specificity was remarked observing the
performance for each category of pathology. Decision Tree
achieved a specificity of about 81% for voices suffering
from hyperkinetic dysphonia while the Bayesian classifier

achieved specificities equal to 98.3% and 89.6%, respectively,
for voices suffering from hypokinetic dysphonia and reflux
laryngitis.

It should be noted that the developed app can be used for
a first screening test but does not provide a diagnosis. The
aim is to evaluate the potential presence of a voice alteration,
an index of a disease of the pneumophonic apparatus, and
to suggest a consultation with a medical specialist for an
accurate voice control. In fact, our analysis on our mobile
solution is limited to the performance of the acoustic analysis
and the completion of two self-perception questionnaires
(VHI and RSI). Other examinations are necessary to perform
a correct diagnosis of a voice disorder, such as laryngoscopy,
an invasive examination useful to observe the vocal folds
and their possible alterations that only a medical specialist
can perform. Moreover, Vox4Health does not evaluate all
eleven acoustic parameters provided for in the SIFEL pro-
tocol. In this first version, we evaluate only four of these:
F0, jitter, shimmer, and HNR. These are the most useful
and significant to detect laryngeal alterations and, for this
reason, the ones principally analyzed in clinical practice,
as suggested by the medical specialists involved in the
project.
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[24] M. Farrús, J. Hernando, and P. Ejarque, “Jitter and shimmer
measurements for speaker recognition,” inProceedings of the 8th
Annual Conference of the International Speech Communication
Association, Interspeech 2007, pp. 1153–1156, August 2007.

[25] L. Verde, G. De Pietro, and G. Sannino, “Vox4Health: Prelimi-
nary results of a pilot study for the evaluation of a mobile voice
screening application,” Cham, vol. 476, pp. 131–140, 2016.

[26] J. Brooke, “SUS-A Quick and Dirty Usability Scale,” Usability
Evaluation in Industry, vol. 189, pp. 4–7, 1996.

[27] B. Laugwitz, T. Held, and M. Schrepp, “Construction and
evaluation of a user experience questionnaire,” in Proceedings
of the Symposium of the Austrian HCI and Usability Engineering
Group, pp. 63–76, 2008.

[28] P. Boersma and D. Weenink, Praat: doing phonetics by com-
puter (Version 5.1. 17) [Computer program], Retrieved Septem-
ber 1, ed, 2009.

[29] W.DeColle andO. Schindler, “Voce e computer: analisi acustica
digitale del segnale verbale (il sistema CSL-MDVP),” Omega,
2001.
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