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Identification of a 3-gene signature based on differentially expressed invasion 
genes related to cancer molecular subtypes to predict the prognosis of 
osteosarcoma patients
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ABSTRACT
Invasion is a critical pathway leading to tumor metastasis. This study constructed an invasion- 
related polygenic signature to predict osteosarcoma prognosis. We initially determined two 
molecular subtypes of osteosarcoma, Cluster1 (C1) and Cluster2 (C2).. A 3 invasive-gene signature 
was established by univariate Cox analysis and least absolute shrinkage and selection operator 
(LASSO) Cox regression analysis of the differentially expressed genes (DEGs) between the two 
subtypes, and was validated in internal and two external data sets (GSE21257 and GSE39058). 
Patients were divided into high- and low-risk groups by their signature, and the prognosis of 
osteosarcoma patients in the high-risk group was poor. Based on the time-independent receiver 
operating characteristic (ROC) curve, the area under the curve (AUC) for 1-year and 2-year OS were 
higher than 0.75 in internal and external cohorts. This signature also showed a high accuracy and 
independence in predicting osteosarcoma prognosis and a higher AUC in predicting 1-year 
osteosarcoma survival than other four existing models. In a word, a 3 invasive gene-based 
signature was developed, showing a high performance in predicting osteosarcoma prognosis. 
This signature could facilitate clinical prognostic analysis of osteosarcoma.
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Introduction

As the most common malignant primary tumor in 
bone tissue, osteosarcoma, which mainly affects chil
dren and young people [1], often develops in the 
long bones such as femur, tibia, and humerus [2]. 
According to their characteristics and major stromal 
differentiation (osteoblastic, fibroblastic, chondro
blastic, small-cell, telangiectatic high-grade surface, 
and extraskeletal), osteosarcoma can be divided into 
different subtypes [3]. At present, osteosarcoma is 
largely treated by preoperative and postoperative 
chemotherapy combined with surgical resection [4]. 
However, due to the strong invasiveness of osteosar
coma and its rapid progression, about 20% of osteo
sarcoma patients suffer from severe tumor metastasis 
at first diagnosis. More importantly, the prognosis of 
these patients remains unfavorable, with a long-term 
survival rate of only 20% to 30% [5,6]. Therefore, 

tumor metastasis is regarded as a main contributor 
leading to the poor prognosis of osteosarcoma.

As a process during which cancer cells spread 
from primary site to distal organ(s) [7], tumor 
metastasis consists of a series of complex cascade 
reactions interrelated through a series of adhesion 
interactions, invasive processes, and responses to 
chemotaxis stimuli [8]. Thus, invasion of cancer 
cells is regarded as one of the essential pathways 
resulting in tumor metastasis. In recent years, mole
cular signatures and markers of tumor metastasis 
have been increasingly reported. MengweiWu et al. 
developed a metastasis-related seven-gene signature 
based on RACGAP1, RARRES3, TPX2, MMP28, 
GPR87, KIF14, and TSPAN7 to predict the overall 
survival of pancreatic ductal adenocarcinoma 
(PDAC) patients. The seven genes were significantly 
related to the progression and overall survival of 
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PDAC and have been regarded as potential targets 
for treatment [9]. JiahuaLiu et al. constructed 
a 6-gene signature prognostic hierarchical system 
(ITLN1, HOXD9, TSPAN11, GPRC5B, TIMP1, 
and CXCL13) based on colon cancer invasion- 
related genes with stable predictive efficiency in 
predicting the prognosis of patients [10]. 
Furthermore, another study also established 
a reliable and robust five-gene metastasis risk 
model (KRT8, MAFK, PTTG1, ENPP5, and 
INPP5J) based on the study of metastasis-related 
gene expression profiles to predict the prognosis of 
non-small cell lung cancer. At the same time, the 
five-gene metastasis signature was verified to be an 
independent prognostic factor [11]. Therefore, 
studying invasion-related markers has a great poten
tial in improving the prognosis and survival rate of 
cancer patients. Various genomic analysis methods, 
including whole-genome and exome sequencing, 
transcriptome assessment of gene expression, and 
epigenetic modification, have been applied to ana
lyze osteosarcoma samples, showing a heterogeneity 
of osteosarcoma researches [12]. Therefore, it could 
be argued that osteosarcoma subtypes should be 
classified according to invasion genes prior to the 
direct study of osteosarcoma invasion markers.

In this study, we developed the tumor subtypes of 
osteosarcoma based on metastasis-related genes, and 
screened three invasive gene markers related to the 
prognosis of osteosarcoma based on differentially 
expressed gene (DEGs) among tumor subtypes. 
Subsequently, a 3-gene signature based on invasive 
markers was constructed, assessed, and verified. The 
current findings improve the prognostic manage
ment of patients with metastatic osteosarcoma.

Materials and methods

Collection of clinical information and expression 
data of osteosarcoma

The Therapeutically Applicable Research to Generate 
Effective Treatments (TARGET) database (https:// 
ocg.cancer.gov/programs/target) was used to down
load the RNA-Seq data and clinical follow-up infor
mation of osteosarcoma patients. After excluding the 
samples with incomplete clinical information, the 
expression profile information on 84 RNA-Seq sam
ples was retained. The clinical data of GSE21257 and 

GSE39058 were from the Gene Expression Omnibus 
(GEO) database. Specifically, the GSE21257 data set 
contained 53 osteosarcoma samples with complete 
clinical information, and the data set GSE39058 con
tained 41 osteosarcoma samples with complete clin
ical information. For clinical data on the samples, see 
Table 1. A total of 97 invasion-related genes were 
obtained from the website of CancerSEA [13]. The 
whole process of the study is outlined in Figure 1.

Consensus clustering by ConsensusClusterPlus

The invasion-related genes obtained in CancerSEA 
were filtered by TARGET to remove the genes that 
accounted for less than 50% of all the samples or 
with an expression level lower than 1. After filter
ing, the expression of invasive genes was extracted 
and subjected to univariate Cox analysis for 
screening invasion-related genes associated with 
osteosarcoma prognosis. Then, 
ConsensusClusterPlus [14](V1.48.0; Parameters: 
reps = 100, pItem = 0.8, pFeature = 1, dis
tance = ‘spearman’) was employed to perform 
consistent clustering of the samples in the 
TARGET, according to the invasion-related genes 
associated with osteosarcoma prognosis. D2 and 
Euclidean distance were used as clustering algo
rithm and distance measure, respectively.

Screening of DEGs and functional analysis

The differentially expressed genes between subgroups 
were analyzed using the Limma software package. The 
cutoff value was FDR < 0.05 and | fold change (FC) | > 
1.5. The volcano map of DEGs and the heat map of 
DEGs were drawn using the R software package ggplot 

Table 1. Sample clinical information for different data sets.
Clinical Features ARGET GSE21257 GSE39058

Event
0 55 30 29
1 29 23 12
Gender
Male 47 34 21
Female 37 19 20
Age
≤15 46 21 16
>15 38 32 25
Metastatic
YES 21
NO 63
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and pheatmap, respectively. The functional enrich
ment analysis of KEGG and GO of DEGs was carried 
out using WebGestaltR [15].

Immune score estimation

The differences in stromal score, immune score, 
and ESTIMATE score of each subgroup samples 
were calculated using the R software package 
ESTIMATE [16]. MCP-counter [17] was applied 
to evaluate the score difference of 10 kinds of 
immune cells in the subgroup samples. The 
GSCA package (http://bioinfo.life.hust.edu.cn/ 
web/GSCALite/) was used to evaluate the scores 
of 28 kinds of immune cells in osteosarcoma tissue 
samples. In addition, the enrichment scores of 22 

immune cells in different subtype samples were 
calculated by CIBERSOTR [18].

Construction of prognostic risk model

The samples in the TARGET data set were randomly 
grouped without putting back for 100 times, and the 
samples were divided into a training set (n = 50) and 
verification set (n = 34) at a ratio of 3:2. There was no 
significant difference in survival status, gender, age, or 
metastasis between the two groups (Table 2). 
Univariate Cox risk regression was performed for 
DEGs using the R package survival coxph function. 
Next, least absolute shrinkage and selection operator 
(LASSO) regression analysis was carried out to screen 
the genes related to osteosarcoma survival. The 
regression coefficients of these genes were calculated 

Figure 1. Flow chart of research and design.
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by multiple Cox regression analysis, and the risk score 
model was constructed according to gene expression 
level.

Evaluation and validation of risk scoring model

Patients in each cohort were graded by their risk 
scores. The z score was calculated based on risk 
score, and patients with z score above 0 were in the 
high-risk group, while those with z score below 0 were 
in the low-risk group. The overall patient survival in 
the two groups were compared by Kaplan–Meier sur
vival analysis. Receiver operating characteristic (ROC) 
curve, univariate, and multivariate Cox regression 
analysis was applied to evaluate the prognostic efficacy 
and independence of the risk score model. 
A nomogram was constructed by combining the inde
pendent prognostic factors obtained by multivariate 
Cox analysis, and its predictive accuracy was evaluated 
by drawing calibration curve. The net income of the 
model was calculated using the DCA diagram. In 
addition, patients were classified according to age, 
sex, and distant metastatic status to evaluate the cor
relation between risk groups based on prognostic sig
natures and clinical features.

The risk scoring model was compared with other 
existing risk scoring systems

To highlight the advances of the risk scoring 
model developed in this study, we also compared 
the current risk scoring model with the previously 
constructed osteosarcoma scoring system [19–22]. 
According to the corresponding genes in these 
four models, the high- and low-risk groups of 

TARGET were divided into high- and low-risk 
groups using the same method. Survival curves 
and ROC curves of each model were drawn, and 
AUC values were compared.

Results

This work aims to classify osteosarcoma subtypes 
and characterize its clinical characteristics based 
on invasion-related genes, and to construct 
a robust model to predict the prognosis of osteo
sarcoma. Two molecular subtypes of osteosarcoma 
were developed with metastasis-related genes. The 
OS and PFS of patients with C2 were found to be 
significantly longer than those of C1. We also 
identified three invasive gene markers related to 
the prognosis of osteosarcoma, according to the 
DEGs among tumor subtypes. A 3-gene signature 
based on invasive markers was constructed, and 
was introduced to divide patients into high- and 
low-risk groups. The results showed that the prog
nosis of osteosarcoma patients in the high-risk 
group was poor. This signature shows a high accu
racy and independence in predicting osteosarcoma 
prognosis and a higher AUC in predicting 1-year 
osteosarcoma survival than the other four existing 
models.

Consensus clustering identified two molecular 
subtypes of osteosarcoma invasion

A total of 96 invasion genes were obtained using 
TARGET to filter the invasion-related genes 
obtained from CancerSEA (Table S1). Univariate 
Cox analysis showed that 22 out of the 96 inva
sion-related genes were significantly associated 
with the survival of osteosarcoma (P < 0.05) 
(Table S2). ConsensusClusterPlus was used to per
form consensus clustering on the samples accord
ing to the 22 invasion-related genes. When the 
consensus index was 0.4–0.6 and k = 2, the empiri
cal cumulative distribution function (CDF) curve 
was the flattest (Figure 2a, 2b). In addition, when 
k = 2, the consistency of the circular Manhattan 
(CM) was the highest, and the interference 
between subgroups was the lowest (Figure 2c, 
2d). Therefore, the patients were divided into 
Cluster1 (C1) and Cluster2 (C2). The heatmap 
confirmed the expression of 22 invasion-related 

Table 2. TARGET training set and validation set sample infor
mation table.

Clinical 1 TARGET-Train(n = 50) TARGET-test(n = 34) P-Value

Event
0 35 20 0.4101
1 15 14
Gender
Male 31 16 0.2585
Female 19 18
Age
≤15 27 19 0.3353
>15 23 15
Metastatic
YES 14 7 0.6077
NO 36 27
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genes in C1 and C2 samples (Figure 2e). 
Moreover, survival analysis assessed the correla
tion between C1/C2, overall survival rate, and pro
gression-free survival (PFS). We noted that there 
were significant differences in overall survival and 
PFS between the C2 subtype and C1 subtype, and 
that overall survival (OS) and PFS of subtype C2 
were significantly longer than those of C1 
(Figure 2f, 2g). Therefore, different molecular sub
types of osteosarcoma samples may have different 
clinical outcomes.

Immune score analysis of osteosarcoma samples

We also analyzed the relationship between mole
cular subtypes and tumor immunity. Firstly, the 
differences of subtype C1 and C2 in stromal score, 
immune score, and ESTIMATE score, the stromal 
score, and ESTIMATE score of C2 were signifi
cantly higher than those of subtype C1 
(Figure 3a). The scores of 10 immune cells 
between C1 and C2 subtypes were analyzed in 
MCPcounter, and a significant difference was 
found in fibroblasts immune scores between C1 

Figure 2. Consensus clustering identified two molecular subtypes of osteosarcoma invasion.
a: The CDF value of the consensus index. b: The relative change of the area under the CDF curve with k between 2 and 10. c: 
Tracking map of Kraft 2–10. d: The CM diagram shows the clustering at k = 2. e.g., 22 invasion-related gene clustering heat maps. f: 
Survival analysis assessed the association between C1 or C2 and overall survival. g: Survival analysis assessed the association 
between C1 and C2 and PFS. 
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and C2, with the immune scores of fibroblasts in 
C2 samples significantly higher than those in C1 
samples (Figure 3b). According to the results of 
GSCA analysis, the immune scores of central 
memory CD4 T cell, central memory CD8 T cell, 
CD56dim natural killer cell, macrophage, natural 
killer cell, natural killer T cell, and plasmacytoid 

dendritic cell in subtype C2 samples were notice
ably higher than those in subtype C1 samples, 
while the immune scores of Eosinophil in subtype 
C2 samples were significantly lower than those in 
subtype C1 samples (Figure 3c). As for the scores 
of 22 immune cells in the tissue samples calcu
lated by CIBERSOTR, there was no significant 

Figure 3. The relationship between two molecular subtypes and tumor immunity.
a: The difference between C1 and C2 subtypes in stromal score, immune score, and ESTIMATE score. b: The immune scores of 10 
kinds of immune cells in C1 and C2 subtypes were analyzed by MCP-counter. c: GSCA was used to compare the immune scores of 28 
kinds of immune cells in different subtypes of samples. d: The scores of 22 kinds of immune cells in the tissue samples were 
calculated by CIBERSOTR. 
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difference in immune scores of 22 kinds of 
immune cells between C1 and C2 samples 
(Figure 3d).

Identification of DEGs and functional enrichment 
analysis

Differential analysis detected a total of 700 DEGs 
(359 differentially up-regulated genes and 341 dif
ferentially down-regulated genes) between C1 and 
C2 subtypes (Figure 4a, Table S3). The heat map of 
the top 100 genes with the most significant differ
ence between the two subtypes was shown in 
Figure 4b. GO analysis on 700 DEGs demonstrated 
that the DGEs were significantly enriched into 327 
biological processes (BP), 62 cellular components 
(CC), and 39 molecular functions (MF) GO terms 
(Table S4). According to the results of the GOBP 
analysis, 700 DEGs were significantly enriched in 
collagen fibril organization, cartilage development, 
skeletal system morphogenesis, and other pro
cesses (Figure 4c). GO CC analysis listed the 10 
terms with the highest enrichment degree of DEGs 
(Figure 4d). From GO MF analysis, a significant 
correlation between DEGs and extracellular matrix 
structural constituents conferring tensile strength, 
collagen binding, and transmembrane receptor 
protein tyrosine kinase activity could be found 
(Figure 4e). This suggested that the 700 DEGs 
were closely related to bone development. 
Moreover, KEGG analysis demonstrated that 700 
DEGs were significantly enriched into 22 path
ways, such as basal cell carcinoma, protein diges
tion, and absorption, ECM–receptor interaction, 
calcium signaling pathway, and MAPK signaling 
pathway.

Construction and evaluation of prognostic 
signature

We analyzed the samples in the TARGET dataset. 
First, univariate Cox regression analysis detected 
114 out of the 700 DEGs closely correlated with 
the overall survival of osteosarcoma patients (S5. 
csv). Next, the DEGs were analyzed using LASSO 
Cox regression, and a prognosis score system com
posed of three genes was developed (Figure 5a, 
5b). Risk score = CGREF1*0.235+ DNAI1*0.457 
+ ZDHHC23*0.652. Each sample was graded 

according to this formula, and the standardized 
score was ranked from low to high. The survival 
status of patients was recorded, and the expression 
of three risk genes in the scoring model was ana
lyzed, as presented in Figure 5c. Kaplan–Meier 
analysis showed that the survival rate of patients 
in the low-risk group was significantly higher than 
that in the high-risk group (Figure 5d). Based on 
the ROC analysis, the AUC of 1 year, 2 years, and 
3 years were 0.78, 0.84, and 0.8, respectively 
(Figure 5e). The results revealed that the risk 
score effectively distinguished the survival time of 
patients in testing, TARGET validation set and 
entire TARGET data set (Figure 5f, 5i). 
Consistent with the training set, patients with 
high risk in the TARGET validation set and the 
whole TARGET data set were predicted to develop 
a (Figure 5g, 5j). The AUC of the predicted model 
for the training dataset at 1st year, 2nd year, and 3rd 

year was 0.92, 0.87, 0.68, while 0.82, 0.85, and 0.75 
for the whole TARGET data set, respectively 
(Figure 5h, 5k). The results indicated that our 
risk scoring system was highly accurate in predict
ing the prognosis of osteosarcoma.

Verification of the 3-gene signature in external 
datasets

To evaluate the versatility of the 3-gene signature, 
we also verified the prognostic performance of the 
3-gene signature in independent cohorts of 
GSE21257 and GSE39058. Based on the risk scor
ing system, we obtained the risk score distribution, 
survival status, and three gene expression heat 
maps of the samples in GSE21257 and GSE39058 
(Figure 6a, 6d). In both the GSE21257 cohort and 
the GSE39058 cohort, the risk type was signifi
cantly correlated with the overall survival rate of 
osteosarcoma patients (Figure 6b, 6e). From the 
ROC curve, AUC in the GSE21257 and the 
GSE39058 group were 0.82, 0.69, 0.75, and 0.89, 
0.85, 0.61, respectively, for predicting 1-, 2-, and 
3-year OS. Hence, the 3-gene signature was effec
tive in predicting the prognosis of osteosarcoma 
(Figure 6c, 6f). Therefore, the above results show 
that the 3-gene signature can be used to predict 
the prognosis of patients with osteosarcoma in 
other independent cohorts.
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Figure 4. Identification and functional enrichment Analysis of DEGs.
a: The volcano diagram of DEGs between C1 and C2 subtypes. b: Heat map of DEGs between C1 and C2 subtypes. c-e: The 10 BP 
terms, CC terms, and MF terms with the highest enrichment degree of DEGs. f: There were 10 pathways in which DEGs are 
significantly enriched. 

BIOENGINEERED 5923



Independence of the 3-gene signature in 
prognosis prediction from clinicopathological 
factors

We also evaluated the applicability of the gene 
signature in predicting the prognosis of osteosar
coma based on age, sex, and metastasis. Survival 
analysis showed that regardless of age, gender dif
ference, and metastasis, the survival rate of osteo
sarcoma patients in the low-risk group was 
significantly higher than that in the high-risk 
group (Figure 7a-7f). To assess the independence 
of 3-gene signature, we carried out univariate and 
multivariate Cox regression analysis. Univariate 
Cox analysis showed that metastasis and risk 
scores were closely correlated with the survival of 
osteosarcoma patients (Figure 7g). Multivariate 
Cox analysis demonstrated that metastasis and 
risk score was independent prognostic factors of 
osteosarcoma (Figure 7h). Therefore, the 3-gene 
signature was applicable and independent in pre
dicting the prognosis of osteosarcoma.

The relationship between risk score and clinical 
characteristics

To further verify the accuracy of the 3-gene signa
ture in predicting the prognosis of osteosarcoma, 
the relationship between clinical features (sex, age, 
molecular subtype, and metastasis) and risk score 
was analyzed. From the violin picture, we noticed 
that the risk score was not significantly different 
between male and female groups, between age >15 
and age <15 or between metastatic and non- 
metastatic groups (Figure 8a, 8b, 8d). However, 
there was a significant difference in risk score 
between subtype C1 and subtype C2, and C1 
patients have a higher risk score, which could 
explain their worse prognosis (Figure 8c).

Construction of nomogram based on risk score 
and metastasis

We combined two independent prognostic factors 
(metastasis and risk score) to construct 

Figure 5. Construction and evaluation of prognostic signature.
a: The LASSO coefficient diagrams of 114 DEGs. b: LASSO regression with 5-time cross-validation. c, f, g: Training set, verification set, 
and total TARGET data set, the standardized risk scores were ranked from low to high (top), the survival status of patients was 
recorded (middle), and the expression of three risk genes in the scoring model was analyzed (bottom). d, g,j: Survival curves of 
patients in high-risk and low-risk groups in training set, verification set, and total TARGET data set. e, h, k: Survival curves of patients 
in high-risk and low-risk groups in training set, verification set, and total TARGET data set. 
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a nomogram for predicting 1-year, 2-year, and 
3-year survival of patients with osteosarcoma. 
From the nomogram, we found that the risk 
score had the greatest influence on the prediction 
of survival (Figure 9a). The ROC curve showed 
that 1-year, 2-year, and 3-year AUC of the nomo
gram were higher than 0.8 (Figure 9b). The rela
tionship between the predicted 1-year, 2-year, 
3-year overall survival and the actual survival was 
evaluated using calibration chart, and it was found 
that the potential survival rate of osteosarcoma 
predicted by the nomogram was close to the actual 

survival rate (Figure 9c). From the DCA chart, the 
combination of the 3-gene signature and metasta
sis showed a certain net benefit in predicting the 
survival of osteosarcoma (Figure 9d). Therefore, 
the nomogram was verified to have a high predic
tion performance.

Comparison between the 3-gene signature and 
other known prognostic signatures

The 3-gene signature developed in this study was 
compared with the other four existing prognostic 

Figure 6. Verification of the robustness of the 3-gene signature in an external queue.
a, d: Risk score distribution of samples in GSE21257 and GSE39058 (top), survival status (middle), and expression heat map of three 
genes (bottom). b, e: OS rate of patients with high or low risk. c, f: The ROC curve of 1-year, 2-year, and 3-year OS rates of 
osteosarcoma patients in GSE21257 and GSE39058. 
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signatures. Based on the corresponding risk for
mula in these four models, the risk score of each 
osteosarcoma sample was calculated using 
TARGET. After standardization, the risk score was 
divided into high- and low-risk groups, with 0 as 
the critical value. Survival analysis showed that the 
survival rates of high-risk patients calculated 
according to the four risk score formulas were 

significantly lower than those of low-risk groups 
(Figure 10a-10d). The AUC of 1-year, 2-year, and 
3-year was determined by ROC analysis. After com
paring the AUC, we found that compared with the 
19-gene signature (1 year: AUC = 0.72) 
(Figure 10e), the 8-gene signature (1 year: 
AUC = 0.7) (Figure 10f), the 6-gene signature 
(1 year: AUC = 0.7) (Figure 10g), and the 7-gene 

Figure 7. Independence of the 3-gene signature in prognosis prediction from clinicopathological factors.
a: The Kaplan–Meier curve of high and low-risk samples with age >15. b: The Kaplan–Meier curve of high and low-risk samples with 
age ≤ 15.c-d: The Kaplan–Meier curves of male and female patients with osteosarcoma. e: The Kaplan–Meier curve of osteosarcoma 
patients without metastasis. f: The Kaplan-Meier curve of osteosarcoma patients with metastasis. g: Univariate Cox analysis of the 
whole TARGET dataset sample. h: Multivariate Cox analysis of the whole TARGET dataset sample. 
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signature (1 year: AUC = 0.73) (Figure 10h), our 
3-gene signature (1 year: AUC = 0.82) was more 
accurate in predicting the 1-year survival of OS. In 
addition, the AUC (AUC = 0.75) of 3-gene signa
ture in predicting 2-year (AUC = 0.85) and 3-year 
survival of osteosarcoma was higher than or equal 
to 0.75 (Figure 5k). Compared with the other four 
signatures, our signature showed the least prognos
tic variables. Therefore, the 3-gene signature was an 
effective and accurate predictor of osteosarcoma 
prognosis.

Discussion

With the characterization of an increasing number 
of polygene prognostic models, studies on the 

prognosis of cancer based on specific tumor bio
logical function-related genes gradually emerged. 
Some researchers have explored the prognostic 
potential of immune-related genes (IRGPs) in 
osteosarcoma, constructed an IRGP signature, 
and proved that the signature can accurately pre
dict the overall survival of patients with osteosar
coma [23]. Naiqiang Zhu et al. developed a 7-gene 
signature related to the energy metabolism of 
osteosarcoma to predict the outcome of osteosar
coma [24]. Yucheng Fu et al. established 
a signature composed of two genes after analyzing 
hypoxia-related genes and speculated that it can be 
used as a biomarker for the prognosis of osteosar
coma [25]. In this study, we obtained 97 invasion- 
related genes from CancerSEA and 22 invasion- 

Figure 8. The relationship between risk score and clinical characteristics.
Violin chart, which was used to describe the relationship between risk score and gender (a), age (b), cluster (c), or metastasis (d). 
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Figure 9. Construction of nomogram based on risk score and metastasis.
a: Nomogram for predicting 1-, 2-, and 3-year survival b: Calibration diagram of the Nomogram c: The DCA chart that evaluated net 
income. 
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related genes related to osteosarcoma survival by 
univariate Cox analysis. It is reported that the 
characterization of specific molecular subtypes 
can facilitate clinical decision-making and the 
design of individualized treatment [26]. 
Therefore, we determined C1 and C2 osteosar
coma molecular subtypes by consensus clustering 
of invasion-related genes.

Immune cell group, which plays an important 
role in tumor development [27], has dual func
tions in tumor control and monitoring [28]. Here, 
we analyzed the immune cell scores of different 
subtypes in different platforms, and found signifi
cant differences in immune scores of fibroblasts, 
central memory CD4 T cell, central memory CD8 
T cell, CD56 dim natural killer cell, macrophage, 
natural killer cell, natural killer T cell, plasmacy
toid dendritic cell, and eosinophil between C1 and 
C2 subtypes.

A total of 700 DEGs between the C1 and C2 
subtypes were identified, and functional enrich
ment analysis showed that they were closely 
related to bone development. Through univariate 
Cox analysis and LASSO Cox regression analysis, 
we constructed a signature based on three invasive 
genes. CGREF1, a protein secreted in the classical 

secretory pathway from endoplasmic reticulum to 
Golgi, has been found to play an important role in 
regulating the transcriptional activity of AP-1 and 
the proliferation of human colon cancer cells [29], 
but the role of CGREF1 in other cancers is unclear. 
The mutation of DNAI1 gene is a part of external 
power of ciliary organ, and is the second most 
important genetic cause of primary ciliary dyski
nesia (PCD) [30]. Recently, it has been found that 
the risk model composed of CD180, MYC, 
PROSER2, and FATE1 has a great fitting effect 
on the overall lifetime of osteosarcoma [31]. 
Lijun Tian et al. reported that ZDHHC23 is pal
mitoyl transferase mainly located in Golgi appara
tus and transGolgi network to control the 
palmitoylation of S0-S1 ring of BK channel to 
regulate surface transport [32]. At present, it is 
only known that ZDHHC23 can target glioma 
stem cells of different glioblastoma subsets and 
regulate the cellular plasticity of these subsets 
[33]. In this work, we were the first time to char
acterize the performance of the risk scoring system 
composed of three invasive gene on predicting the 
prognosis of osteosarcoma, and we found that the 
prognosis of patients with high risk of osteosar
coma was poor. The signature based on three 

Figure 10. Comparison between the 3-gene signature and other known prognostic signatures.
a: The Kaplan Meier curves of patients in the high/low-risk group based on a 19-gene signature. b: ROC analysis of the 19-gene 
signature to estimate AUC values of survival. c: The Kaplan Meier curves of patients in the high/low-risk group based on an 8-gene 
signature. d: ROC analysis of the 8-gene signature to estimate the AUC values of survival. e: The Kaplan Meier curves of patients in 
the high/low-risk group are based on a 6-gene signature. f: ROC curve evaluated 1, 2, and 3-year prediction efficiency of the 6-gene 
signature. g: Kaplan–Meier curves of the high and low-risk groups according to a 7-gene signature. h: ROC curve evaluated 1, 2, and 
3-year prediction efficiency of the 7-gene signature. 
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invasive genes showed a high accuracy and inde
pendence in predicting the prognosis of osteosar
coma. In addition, the nomogram based on the 
signature and metastasis showed certain net bene
fits in predicting the survival of osteosarcoma, and 
may be a potential tool for predicting the prog
nosis of osteosarcoma patients.

Our research also has some limitations. First, 
the heterogeneity in osteosarcoma was high, 
which may affect the predictive performance of 
the signature. Second, there was limited clinical 
information and a lack of important pathological 
features such as tumor staging. Finally, no mole
cular experiments have been carried out to verify 
our predictions, but this will be addressed in 
future studies.

Conclusion

In conclusion, our study identified two molecular 
subtypes of osteosarcoma based on invasion- 
related genes, developed a novel signature of 
three invasive genes, with a high accuracy, applic
ability, and independence in predicting survival of 
osteosarcoma patients. Our study may provide 
a new reference for osteosarcoma treatment.

Research highlights:

● Two molecular subtypes of osteosarcoma 
were identified with invasion genes.

● C1 and C2 subtypes showed different tumor 
microenvironment states.

● We developed a gene signature based on 
three invasion genes.

● The signature had high accuracy and inde
pendence in the prognosis prediction.
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