
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Jiyeon Kim,
University of Illinois at Chicago,
United States

REVIEWED BY

Dominique Heymann,
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Primary bone sarcomas, including osteosarcoma (OS) and Ewing sarcoma (ES),

are aggressive tumors with peak incidence in childhood and adolescence. The

intense standard treatment for these patients consists of combined surgery

and/or radiation and maximal doses of chemotherapy; a regimen that has not

seen improvement in decades. Like other tumor types, ES and OS are

characterized by dysregulated cellular metabolism and a rewiring of

metabolic pathways to support the biosynthetic demands of malignant

growth. Not only are cancer cells characterized by Warburg metabolism, or

aerobic glycolysis, but emerging work has revealed a dependence on amino

acid metabolism. Aside from incorporation into proteins, amino acids serve

critical functions in redox balance, energy homeostasis, and epigenetic

maintenance. In this review, we summarize current studies describing the

amino acid metabolic requirements of primary bone sarcomas, focusing on OS

and ES, and compare these dependencies in the normal bone and malignant

tumor contexts. We also examine insights that can be gleaned from other

cancers to better understand differential metabolic susceptibilities between

primary and metastatic tumor microenvironments. Lastly, we discuss potential

metabolic vulnerabilities that may be exploited therapeutically and provide

better-targeted treatments to improve the current standard of care.
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1 Introduction: Bone sarcoma and metabolism

Primary bone cancers encompass approximately 0.2% of all malignant tumors, with

osteosarcoma (OS), Ewing sarcoma (ES), and chondrosarcoma representing 90-95% of

these diagnoses (1). ES and OS are predominately cancers of childhood and adolescence.

While survival rates for other childhood malignancies have improved steadily in recent

decades, the five-year survival rate for ES and OS patients presenting with metastatic
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disease at diagnosis has not improved and remains near 30% (2).

Furthermore, for patients with localized disease, the standard of

care for these highly aggressive bone tumors consists of high-

dose chemotherapy, surgery, and radiation. This leads to

significant long-term toxicities that contribute to both

decreased life expectancy and diminished quality of life (2).

Throughout life, normal bone metabolism and growth are

dependent on maintaining a balance between the constant and

coincident processes of bone formation and bone resorption.

Disruption to this balance in bone remodeling often occurs

during normal aging when bone resorption can exceed

bone formation, resulting in osteoporosis (3). In contrast,

during adolescence, the time at which ES and OS most

commonly arise, rapid growth requires that bone formation,

or osteogenesis, exceed the level of bone resorption. Normal

bone remodeling is a high-energy process that is dependent on

cellular metabolic processes, and the central cellular mediators

that carry out the processes of bone building and bone

destruction are osteoblasts and osteoclasts, respectively. While

it is appreciated that the skeleton is a metabolically active organ,

and studies investigating the bioenergetic properties of bone

can be traced back over 60 years (4–6), until recently, the

metabolic dependencies of bone homeostasis had been

relatively unexplored.

Dysregulated metabolism is recognized as a hallmark of

cancer (7), where the rewiring of metabolic pathways is

required for supporting the biosynthetic demands of highly

proliferative malignant cells (8). Early interest in the field of

cancer metabolism focused on glucose metabolism, with more

recent work revealing the importance of amino acids in cancer

progression (9). Amino acids play a central role, not only in

protein synthesis, but also energy production, nucleotide

synthesis, and maintenance of redox homeostasis (10, 11).

More importantly, advancements have been made in the

feasibility of targeting of amino acid metabolic pathways that

are rewired in cancer, which may provide a therapeutic

vulnerability (11). This has led to the preclinical and clinical

development of therapeutic drugs, such as amino acid degrading

enzymes, amino acid transporter inhibitors, and those that target

de novo amino acid biosynthetic pathways. However,

determination and therapeutic exploitation of metabolic

vulnerabilities in primary bone tumors has lagged relative to

advances for other tumor types.

In this review, we provide an overview of the amino acid

metabolic pathways that are central in the “normal” bone

microenvironment, primarily focused on the bioenergetics of

the osteoblasts and osteoclasts that maintain bone homeostasis.

We further contrast amino acid dependencies in the normal

bone environment with the amino acid requirements of primary

bone malignancies, focused mainly on OS and ES. Lastly, we

provide a summary of therapeutically targetable pathways that

are currently under study.
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2 Metabolic rewiring in cancer

2.1 Amino acid metabolism

Cellular metabolism describes the series of biochemical

reactions that generate energy and biomolecules needed to

sustain homeostasis and function. The balance between

catabolic and anabolic processes allows cells to both harness

and utilize energy, as well as synthesize and break down

macromolecules as appropriate to sustain growth. As an

example, the catabolism of glucose provides a major energy

source for the generation of adenosine triphosphate (ATP), a

principal energy currency for the maintenance of cellular

homeostasis, through glycolysis and mitochondrial oxidative

phosphorylation (OXPHOS) (Figure 1).

Apart from glucose, proliferating cells also exhibit a

significant demand for amino acids, which, in part, are

required to support protein synthesis. Essential amino acids,

including the branched chain amino acids (BCAAs) leucine,

isoleucine, and valine, cannot be synthesized within the cell and

instead require import from the extracellular environment. Non-

essential amino acids, including the amino acids glutamine,

glutamate, alanine, proline, and aspartate, on the other hand,

can by synthesized de novo providing cells with more flexibility

when these amino acids become scarce (Figure 1). Aside from

their proteinogenic function, amino acids have also been shown

to play a role in energy production. Glutamine, the most

abundant amino acid in circulation, can sustain the TCA cycle

(Figure 1). Through glutaminolysis, the enzyme glutaminase

(GLS) converts glutamine to glutamate, which can then be

converted to alpha-ketoglutarate (aKG) to enter the TCA

cycle. Glutamine also serves as a precursor for other non-

essential amino acids, including aspartate, alanine, arginine,

and proline. Additionally, non-essential amino acids

participate in the regulation of signaling pathways and

maintenance of cellular redox homeostasis; for example

cysteine, glycine, and glutamate constitute the tripeptide and

major antioxidant glutathione (GSH) (11).
2.2 Amino acid metabolism in cancer

The observation that cancer cells exhibit a rewiring of

metabolic processes can be traced back to the work of Otto

Warburg, with his finding that cancer cells preferentially use

glycolysis, even in the presence of oxygen. This process is termed

aerobic glycolysis and is known colloquially as the Warburg

effect (12). In tumors and proliferative cells, glucose uptake is

high. Aerobic glycolysis provides glycolytic intermediates

necessary for anabolic reactions that generate building blocks

to sustain biomass accumulation in cells (13). This metabolism is

reenforced by glutamine, which is used to fuel the TCA cycle for
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energy production and also supplies carbon and nitrogen for the

generation of biosynthetic precursors such as nucleotides, non-

essential amino acids, and fatty acids (14, 15).

Beyond glucose and glutamine, cancers often become

auxotrophic for various nutrients. This includes a dependence

on an exogenous supply of non-essential amino acids, due to the

loss of expression of key enzymes necessary for the synthesis of

that amino acid, such as in the case of asparagine, arginine, and

glutamine (11, 16, 17). In fact, one of the most successful amino

acid-directed therapies targets the de novo synthesis of

asparagine. It was found in the 1970s that the use of bacterial

asparaginase (ASNase) could cure children with pediatric acute

lymphoblastic leukemia (ALL) when used as a single agent or as

a combination therapy, due to low expression of asparagine

synthetase (ASNS) (Figure 1), the enzyme that converts

aspartate to asparagine in leukemic blasts (18).

Cancers also depend on other de novo amino acid biosynthetic

pathways and exhibit upregulated expression of enzymes in these

pathways. For example, expression of phosphoglycerate

dehydrogenase (PHGDH), the rate-limiting enzyme in the

serine biosynthetic pathway (SBP), is upregulated in breast

cancer and melanoma due to genomic amplification of the
Frontiers in Oncology 03
PHGDH locus. Further, this is essential for sustaining oncogenic

growth (19, 20). Studies have demonstrated that the effect of

inhibition of PHGDH in cancer cells cannot be fully rescued by

extracellular serine alone, suggesting that these tumors depend on

other intermediate products of the SBP (Figure 1) (20). A

comprehensive review on amino acid metabolism in cancer,

more broadly, is beyond the scope of the current review, and

readers are directed to prior published reviews for recent

summaries of this complex field of study (9, 10, 21, 22). While

research is growing in this area, the investigation of amino acid

requirements in primary bone sarcomas has just recently received

due attention, and these new findings are detailed in the sections

that follow.
3 Metabolism in normal bone
homeostasis

3.1 Cycle of bone remodeling

The bone is a dynamic organ, with processes that maintain

high turnover for constant bone remodeling. These cycles of
FIGURE 1

Amino acid pathways rewired in cancer. Illustration depicting amino acid pathways linked in an intricate metabolic network. Essential amino
acids, including the branched chain amino acids (BCAAs), leucine, isoleucine, and valine, are imported from the extracellular environment, in
part via the LAT1 (SLC7A5) transporter. Glutamine (Gln) can be conditionally essential and is imported through ASCT2 (SLC1A5). Glutaminase
enzymes (GLS1/2) convert glutamine to glutamate (Glu), which can further be converted to alpha-ketoglutarate (aKG) to enter the TCA cycle.
The TCA cycle also generates intermediates, which give rise to non-essential amino acids, including aspartate and arginine. The de novo
synthesis of arginine involves the conversion of citrulline to aspartate by argininosuccinate synthetase 1 (ASS1). TCA-cycle derived aspartate is
converted to asparagine via ASNS, and GOT1 can convert aspartate to glutamate, which is further converted to glutamine by glutamine
synthetase (GS). Serine, another non-essential amino acid, can be imported or synthesized de novo in the serine biosynthesis pathway (SBP),
which diverts the 3P-glycerate (3PG) intermediate of glycolysis to generate serine via the enzymes, phosphoglycerate dehydrogenase (PHGDH),
phosphoserine aminotransferase (PSAT1), and phosphoserine phosphatase (PSPH). Serine can further be converted to glycine by serine
hydroxymethyltransferase (SHMT) (cytosolic SHMT1 isozyme shown above) to generate one-carbon units to fuel the folate cycle and the
methionine cycles. Dihydrofolate reductase (DHFR) in the folate cycle catalyzes the reduction of dihydrofolate to tetrahydrofolate (THF).
Cysteine is another non-essential amino acid that can be synthesized in the transsulfuration pathway or imported as cystine via the cystine/
glutamate antiporter, system xC-. The SBP, transsulfuration pathway, along with ASS1 and glutamine metabolism have been implicated in
sarcoma biology. Figure was created with BioRender.com.
frontiersin.org
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building and destroying bone are commonly referred to as bone

formation and bone resorption, respectively. The biological

process of bone remodeling is required to maintain proper

calcium homeostasis, respond to injury, and promote growth

and development (23). In children, the rate of bone formation

exceeds the level of bone resorption, supporting the growth of

bone through adolescence. These two processes achieve a

balance in adolescence, and eventually the scale tips toward a

net loss of bone, which is associated with ageing (Figure 2).

Defects in this cycle of bone turnover can contribute to diseases

of bone such as osteoporosis, Paget’s disease of bone,

osteogenesis imperfecta, and cancer, all of which interfere with

the body’s normal bone-recycling processes (3, 24).

The chief cell types regulating bone homeostasis are the

bone-building osteoblasts and the bone-destroying osteoclasts,

which together make up ~5% of cells in the bone. Osteoblasts

and osteocytes originate from common precursor bone marrow

mesenchymal stem cells (23). Osteoclasts are multinucleated

cells that originate from hematopoietic progenitors in the bone

marrow and result from the fusion of myeloid lineage monocytes

(osteoclast precursor cells) (Figure 2). The cycle of bone

remodeling consists of two main phases, the formation of

bone, whereby osteoblasts function to produce and secrete

alpha-1 type-1 collagen and mineralize bone; and bone

resorption, where osteoclasts residing in resorption bays digest

bone by secreting proteases and acids to promote bone

degradation (3). Osteocytes are terminally differentiated

osteoblasts consisting of 90-95% of bone and are the longest
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living bone cells. They are encased in the matrix of mature bone

and function by secreting matrix proteins and help to regulate

osteoblast and osteoclast activity.

The complex signaling and molecular mechanisms that

govern bone remodeling have been extensively studied. In

brief, successful differentiation of progenitor cells into

osteoblasts and osteoclasts is controlled, respectively, by the

transcription factor RUNX2 (25) and the cytokine RANK-

ligand (RANKL), a member of the tumor necrosis factor

(TNF) superfamily (26) (Figure 2). Osteoblast function is

regulated by numerous autocrine and paracrine signals. In

particular, osteoblasts respond to a range of stimuli, including

insulin-growth factors (IGF) (27), platelet-derived growth

factor (PDGF) (28), TGF-b (29), and bone morphogenetic

proteins (BMP) (30), as well as numerous classical hormones

such as parathyroid and thyroid hormones (31). Similarly,

osteoclast function is regulated by hormones including

calcitonin (32), thyroid and parathyroid hormones (33, 34),

IGF-1 (35), and PDGF (36). Osteoclasts and osteoblasts are

the most metabolically active cells in the normal bone

environment, but little is known about the bioenergetic

properties of osteocytes. Emerging work suggests that

osteoblasts and osteoclasts must acquire the proper nutrients

and amino acids to sustain their differentiation and execute

their proper functions in orchestration of bone remodeling.

In the sections that follow, we describe the cell-type

specific metabolic programs operative for osteoblast and

osteoclast function.
FIGURE 2

Osteoblasts, osteoclasts, and the cycle of bone remodeling. Bone remodeling balances the competing actions of the bone-building osteoblasts
and the osteoclasts that promote bone resorption. Osteoblasts and osteocytes originate from common precursor bone marrow mesenchymal
stem cells (MSCs), while osteoclasts are multinucleated and originate from hematopoietic stem cells (HSCs) in the bone marrow. Successful
differentiation of progenitor cells into osteoblasts and osteoclasts requires the transcription factor, RUNX2 and RANK-ligand (RANKL),
respectively. The level of bone formation versus bone resorption is dynamic and changes with age. Formation exceeds resorption during
adolescence, and the scale tips the opposite direction favoring resorption in old age. Figure was created with BioRender.com.
frontiersin.org
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3.2 Energy metabolism of the osteoblast

Bone formation is an energy-intensive process, and the

importance of glucose metabolism in bone and osteoblast

lineage cells has long been appreciated from studies of bone

explants and isolated bone osteoblastic cells (4–6). Specialized

osteoblast cells needed to build bone require the generation of

high levels of ATP (23). Osteoblasts express 3 glucose

transporters (GLUT1, GLUT3, and GLUT4) to facilitate

glucose uptake (37–39). In vitro studies, including metabolic

tracing with murine calvarial cells, showed that osteoblast

differentiation under aerobic conditions increases glucose

consumption and lactate accumulation, and that aerobic

glycolysis accounts for 80% of ATP production in mature

osteoblasts (Figure 3) (40, 41). The majority of the remaining

20% of glucose-derived carbon is metabolized in the

mitochondria through respiration.

The dependence of osteoblasts on aerobic glycolysis is

intimately tied to normal differentiation of these specialized cells

from mesenchymal precursors. Osteoblasts differentiate through

sequential stages, which are associated with regulated expression

of distinct transcription factors and markers. Early osteoblast

precursors express the transcription factor RUNX2, while later
Frontiers in Oncology 05
stages of differentiation are activated by the expression of Sp7, also

called osterix (Osx). At late stages of differentiation, mature

osteoblasts activate expression of activating transcription factor

4 (ATF4), a master transcriptional regulator of amino acid

metabolism and stress-response pathways. ATF4 activation

promotes an increase in collagen type I (COL1A1) synthesis, as

well as other matrix proteins such as integrin-binding sialoprotein

(IBSP) and osteocalcin (OCN) (42, 43) (Figure 3). Studies by Wei

and colleagues illustrated that a feed forward mechanism exists

between the glucose transporter GLUT1 and the osteoblast

transcription factor RUNX2 (44). High levels of intracellular

glucose inhibit the proteasomal degradation of RUNX2, and

RUNX2 increases the levels of GLUT1 by binding to and

activating the Glut1 promoter (Figure 3). This promotes the

uptake of glucose, which in turn enhances osteoblast

differentiation and bone formation. The researchers show that

GLUT1 is responsible for the majority of glucose uptake in

osteoblasts, and that this enhanced uptake is necessary for

osteoblast differentiation (44). During differentiation in vitro,

GLUT4 expression, but not that of GLUT1 or GLUT3, is

upregulated. GLUT4 is further induced by insulin-stimulated

glucose uptake, revealing that other glucose transporters can

contribute to cellular metabolism that supports osteoblast
FIGURE 3

Energy metabolism in osteoblast and osteoclast. Metabolic pathways rewired in osteoblast (Left) and osteoclast (Right) during cellular
differentiation. Left: In mature osteoblasts, glycolysis accounts for 80% of ATP production. Osteoblast precursors sequentially express the
transcription factor RUNX2, followed by Sp7 (osterix (Osx)), and collagen-promoting ATF4 at late stages of differentiation. Illustration depicts the
feed-forward mechanism where high intercellular glucose inhibits the proteasomal degradation of RUNX2, and RUNX2 increases the levels of
GLUT1 transcription. WNT signaling regulates osteoblast activity and has been shown to (1) activate glycolytic enzymes (HK2 and PFK1), GLUT1,
and LDHA via mTORC2 and (2) promote glutaminolysis and TCA cycle activation via mTORC1 and downstream regulation of ATF4 and
glutamine transporter ASCT2 (SLC1A5). Import of asparagine via ASCT2 and proline via SNAT2 (SLC38A2) also facilitates osteoblast
differentiation. Right: To dissolve bone and degrade collagen, osteoclasts require the generation of protons (H+) by hydrolyzing ATP. Thus,
osteoclasts exhibit a significant demand for ATP and contain a high number of mitochondria. ATP demand is met by upregulating both
glycolysis and glutaminolysis, and differentiation increases glycolysis and expression of glumaminase 1 (GLS1) and ASCT2. Mid-late stage
osteoclast differentiation is also dependent on increased branched chain amino acid (BCAA) pools. Figure was created with BioRender.com.
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fonc.2022.1001318
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
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differentiation (38). Moreover, mechanistic data by Esen and

colleagues define an axis where Wnt3a contributes to aerobic

glycolysis in osteoblasts via an mTORC2-AKT axis downstream

of Rac Family Small GTPase 1 (RAC1). In this pathway, WNT-

LRP signaling promotes bone formation through the induction of

key glycolytic enzymes, including GLUT1, Hexokinase 2 (HK2),

Phosphofructokinase-1 (PFK1), and Lactate Dehydrogenase A

(LDHA) (Figure 3) (45). More recent work has also found that,

in the presence of glucose, NR2F1, a nuclear hormone receptor

and transcription factor, promotes osteoblast survival and

osteogenic differentiation via AKT/ERK signaling; while in the

absence of glucose, expression of NR2F1 is reduced, and activation

of this pathway is inhibited (46)

Glutamine serves as an additional fuel source for osteoblasts

during osteogenesis (47). There, glutamine is oxidized in the TCA

cycle, which contributes to energy production in the mitochondria

in osteoblast precursors (48). Indeed, Karner et al. demonstrated

that glutamine is required for osteoblast function in response to

WNT signaling (48). They show using cultures of osteoblast

precursors and in vivo mouse models that WNT, via mTORC1,

stimulates catabolism of glutamine in the TCA cycle, which lowers

intracellular glutamine and activates the general control

nonderepressible 2 (GCN2)-mediated integrated stress response

(ISR) (Figure 3). This WNT-mTORC1-GCN2 axis was found to

be important for maintaining protein translation during the

process of bone anabolism by activating ATF4, which promotes

the transcription of genes important for amino acid uptake and

biosynthesis (48). More recently, Shen and colleagues found that

ASCT2 (SLC1A5) is a target of ATF4, downstream of mTORC1,

and is the primary transporter of glutamine in response to WNT

in osteoblasts (49). Building on this knowledge, Sharma et al.

further found, using genetic and metabolic techniques, that

SLC1A5 is required for osteoblast proliferation, differentiation,

and extracellular matrix synthesis by facilitating the import of

glutamine and, to a lesser extent, asparagine for de novo non-

essential amino acid synthesis and protein production (50). Aside

from glutamine and asparagine, osteoblast differentiation

increases import of the amino acid proline via the neutral

amino acid transporter, SNAT2 (SLC38A2), thereby facilitating

the incorporation of proline into proline-rich osteoblast proteins,

such as RUNX2, OSX, OCN, and COL1A1 (51).
3.3 Energy metabolism of the osteoclast

Osteoclasts are highly motile cells. Their differentiation, as

well as their function in bone resorption, are ATP-demanding

processes. As such, osteoclasts have more mitochondria per

surface area than virtually any other cell type to support the

need for high levels of ATP (52). The function of osteoclasts in

dissolving bone and degrading collagen requires the generation

of protons (H+) by hydrolyzing ATP in order to support

acidification and bone resorption (Figure 3) (23). Like
Frontiers in Oncology 06
osteoblasts, osteoclasts require an upregulation of glycolysis

and increase in glucose uptake via GLUT1 for their

differentiation and function. Depriving osteoclasts of glucose

inhibits their bone-resorbing activity (53).

Furthermore, osteoclast differentiation was also found to be

dependent on glutamine, as expression of the glutamine

transporter SLC1A5 and the first enzyme in the breakdown of

glutamine, glutaminase 1 (GLS1) , increased during

differentiation (Figure 3). Depletion of glutamine or inhibition

of ASCT2 repressed osteoclast differentiation and function (53).

The regulation of glycolysis in osteoclasts is under the control of

HIF1a, while c-MYC regulates expression of SLC1A5 and GLS1

(53, 54). More recently, Ozaki et al. demonstrated that, aside

from glutamine, osteoclast differentiation is negatively regulated

by the neutral amino acid transporter, LAT1 (SLC7a5) in mice

(55). Further, all three BCAAs, particularly valine, as well as the

enzymatic activity of branched-chain aminotransferase 1

(BCAT1) are increased during RANKL-induced mid-late stage

osteoclast differentiation (56). Demonstrating a complex

relationship between the maintenance of amino acid pools,

osteoclastogenesis, and bone homeostasis.

Consistent with prior work, Li et al. demonstrate that

osteoclasts require both glycolysis and oxidative phosphorylation

for proper function (57). However, metabolic dependencies differ

between osteoclast differentiation and active bone resorption. As a

notable example, it has been shown that the formation of osteoclasts

requires OXPHOS, while bone resorption exhibits a greater

dependence on glycolysis (Figure 3) (52).
3.4 ATF4 plays a central role in
physiologic bone remodeling

Although studies surrounding the bioenergetics of normal

bone homeostasis have been relatively limited, the importance of

glucose and glutamine utilization by osteoblasts and osteoclasts

has been established. As detailed above, osteoblasts demonstrate

a dependence on aerobic glycolysis that is also observed in

cancer cells, and both osteoblasts and osteoclasts have a

preferential need for upregulating glycolysis for cell

differentiation and function. While there is logic to the role of

aerobic glycolysis in cellular function, the reasons for this

phenomenon have not been fully elucidated in the context of

differentiation and require further study. One can speculate that

this may be a result of a dependency on glycolytic intermediates

to fuel biosynthetic reactions, such as de novo amino acid

synthesis. Furthermore, the role of other metabolic pathways

in osteoclast and osteoblast differentiation and function also

remains unanswered. One notable example is the role of ATF4.

Osteoblasts upregulate expression of ATF4 in the terminal

differentiation process (42). ATF4 has been shown to regulate

osteogenic genes and its phosphorylation by RSK2 is needed for

differentiation (58). ATF4 enhances bone formation by
frontiersin.org
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activating amino acid import and collagen synthesis, and studies

have shown that implementing a high-protein diet in mouse

models can overcome the effect of ATF4 loss on skeletal

formation (58, 59). ATF4 expression in osteoblasts has been

demonstrated to be regulated, at least in part, via an mTORC1-

GCN2-ATF4 axis (48, 60). Interestingly, mTORC1 has been

shown to play a role in the ATF4-dependent regulation of serine

and glycine biosynthesis and downstream collagen production

(61), suggesting another downstream pathway that would

explain osteoblast dependence on ATF4 signaling.
4 Malignant bone metabolism

4.1 Primary bone malignancies

4.1.1 Osteosarcoma
Osteosarcomas (OS)s are the most common primary

malignant bone sarcomas, representing 40-50% of bone

tumors (62). OS is characterized by a bimodal age distribution

with peak incidence in children and adolescents, and a median

age of 18, as well as a smaller second peak incidence in

individuals over 60 years of age. The worldwide incidence of

OS is 1-3 cases annually per million individuals (63). Over 75%

of OS cases occur in the metaphysis of the long bones, most

commonly in the distal femur, proximal tibia, and humerus (64).

The current standard of care for OS includes a combination of

chemotherapy, which may include methotrexate, cisplatin,

doxorubicin, ifosfamide, and etoposide, as well as surgery. OS

cells are not readily responsive to radiation, so it does not play a

major role in treatment (65). Due to limited success of new

biologically targeted therapies, chemotherapeutic agents have

been part of OS treatment for decades, and the standard of care

has largely been unchanged. Commonly occurring genetic

lesions or pathway alterations have not been identified in OS,

though mutations in p53 and Rb have been observed along with

significant cases of aneuploidy (66). However, to this date, no

clear molecular signatures have been identified that have led to

successful targeted therapies (64).

4.1.2 Ewing sarcoma
Ewing sarcoma (ES) is the second most common pediatric

bone tumor, with an incidence of 1 case per 1.5 million in the

population and presents most commonly during adolescence. ES

can arise both in the bone and in soft tissue sites, most

commonly in the pelvis and proximal long bones of the body

(67). Current treatment regimens include chemotherapy

consisting of doxorubicin, etoposide, cyclophosphamide,

vincristine, and ifosfamide, as well as local control with

surgery and/or radiation (67). ES is characterized by the

presence of EWS::ETS fusion proteins, most commonly EWS::

FLI1, which results from a chromosomal t(11;22) translocation

(67). These fusion oncogenes act as the tumor-initiating event,
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leading to malignant transformation. EWS::FLI1 acts as an

aberrant transcription factor that promotes widespread

epigenetic and transcriptional reprogramming through its

function at enhancers and gene promoters (68–70). Aside

from the presence of the EWS::FLI1 fusion protein, ES tumors

are otherwise genomically quiet, with few other recurrent

mutations (71–73). Thus far, efforts to target EWS::FLI1 itself

have been largely unsuccessful due to its lack of enzymatic

activity and disordered structure (67). Thus far, efforts to

target EWS : FLI1 itself have been largely unsuccessful due to

its lack of enzymatic activity and disordered structure.

Given the lack of therapeutically targetable mutations in

primary bone sarcomas, characterization of metabolic

dependencies may identify opportunities for novel therapeutic

strategies. To date, investigation of the metabolic properties of

sarcomas has been limited, but early studies have begun to

provide insights. Studies of sarcoma patients identified that their

tumors displayed high rates of glycolytic activity and lactate

production (74). As a result, fluorodeoxyglucose positron

emission tomography (FDG–PET) imaging is used clinically as

a staging tool for several diverse types of cancers, including OS

and ES, where it can be used to identify tumors at the primary

site and skeletal and lymph node metastases. This radiographic

tool can in some cases also be used to follow disease progression

and to predict patient outcome (75, 76). More recently, data have

emerged around the rewiring of other metabolic pathways in

sarcomas. In the following sections we will focus on and

summarize the current understanding of amino acid pathways

dependencies in OS and ES.
4.2 Amino acid dependencies in
osteosarcoma and Ewing sarcoma

4.2.1 The serine biosynthetic pathway
as a key dependency

The most extensively studied amino acid biosynthetic

pathway in sarcomas is the SBP. As a non-essential amino

acid, serine can be taken up extracellularly or synthesized de

novo. The SBP utilizes the 3-phosphoglycerate (3-PG)

intermediate of glycolysis as the carbon backbone to generate

serine de novo via three enzymatic steps carried out by the

enzymes PHGDH, phosphoserine aminotransferase (PSAT1),

and phosphoserine phosphatase (PSPH) (Figure 1). PHGDH

expression is high in both OS and ES (77–81), and high PHGDH

correlates with poor survival in both of these cancers, suggesting

a clear dependency on the SBP. The SBP contributes to a broad

metabolic hub. In addition to its proteinogenic role, serine has

numerous additional biological and metabolic functions. For

example, the conversion of serine to glycine by serine

hydroxymethyltransferase (SHMT) (isozymes SHMT1, cytosol;

and SHMT2, mitochondria) generates one-carbon units that

enter two main pathways: the folate cycle and the methionine
frontiersin.org

https://doi.org/10.3389/fonc.2022.1001318
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiménez et al. 10.3389/fonc.2022.1001318
cycle. These pathways are important for nucleotide synthesis and

the generation of the methyl donor S-Adenosyl Methionine

(SAM), respectively (Figure 1). Glycine and cysteine, derived

from the transsulfuration pathway, are also utilized to synthesize

GSH. Thus, the sum of metabolites produced by these

interconnected networks contribute to de novo purine and

pyrimidine synthesis, maintenance of GSH and NADPH pools

for redox homeosis, as well as the production of methyl groups

to fuel DNA and histone methylation reactions (82). Preferential

use of the SBP allows cancer cells to take advantage of the

pathway for the generation of biomass and to promote cell

growth and division.

Methotrexate is a dihydrofolate reductase (DHFR) inhibitor

(Figure 1) and has been part of the standard of care for OS for

over 40 years. DHFR is a critical enzyme in the folate cycle,

downstream of the SBP, which catalyzes the reduction of

dihydrofolate to tetrahydrofolate (THF), important for DNA

synthesis and methylation. These recent mechanistic insights on

the role of the SBP and interrelated pathways provide clarity on

longstanding empirically determined chemotherapy regimens

utilizing methotrexate.

In primary bone sarcomas, the SBP has received extensive

attention, given the high levels of PHGDH that are observed in

both OS and ES (77–81, 83). Rathore et al. recently explored the

effect of PHGDH inhibition in OS cell lines and xenograft

models and provided preclinical evidence for the combination

of PHGDH inhibition with inhibition of mTORC1. Using

metabolomic and lipidomic profiling, the authors identified

the accumulation of fatty acids, BCAAs, SAM, and methionine

in OS following inhibition of PHGDH using the inhibitor NCT-

503 (81). They were able to show that PHGDH inhibition led to
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increased expression of SLC7A5 (LAT1) and SLC3A2 (CD98)

transporters that drive transport of leucine into the lysosome,

leading to mTORC1 activation (Figure 4). Given this finding, the

researchers then demonstrated that combining NCT-503 with

non-rapalog mTORC1 inhibitor perhexiline led to tumor

reduction in xenograft models (81). These studies are

consistent with prior work, which also demonstrated that

mTORC1 regulates OS cell proliferation partly via the

regulation of serine/glycine metabolism (83).

Numerous studies have focused on defining the role of the

SBP in ES (77–80). This work has shown that PHGDH is

overexpressed in ES cell lines and primary patient tumors, and

that ES cells are highly dependent on the SBP. Furthermore,

several groups, including our own, have demonstrated that the

EWS : FLI1 fusion oncogene regulates expression of key enzymes

in the SBP, PHGDH, PSAT1, and PSPH, as well as their

metabolic products (77, 78, 80, 84).

In cancers without amplification of the PHGDH locus, such as

lung cancer, activation of the SBP can be mediated through

upregulation of ATF4 (85–88). Studies from our lab showed

that EWS : FLI1 is able to transcriptionally regulate expression

of ATF4 through direct promoter binding, and that ATF4

expression can also be regulated by the scaffolding protein

menin, which also has an oncogenic role in ES (Figure 4) (84,

89). However, studies have been inconsistent on the predominate

function of the SBP is in supporting ES tumorgenicity. Some

evidence suggests that inhibition of the SBP in ES affects redox

homeostasis and leads to the accumulation of ROS and DNA

damage (78). Other work has implicated PHGDH loss in

decreasing 2-hydroxyglutarate levels, increasing total histone-3

levels, and enhancing methylation of histone H3 at lysine (K) 9
FIGURE 4

Amino acid dependencies in Ewing sarcoma and osteosarcoma. Venn-diagram depicting shared and unique amino acid vulnerabilities in Ewing sarcoma
and osteosarcoma. The EWS::FLI1 fusion protein has been shown to directly regulate expression of glutamine transporter SLC1A5 (ASCT2) leading to
high glutamine import. EWS::FLI1 also regulates expression of IL1RAP and downstream cysteine availability via the transsulfuration pathway (TSS) and xCT
(SLC7A11). EWS::FLI1 indirectly regulates the serine biosynthesis pathway (SSP) via ATF4. In osteosarcoma, the SSP also drives tumorgenicity through
undefined mechanisms likely involving mTORC1. The mitochondrial enzyme GLS1, which may be under the control of MYC is highly expressed in
osteosarcoma and predicts worse survival. Diagram was created with BioRender.com.
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and K27. It should be noted that responses varied among the cell

lines evaluated (77). These studies suggest that the SBP may serve

an oncogenic role in ES by influencing multiple downstream

metabolic programs. In either case, recent work by Issaq and

colleagues showed that PHGDH inhibition is a targetable

vulnerability, where combination with inhibition of

nicotinamide phosphoribosyltransferase (NAMPT), which

blocks synthesis of the PHGDH substrate NAD+, had a

synergistic effect in vitro and in in vivo xenograft models (80).

While the mechanism of SBP activity in ES can be attributed

to the direct and indirect effects EWS : FLI1 fusion-mediated

metabolic reprogramming, the mechanism by which the SBP is

activated in OS is much less clear, likely due to the lack of known

oncogenic drivers. Wildtype p53 has been shown to reduce

PHGDH in melanoma (90). The majority of OSs exhibit

mutations in p53, suggesting a potential mechanism of SBP

regulation (91). Importantly, PHGDH inhibition has been

reported to induce cell death in ES (77), but not in OS where

PHGDH inhibition resulted in cytostasis (81). Whether this

represents unique difference between the tumor types or

technical experimental variables requires further study.

Further, ES cell lines exhibit varying sensitivities to serine/

glycine withdrawal (79), while uniformly showing reduced

growth with genetic PHGDH loss of function. Additionally,

the effectiveness of PHGDH inhibition in OS cells does not

increase their sensitivity to serine/glycine depletion (81). This

suggests that ES and OS cells may be more dependent on the de

novo synthesis of serine than the extracellular import of the

amino acid.

4.2.2 Glutamine—a conditionally essential
amino acid

Although glutamine is a non-essential amino acid, many

tumors rely on extracellular glutamine for survival, therefore

classifying it as a conditionally essential amino acid (14). As the

most abundant amino acid in the plasma, glutamine is found at

levels between 500 and 750µM. In addition to its proteinogenic

functions, glutamine also participates in the synthesis of other

non-essential amino acids, as well as acting as an essential

carbon and nitrogen donor for the synthesis of nucleotides,

GSH, and glycosylation precursors.

Numerous studies have identified a dependence of OS and

ES cells on glutamine and glutaminolysis. In cancer cells, the

rate-limiting enzyme for glutaminolysis is GLS, the

mitochondrial enzyme responsible for the conversion of

glutamine to glutamate, which can exist as one of two

isoforms, GLS1 and GLS2. Molecularly, research has shown

that MYC-induced glutaminolysis occurs specifically in MYC-

dependent OS cells, but not in osteocytes (Figure 4) (92). Work

in ES has demonstrated that EWS::FLI1 positively regulates

expression of the glutamine transporter ASCT2 (SLC1A5),

potentially via the direct binding of the fusion to a regulatory
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sequence in the SLC1A5 gene (Figure 4) (78). Clinical studies

with OS patients have shown that GLS1 is highly expressed in

OS tumor tissue, which predicts poor survival (Figure 4). The

effect of GLS1 inhibition was recently evaluated in OS cell lines

using metabolic flux analysis and tracing studies. These studies

demonstrated that pharmacologic inhibition of GLS1 with CB-

839, combined with electron transport chain (ETC) inhibitor

metformin, reduced primary tumor growth and metastasis by

inhibiting glycolytic and TCA cycle activity (93). Furthermore,

GLS1 expression decreases with neoadjuvant chemotherapy,

suggesting that GLS1 may be predictive of OS treatment

response (94). Recent studies have also demonstrated success

in therapeutically targeting GLS in cell line and murine models

of soft tissue sarcomas (95).
4.2.3 Arginine—a case of auxotrophy
in sarcomas

Arginine can be synthesized de novo by the action of the

argininosuccinate synthetase 1 (ASS1) enzyme, which converts

citrulline and aspartate to arginine (Figure 1). Arginine

auxotrophy can result from the silencing of ASS1 in several

tumor types, including sarcomas (96). In cancers such as

lymphomas, bladder cancer, and prostate cancer, diminished

ASS1 expression can be due to methylation of the ASS1

promoter (97). In the case of sarcomas, a 2016 study found

that almost 90% of sarcoma tumors have low ASS1 expression;

however, ASS1 promoter methylation is not observed in

sarcomas. Specifically, Bean et al. evaluated 701 bone or soft

tissue sarcomas by immunohistochemistry analysis for ASS1

expression and found that most primary bone tumors (87.2%,

34/39) and soft tissue tumors (86.4%, 572/662) had low ASS1

expression. 3 of 10 OS tumors evaluated were determined to be

ASS1 positive, while 1 of 7 ES tumors evaluated were ASS1

positive (98). By characterizing select ASS1Low cell lines,

including OS and ES cell lines, the authors showed that

arginine deprivation with pegylated arginine deaminase (ADI-

PEG20) led to cytostasis and a dependence on autophagy.

Combining ADI-PEG20 with chloroquine, an autophagy

inhibitor, led to necroptotic and apoptotic cell death. The

authors tested this synthetic lethal targeting strategy in vivo

using subcutaneous xenografts with MNNG/HOS OS cells and

showed that combining ADI-PEG20 with chloroquine led to the

greatest reduction in tumor growth, relative to single arm

treatments (98).
4.2.4 Transsulfuration pathway and
cysteine metabolism

Cysteine is another non-essential amino acid, which can be

acquired from the extracellular space through several transport

mechanisms or synthesized de novo in the transsulfuration

pathway from serine and methionine (Figure 1). Cysteine is
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the rate-limiting substrate for the synthesis of GSH, which is

critical for the maintenance of cellular redox homeostasis. A

drop in GSH can lead to the accumulation of reactive oxygen

species (ROS) and/or oxidized membrane phospholipids (lipid

ROS). An inability to manage ROS leads to the oxidation of

various biomolecules and can culminate in cell death. Thus,

cancer cells employ a variety of mechanisms to mitigate ROS

burden. As it relates to cysteine, many types of cancers will

upregulate SLC7A11, which encodes for xCT, the rate-limiting

subunit of the cystine-glutamate antiporter system xC-. In a

recent study, application of 3D cultures with ES cells in

proteomic and translatomic screens found that the EWS : FLI1

fusion oncoprotein directly induces expression of system xC- and

the transsulfuration pathway, via induction of IL1RAP

expression, a cell surface IL-1 receptor co-receptor. The

researchers found that IL1RAP directly binds system xC- to

increase its cystine importing activity, and that EWS::FLI1

regulates IL1RAP expression through enhancer activation

(Figure 4). IL1RAP was found to be highly expressed in ES

and important for promoting resistance to anoikis, detachment-

induced cell death, and metastasis (99). Although little is known

about the role of cysteine and GSHmetabolism in OS, it has been

demonstrated that OS cell are dependent on methionine,

suggesting that this may be in part to maintain cysteine

levels (100).
5 Bone microenvironment and
metastasis

5.1 Metabolism in the bone tumor
microenvironment

The function of non-malignant cells in mesenchymal tumors

has been less studied when compared to epithelial cancers of

adulthood (101). Additionally, a distinguishing feature of

sarcomas is that the distinction between malignant and stromal

cells can be unclear, due to the mesenchymal origin of the tumor

cells themselves (101). Primary bone sarcomas grow in specialized

and complex bone microenvironment that are highly vascularized

and contain osteoclasts, osteoblasts, osteocytes, stromal cells

(MSCs, fibroblasts), vascular cells (endothelial cells and

pericytes), immune cells (macrophages, lymphocytes) (102,

103), and a mineralized extracellular matrix (ECM) (104). This

is fertile soil for tumor cells to hijack growth promoting pathways

such as cytokines, chemokines, and growth factors in the bone

microenvironment (65, 105). Remodeling and resorption of bone

is a key feature of primary bone malignancies like OS and ES,

leading to an osteolytic bone environment that provides space for

growth of the tumor (101, 106, 107).The metabolic crosstalk in

and among these cell types, and how it influences and is

influenced by tumor cells, are important outstanding questions

that are beginning to be addressed.
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MSCs have been shown to favorably impact OS progression

and contribute to osteolysis (108, 109). Several studies have

centered around the role of lactate in promoting an acidic

microenvironment. Lactate released by both cancer cells and

cells in the TME plays a prominent role in tumor progression, by

increasing angiogenesis, motility, and the migration of cancer

cells (110). Studies in OS models have demonstrated that lactate

derived from MSCs feeds OS (111). MSCs are induced by

adjacent OS cells to undergo Warburg metabolism and

increase lactate secretion and expression of the lactate exporter

monocarboxylate transporter 4 (MCT4). Lactate from MSCs

feeds OS, and OS cells import lactate via monocarboxylate

transporter 1 (MCT1). This indirectly increases mitochondrial

biogenesis and promotes the migration of OS cells (111). The

mechanisms linking lactate metabolism to mitochondrial

biogenesis and cell migration remain exciting avenues for

further exploration.

Insights into the metabolic functions of the bone TME can

also be gleaned from cancers that metastasize to the bone, such

as breast cancer, prostate cancer, and multiple myeloma (112).

For example, Pollari et al. show that serine from breast cancer

cells in the metastatic bone microenvironment contributes to the

formation of bone resorbing human osteoclasts and may

contribute to osteolysis (113). Additionally, similar to studies

in OS, bone metastatic cancer cells have also been shown to

release lactate via MCT4, which is taken up by MCT1 in

osteoclasts to fuel OXPHOS and collagen resorption (114). In

both of these cases, the activity of osteoclasts leads to bone

resorption, creating a more fertile metastatic niche. Interestingly,

studies in multiple myeloma have shown that tumor cells

prevent the differentiation of bone marrow stromal cells into

osteoblasts in part by depleting glutamine. Finally, osteoblast

differentiation increased expression of ASNS and asparagine

could rescue osteoblast differentiation after glutamine

depletion (115). This examination of amino acid cross talk in

the primary tumor of OS and ES is clearly incomplete. Further

exploration of this complex interaction with tumor-supporting

cells in the bone microenvironment will be central to

determining the effectiveness of metabolic therapies and

predicting potential resistance mechanisms in sarcomas.
5.2 Primary versus metastatic
metabolism

The ability to starve cancer cells through dietary restriction

and/or the use of targeted therapies has garnered extensive

attention recently (22). However, the cancer context in which

these therapies are evaluated is key to determining their

therapeutic potential. Further, it is evident that the metabolic

dependencies of the primary tumor differ from those of

metastatic lesions. For instance, in breast cancer models,

researchers have demonstrated that lung and brain metastases
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are more sensitive to targeting of the SBP than the primary

tumor site, in part due to SBP-dependent activation of mTORC1

(116–119). In the brain, the low availability of serine and glycine

makes brain metastases more sensitive to inhibition of PHGDH

(118). More recently, work also utilizing breast cancer models

has suggested that heterogeneous or low PHGDH protein

expression at the primary tumor site is associated with

increased metastatic potential. This study shed light on

distinct regulation of PHGDH transcript and protein and

demonstrated a non-catalytic role for PHGDH in directly

interacting with the glycolytic enzyme phosphofructokinase

resulting in aberrant protein glycosylation (120). Though

PHGDH expression is high in both OS and ES and drives

tumorgenicity, the impact of potential heterogeneity in

transcript and protein expression on primary growth and

metastatic dissemination has not been explored. A deep

understanding of metabolic dependencies in the tumor niche

in bone for OS and ES compared to common sites of metastasis,

such as the lung, is lacking and warrants further study.

Studies have begun to look at metabolic differences

associated with metastasis in bone sarcomas. Using metabolic

profiling and metabolic flux analysis in high and low metastatic

cell lines, recent work has suggested that metastatic OS cells

activate pathways such as arginine, GSH, and fatty acid

metabolism (121–123). Additionally, GLS1 has recently been

shown to play a role in promoting metastasis in OS (93). Parallel

studies in ES have been more limited, though as discussed above,

recent work has implicated cysteine metabolism downstream of

IL1RAP in promoting metastasis (99). This work would benefit

greatly from studies in additional models of spontaneous

metastasis, as the current models do not readily metastasize

before mice succumb to primary tumor burden (124).
6 Therapeutic applications targeting
amino acid metabolism
in sarcomas

The current standard of care for sarcoma, consisting of surgery,

chemotherapy and radiation has improved the life expectancy for

patients, but survival has since plateaued without meaningful

improvements in 30 years. Therefore, new therapies as well as

diagnostic and prognostic tools are needed. As it relates to

metabolism, there are new therapies under clinical evaluation for

sarcomas. As previously discussed, preclinical studies showed that

~90% of sarcomas have low expression of ASS1, making these cells

more dependent on extracellular sources of arginine (98).

Treatment of ASS1Low sarcoma cell lines with PEGylated arginine

deiminase, ADI-PEG20, sensitized cells to cell death induced by the

chemotherapeutic agents, gemcitabine and docetaxel. This

prompted a Phase II clinical trial that started in May 2018 in

which PEGylated arginine deiminase, ADI-PEG 20, was used in
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combination with gemcitabine and docetaxel for the treatment of

bone and soft tissue sarcoma, including OS, ES, and small cell lung

cancer (NCT03449901) (98, 125). However, challenges in the

clinical use of ADI-PEG20 are likely based on preclinical

observations. These may include acquired resistance to ADI-

PEG20 by upregulation of ASS1 (98) or rewiring of other

metabolic pathways, such an increased dependence on glutamine

anaplerosis and the SBP upon arginine starvation (126). Targeting

these compensatory pathways with addition of a GLS inhibitor or

PHGDH inhibitor has been found to result in synthetic lethality in

several models, including leiomyosarcoma (126).

Telaglenastat (CB-839) is a potent orally bioavailable GLS

inhibitor that has exhibited anti-tumor activity in breast cancer

and lymphoma (127, 128). Current clinical trials are evaluating

its efficacy in hematologic and solid cancers (129). A recent

metabolomics study tested the effect of GLS inhibition with CB-

839 in undifferentiated pleomorphic sarcoma (UPS) and soft

tissue sarcomas and found that GLS inhibition causes tumor cell

death (95). These findings are promising for the translation of

CB-839 to the clinic, especially for OS patients who exhibit high

GLS1 activity (93, 94). However, the use of GLS inhibitors needs

to be carefully evaluated. In some contexts, GLS dependency

may be a phenomenon of cancer cells in vitro, where tumors are

able to acquire compensatory mechanisms when GLS is

inhibited in vivo (130, 131).

Given the dependency of numerous cancers on the SBP and

PHGDH expression, PHGDH inhibition is also a promising

therapeutic vulnerability. In fact, several small molecule

enzymatic inhibitors against PHGDH are under preclinical

development (116, 132, 133); however, none are yet ready for

clinical examination (134).

Metabolomics technology has allowed for the profiling of

cancer-associated metabolites, which could provide insight into

tumor specific biomarkers. While this has led to progress in

identifying cancer-specific prognostic and diagnostic biomarkers

in other cancer types (135), there are only a few studies that have

focused on sarcoma metabolomics (136). Early work in 2011 used

liquid chromatography-tandemmass spectrometry (LC-MS/MS) in

formalin-fixed and paraffin-embedded (FFPE) patient tissue from

soft tissue sarcomas, including leiomyosarcoma, liposarcoma, and

synovial sarcoma, and showed that 8 metabolites exhibited

differential abundances between soft tissue sarcoma samples and

control tissue (137). Researchers have also investigated liposarcoma

cell lines in vitro, revealing high consumption of nucleosides and

amino acids such as arginine, glutamine, and serine. Through in

vitro and in vivo models, their studies further implicate nucleoside

salvage pathway activity as a potential metabolic biomarker

predicting response to gemcitabine (138).

More recent work has shifted to metabolomics analysis of

patient serum in search of prognostic biomarkers. This work has

identified depletion of citrulline, a precursor for arginine

synthesis, in high risk metastatic soft tissue sarcoma patients

(139). Very few studies have focused on OS and ES patients,
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specifically. Work by Jia et al. used LC/MS to evaluate changes in

plasma amino acid levels between 23 sarcoma patients, including

OS and ES, compared to 30 healthy control subjects and

identified 4 amino acids or amino acid derivatives (glutamine,

sarcosine, homoproline and citrulline) that decreased and 3

(carnosine, lysine, and glutamic acid) that increased in

sarcoma patients (140). One of the first metabolic profiling

studies in OS utilized LC/MS to investigate the serum and

urine of OS patients compared to benign tumor patients and

healthy controls and identified down-regulated lipid metabolism

and upregulated amino acid metabolism among the pathways

impacted (141). Though these patient-centered studies are

preliminary, this and future work in this area may provide

leads or insights that will subsequentially require further

evaluation in larger cohorts of patients to determine the utility

of metabolic profiling. The hope is that the identification of bone

sarcoma-specific metabolic biomarkers will allow this

technology to be used in the future for the diagnosis and

monitoring of sarcoma patients (142).
7 Conclusions and future directions

In recent years, the exploration of dysregulated amino acid

metabolism pathways has garnered increased attention in

sarcomas, with exciting new findings on pathways that may

serve as tumor-specific vulnerabilities. As discussed above, the

potential for basic discoveries in sarcoma metabolism to lead to

clinical translation is exemplified by the identification of

dysregulated arginine metabolism in bone sarcoma cells and

subsequent inclusion of sarcoma patients in a Phase II clinical

trial (NCT03449901) that is testing ADI-PEG20 in combination

with chemotherapy (98). There is also clear precedent for success

including amino acid targeting agents as adjuvant therapies in

other cancers. ASNase, which depletes circulating asparagine, has

been used in pediatric patients with acute lymphoblastic leukemia

since the 1970s. Other amino acid pathways are being evaluated in

clinical trials, such as indoleamine-2,3-dioxygenase-1 (IDO1)

inhibitors, epacadostat and indoximod, for tryptophan

catabolism in cervical cancer and glioblastoma (143–145).

Additionally, activation of the SBP has been demonstrated to

predict poor prognosis in both ES and OS and to be regulated by

an EWS : FLI1-ATF4 axis in ES (77–81, 83). Preclinically,

inhibitors of biosynthetic enzymes, such as the SBP enzyme

PHGDH are under development for a wide array of cancers

(116, 132, 133), and drugs to target amino acid transporters, such

as LAT1 (SLC7A5), are also being explored (146, 147).

Primary pediatric bone sarcomas arise during a time in

development when normal physiologic processes direct bone

remodeling that is required for bone growth. This remodeling
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relies on the activation of transcriptional and metabolic

pathways that support high-energy demands, including the

increased import and synthesis of amino acids (42, 48).

Transcription factors such as ATF4 are activated during

osteoblast differentiation in order to maintain amino acid

pools and downstream amino acid-dependent products, like

collagen (42, 58, 59). Moreover, distinct metabolic programs

and dependencies are evident across heterogeneous cell types in

the sarcoma tumor niche, including osteoblasts, osteoclasts, and

tumor cells, adding to the complexity of dissecting metabolic

dependencies in the bone tumor ecosystem. Further, emerging

work in sarcoma and other cancer types, has shown that amino

acid metabolism differs among distinct tumor cel l

subpopulations, and that individual metabolic pathways may

serve as biomarkers of metastatic potential (93, 99, 119, 120).

Intratumor metabolic heterogeneity and differential amino acid

requirements among tumor cells, microenvironment

components, and between between primary and metastatic

sites are poorly understood in the context of primary bone

tumors and filling these gaps in knowledge should be a priority

for investigation in sarcomas.

Given the dynamic nature of metabolic requirements during

bone differentiation, the effect of amino acid targeting therapies on

normal developmental processes will require thoughtful

consideration, especially in the context of pediatric cancer

patients who are still growing. Many other questions will also

need to be addressed when investigating metabolic dependencies in

the bone tumor niche. For example, the precise cell of origin for

both OS and ES is still unclear and highly debated (62, 148), and the

timing of genetic and signaling events during development which

govern malignant transformation are not well understood. As such,

it is not possible to directly compare metabolism in tumor cells to

the normal precursor cell from which they arose. Furthermore, how

dysregulated metabolism contributes to oncogenesis within

cells undergoing transformation in the context of a bone

microenvironment is not known. Nevertheless, given recent

exciting advances in our understanding of bone and cancer

metabolic programs in general, and of distinct amino acid

dependencies in OS and ES, the promise of targeting metabolic

processes in these tumors is high. Based on precedent with

metabolic therapies and dynamic compensatory mechanisms, it is

likely that combination approaches and targeting co-vulnerabilities

will serve as the most viable option for patients.
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