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Background. +e twin epidemic of overweight/obesity and type 2 diabetes mellitus (T2DM) is a major public health problem
globally, especially in China. Overweight/obese adults commonly coexist with T2DM, which is closely related to adverse health
outcomes. +erefore, this study aimed to develop risk nomogram of T2DM in Chinese adults with overweight/obesity.Methods.
We used prospective cohort study data for 82938 individuals aged ≥20 years free of T2DM collected between 2010 and 2016 and
divided them into a training (n� 58056) and a validation set (n� 24882). Using the least absolute shrinkage and selection operator
(LASSO) regression model in training set, we identified optimized risk factors of T2DM, followed by the establishment of T2DM
prediction nomogram.+e discriminative ability, calibration, and clinical usefulness of nomogramwere assessed.+e results were
assessed by internal validation in validation set. Results. Six independent risk factors of T2DMwere identified and entered into the
nomogram including age, body mass index, fasting plasma glucose, total cholesterol, triglycerides, and family history. +e
nomogram incorporating these six risk factors showed good discrimination regarding the training set, with a Harrell’s con-
cordance index (C-index) of 0.859 [95% confidence interval (CI): 0.850–0.868] and an area under the receiver operating
characteristic curve of 0.862 (95% CI: 0.853–0.871). +e calibration curves indicated well agreement between the probability as
predicted by the nomogram and the actual probability. Decision curve analysis demonstrated that the prediction nomogram was
clinically useful. +e consistent of findings was confirmed using the validation set. Conclusions. +e nomogram showed accurate
prediction for T2DM among Chinese population with overweight and obese and might aid in assessment risk of T2DM.

1. Introduction

Globally, type 2 diabetes mellitus (T2DM) is a common
public health problem that has affected 422 million adults
and caused 1.6 million deaths in 2016 [1, 2]. Furthermore,
T2DM causes huge financial burden.+e health expenditure
of diabetes alone is 673 billion dollars in 2015, accounting for
12% of total expenditure [3]. However, the global burden of
disease study and epidemiological studies have confirmed
that the prevalence of T2DM has increased rapidly world-
wide in the last three decades, especially in developing

countries including China [4–6]. China is the world’s most
populous nation and the largest developing country. Almost
one in four of patients with diabetes all over the world lives
in China, which makes China become the country with the
largest T2DM population in the world [5].

Simultaneously, the prevalence of overweight and obe-
sity all over the world has been increasing steadily over the
past several decades [7]. In 2016,World Health Organization
(WHO) estimated 39% and 13% of adults (≥18 years) in the
world being overweight and obese, respectively [2]. Accu-
mulating surveys indicate overweight/obesity to be a major
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risk factor for T2DM [8–10]. Previous cohort studies in-
dicate that overweight and obese adults are 2.5 times more
likely to develop T2DM than normal weight individuals [11].
Additionally, compared with overweight and obese adults or
T2DM alone, patients with T2DM and overweight and
obesity have an increased risk of cardiovascular-related
mortality [12].

+e twin epidemic and parallel escalation of overweight/
obesity and T2DM is a major health crisis globally. Ap-
proximately 63% of patients with T2DM are overweight or
obese in China [13]. +erefore, it is of great significance to
distinguish individuals with high risk of suffering from
T2DM from those with low risk and follow-up with those
high-risk subjects closely for early detection and prevention
of T2DM. +ough several prediction models were estab-
lished for diabetes [14, 15], traditional risk factors related to
T2DM might play a different role in overweight and obese
adults. In addition, most of the predictive score models are
built in European and American populations [16, 17], which
may not be suitable for the prediction in Chinese population.
Moreover, some prediction models built in the general
population might underestimate T2DM risk in overweight
and obese adults. To our knowledge, a prediction model has
not been developed specifically to predict T2DM in over-
weight and obese population.

Accordingly, our study aimed to establish and validate a
comprehensive visual predictive model for T2DM in Chi-
nese with overweight and obesity. +e proposed nomogram
can help healthcare workers and individuals assess the risk of
T2DM, thus promoting early detection and intervention for
T2DM.

2. Methods and Materials

2.1. Setting and Participants. Data for this study were ob-
tained from a prospective cohort study which was estab-
lished by the Rich Healthcare Group in China from 2010 to
2016. It is a computerized database including all medical
records for participants who received a health check. +is
cohort study was conducted in 43 sites across 11 provinces
involving 685277 participants. +e number of subjects with
duration of follow-up more than two years was 225575
participants. Finally, a total of 211833 participants free of
diabetes at baseline were included in the cohort study. +is
study is a secondary data analysis of the cohort data which
was downloaded from a shared database by Chen et al.
[18, 19] in the Dryad Digital Repository (http://www.
datadryad.org). We analyzed the data for 82938 over-
weight and obese participants in this current paper.

2.2. Data Collection. Trained staff used standardized elec-
tronic questionnaires and collected data on demographic
characteristics (age, gender) and health-related behaviors
(alcohol consumption and cigarette smoking) in each visit to
the health check center. Blood pressure (BP) of each par-
ticipant was measured using the uniform sphygmoma-
nometer. Height and weight were also measured to the
nearest 0.1 cm and 0.1 kg, respectively, by trained staff. Body

mass index (BMI) was derived as weight divided by the
square of height (kg/m2).

Fasting for ≥10 h venous blood samples was collected for
all participants. +en, fasting plasma glucose (FPG), total
cholesterol (TC), triglycerides (TG), low-density lipoprotein
cholesterol (LDL-C), high-density lipoprotein cholesterol
(HDL-C), alanine aminotransferase (ALT), aspartate ami-
notransferase (AST), blood urea nitrogen (BUN), and
concentration of creatinine (CCR) were tested at local health
check center using an autoanalyzer.

+e variables for each case were extracted from the raw data
as follows: age, gender, sites, height, weight, BMI, FPG, systolic
and diastolic BP (SBP, DBP), TC, TG, LDL-C, HDL-C, ALT,
AST, BUN, CCR, smoking and alcohol consumption status,
family history of diabetes, years of follow-up, and eventual
diagnosis of diabetes.

2.3. Follow-Up Data Collection. +e annual health check of
the participants was considered as a follow-up examination.
+e primary outcome measure was the first (incident) di-
agnosis of T2DM, which was recorded on the general
practice computer records. FPG and lipids profiles and
presence of T2DM were evaluated as per baseline. Diabetes
was defined as FPG ≥7.0mmol/L or a self-reported presence
of T2DM. If a participant developed diabetes during follow-
up, the participant was asked in detail when the diabetes
occurred, to the exact date of month.

2.4. Definition. Overweight and obesity were classified if
BMI is between 24.0 and 27.9 Kg/m2 and ≥28.0 Kg/m2, re-
spectively [20]. Current cigarette smoking was coded as yes/
no. Current alcohol drinking was defined as yes/no. Family
history of diabetes was categorized into yes/no. Hyperten-
sion is defined as SBP ≥140mmHg and/or DBP ≥90mmHg.
Dyslipidemia was defined as a combination of one or more
statuses: TC≥ 6.22mmol/L, LDL-C≥ 4.14mmol/L, HDL-
C< 1.04mmol/L, and TG≥ 2.26mmol/L in terms of criteria
recommended by Chinese guidelines for the Prevention and
treatment of dyslipidemia in adults [21].

2.5. Statistical Analysis. Descriptive analyses were con-
ducted for 82938 participants using SPSS 20.0 for Windows
(SPSS Inc., Chicago, IL). All continuous variables were
summarized as means± standard deviations (M± SD), and
categorical variables were expressed as frequency (n) and
proportions (%), and the results were compared using
Student’s t-test and the chi-square test to detect the statistical
significances, respectively.

+e developement and the assessment of nomogram
were divided into four steps. First, we randomly selected 70%
of the participants (n� 58056) as training set to construct the
model. We reserved the remaining 30% (n� 24882) as
validation set for validation. Second, we identified inde-
pendent predictive features using nonzero coefficients in the
least absolute shrinkage and selection operator (LASSO)
regression model [22, 23]. +ird, Cox proportional hazards
model was applied to construct a predicting nomogram
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based on the selected feature from the LASSO regression
model [24], with results presented as hazards ratio (HR) with
associated 95% confidence interval (95% CI) and corre-
sponding p value. Fourth, the discrimination and calibration
of the nomogram were assessed by Harrell’s concordance
index (C-index) and the area under the receiver operating
characteristic curve (AUC) and calibration curves plot, re-
spectively [25, 26]. Finally, to quantify the net benefits at
different threshold probabilities in the model, decision curve
analysis (DCA) was conducted to determine the usefulness
of the nomogram in the validation cohort [27]. +e no-
mogram and the bootstrap analysis were performed using
the package of “rms” in R version 3.5.1. A p value< 0.05 was
considered to indicate significance.

3. Results

3.1. Baseline Characteristics. In total, 82938 overweight and
obese subjects with mean age 44.99± 12.98 years were en-
rolled with men accounting for 72.3%. +e median follow-
up time for all participants in this study was 2.98 years
(range: 2.15–3.93 years). During the follow-up period in this
study, the overall incidence of T2DM was 3.7% (n� 3069).
+ere were no significant differences between the training
set and the validation set for baseline characteristics
excepted gender and smoking status (p range:0.056 to 0.943)
(Table 1).

3.2. Predicted Feature Selection. We used the LASSO re-
gression model to screen independent predicting features of
T2DM in training set. Six potential predictors were screened
out of 19 factors in the study (∼3 :1 ratio; Figures 1(a) and
1(b)) and were with nonzero coefficients (min lambda of
0.02238) in the LASSO regression model. +ese factors
included age, BMI, FPG, TC, TG, and family history which
were presented in Table 2.

3.3. Construction and Assessment of Nomogram. +e pre-
dictive nomogram that integrated all the significant features
for the type 2 diabetes-free survival (T2DFS) probability was
then developed (Figure 2). +e C-index and AUC for the
predictive nomogram was 0.859 (95% CI: 0.850–0.868) and
0.862 (95% CI: 0.853–0.871), respectively, which indicated
the model’s good discrimination (Figure 3(a)). +e cali-
bration of nomogram for the T2DFS probability at 3 and
5 years demonstrated good agreement by performing the
calibration curve plot (Figures 4(a) and 4(c)).

3.4. Internal Validation of the Nomogram. +e nomogram
showed good discrimination with a C-index of 0.848 (95%
CI: 0.833–0.863) and AUC of 0.851 (95% CI: 0.837–0.865)
through internal validation in the validation set. Addi-
tionally, the good calibration of the prediction nomogram
was confirmed in the validation set (Figures 4(b) and 4(d)).
+us, this prediction nomogram performed well using both
the training and validation sets.

3.5. Clinical Use of Nomogram. +e DCA for the nomogram
showed that when the threshold T2DFS in overweight and
obese adults ranged between 3.9% and 73.5% at 3 years and
between 5.1% and 82.3% at 5 years, using this nomogram to
predict the T2DFS probability yielded more net benefit than
the scheme, which showed the nomogram to be clinically
useful (Figure 5).

4. Discussion

Evidence is mounting that high BMI causes the incidence of
T2DM [8–10]. Coexistence of obesity/overweight and
T2DM is associated with increased risk of stroke, angina,
and coronary heart disease and constitutes a significant
cardiovascular health burden [12]. Primary prevention and
timely intervention are at the core of preventing or post-
poning onset of T2DM. +erefore, early identification of
those individuals at high risk of developing diabetes in
overweight and obese adults is vital for reducing the inci-
dence. Accordingly, we attempted to develop and validate a
nomogram to predict the T2DFS probability at 3 and 5 years
in Chinese with overweight and obesity.

+e nomogram developed is simple (consisting of only
six factors, during selection of variables for each block, many
were eliminated because they were not associated with
T2DM or because they showed strong colinearity with other
variables) and shows good standardization and ability to
discriminate. It is worth mentioning its high sensitivity
(approximately 90%), indicating that the factors included are
capable, as a whole, of predicting properly the risk of de-
veloping T2DM in overweight and obese adults.

T2DM is the ninth cause of disease burden worldwide
[4]. +erefore, several researchers have constructed T2DM
risk prediction scores [14–17]. However, there are racial and
ethnic differences in the prediction factors of T2DM since
environmental and genetic characteristics differ among
various racial/ethnic populations [28]. Consequently, T2DM
risk assessment model developed in white populations are
not suitable for Chinese population [14, 15, 29]. Moreover,
several predicting models might not accurately predict the
future risk of T2DM because they are based on participant
coming from single study site, cross-sectional studies, or on
relatively small sample size [30–32]. In addition, though
there are several models based on Asian or Chinese, they did
not contain some of other significant risk factors such as
blood lipid levels and family history of diabetes, which might
result in insufficient accuracy with small AUC of model
[32, 33]. Furthermore, the T2DM risk prediction scores
developed in the general population cannot accurately
predict the risk of T2DM in overweight and obese adults. To
our knowledge, current study is the first to develop and
validate a predicted nomogram for predicting 3-year and 5-
year incidence probability of T2DFS in a Chinese population
with overweight and obesity based on multicenter cohort
study. Our model shows good accuracy and excellent
agreement in training and validation set, which suggests that
it contains good transportability and generalizability.

Results of the current study show that the risk factors
related to T2DM in overweight and obese adults include age,
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BMI, FPG, TC, TG, and family history of diabetes. +is is
consistent with the previous studies reporting the risk
factors of T2DM [8, 34–36]. Currently, the mechanism on
older people prone to develop T2DM might be attributed to
aging β-cells with lower glucose responsiveness and glucose
sensitivity and age-related islet cell DNAmethylation, which
affects insulin secretion and causes T2DM [35, 37]. High
BMI has been widely known as one of major risk factors for
T2DM. It commonly coexist with T2DM. Our study shows
that BMI also plays an important role in incidence of T2DM,
which is related to insulin resistance derived from high BMI
inducing adipose metabolic derangements and mild chronic
inflammatory state [38]. Clinical studies have indicated that
increased TC and TG lead to deterioration of glucose tol-
erance and disorders of glucose metabolism and that a high

level of TC can predict T2DM, consistent with our study
[36]. In addition, our finding showed that family history of
T2DM was a predictive factor of new onset T2DM, which is
associated with clear genetic predisposition for T2DM
mentioned in previous studies [39].

We built a nomogram to assess the probability of T2DM
combining these risk factors. Healthcare workers can make a
preliminary judgment on the risk of T2DM in overweight/
obese individuals and follow-up with those high-risk pop-
ulations closely. +e high-risk individuals might represent a
subset of those who might benefit the most from more
frequent evaluations (with FPG and blood lipid detection
and weight monitoring). Furthermore, the use of moderate
exercise, healthy diet, lipid-lowering therapies, and excess
weight loss might be pursued more aggressively for high-risk

Table 1: Characteristics of the subjects in the primary and validation cohort.

Training set (N� 58056) Validation set (N� 24882) Total cohort (N� 82938) p value
T2DM (n, %)
No 2151 (96.3) 23964 (96.3) 79869 (96.3) 0.913
Yes 55905 (3.7) 918 (3.7) 3069 (3.7)

Follow-up (years) 2.98 (2.15–3.93) 2.99 (2.16–3.93) 2.98 (2.15–3.93) 0.141
Age (years) 44.97± 12.97 45.02± 13.01 44.99± 12.98 0.652
Gender (n, %)
Men 42082 (72.5) 17868 (71.8) 59950 (72.3) 0.047
Women 15974 (27.5) 7014 (28.2) 22988 (27.7)

BMI (kg/m2) 26.58± 2.24 26.57± 2.24 26.57± 2.24 0.584
Overweight: 24.0≤BMI< 28.0 45308 (78.0) 19464 (78.2) 64772 (78.1) 0.559
Obesity: BMI≥ 28.0 12748 (22.0) 5418 (21.8) 18166 (21.9)

FPG (mmol/L) 5.06± 0.63 5.06± 0.64 5.06± 0.63 0.885
Blood pressure (mmHg)
SBP 125.25± 16.28 125.32± 16.39 125.27± 16.31 0.587
DBP 78.09± 10.99 78.16± 11.10 78.11± 11.02 0.384

TC (mmol/L) 4.90± 0.90 4.89± 0.92 4.90± 0.91 0.943
TG (mmol/L) 1.77± 1.25 1.77± 1.28 1.77± 1.26 0.663
LDL-c (mmol/L) 2.85± 0.68 2.84± 0.69 2.85± 0.69 0.436
HDL-c (mmol/L) 1.28± 0.27 1.28± 0.27 1.28± 0.27 0.569
ALT (mmol/L) 31.92± 26.31 31.74± 25.00 31.87± 25.92 0.344
AST (mmol/L) 26.76± 12.97 26.69± 12.13 26.74± 12.72 0.479
BUN (mmol/L) 4.85± 1.18 4.85± 1.19 4.85± 1.19 0.760
Creatinine (mmol/L) 74.50± 15.61 74.27± 15.78 74.43± 15.66 0.056
Current cigarette smoking (n, %)
No 52403 (90.3) 22597 (90.8) 75000 (90.4) 0.013
Yes 5653 (9.7) 2285 (9.2) 7938 (9.6)

Current alcohol drinking (n, %)
No 54173 (93.3) 23179 (93.2) 77352 (93.3) 0.412
Yes 3883 (6.7) 1703 (6.8) 5586 (6.7)

Family history (n, %)
No 56858 (97.9) 24388 (98.0) 81246 (98.0) 0.466
Yes 1198 (2.1) 494 (2.0) 1692 (2.0)

Hypertension (n, %)
No 44852 (77.3) 19142 (76.9) 63994 (77.2) 0.306
Yes 13204 (22.7) 5740 (23.1) 18944 (22.8)

Dyslipidemia (n, %)
No 35689 (61.5) 15235 (61.2) 50924 (61.4) 0.508
Yes 22367 (38.5) 9647 (38.8) 32014 (38.6)

T2DM, type 2 diabetes mellitus; FPG, fasting plasma glucose; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total
cholesterol; TG, triglycerides; LDL-c, low-density lipoprotein cholesterol; HDL-c, high-density lipoprotein cholesterol; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; BUN, blood urea nitrogen; CCR: concentration of creatinine.
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Figure 2: Nomogram to predict 3- and 5-year T2DFS probability for overweight/obese population. T2DFS, type2 diabetes-free survival;
BMI, body mass index; FPG, fasting plasma glucose; TC, total cholesterol; TG, triglycerides.
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Figure 1: Variable selection using the LASSO binary regression model. Notes: optimal parameter (lambda) selection in the LASSO model
used tenfold cross-validation via minimum criteria. +e partial likelihood deviance (binomial deviance) curve was plotted versus log
(lambda). Dotted vertical lines were drawn at the optimal values by using the minimum criteria and the 1-SE of the minimum criteria (the 1-
SE criteria). LASSO coefficient profiles of the 19 features. A coefficient profile plot was produced against the log (lambda) sequence. Vertical
line was drawn at the value selected using tenfold cross-validation, where optimal lambda resulted in six features with nonzero coefficients.
LASSO, least absolute shrinkage and selection operator; SE, standard error.

Table 2: Risk factors associated with T2DM among overweight and obesity population by Cox proportional hazards regression model

Stratification
Univariate analysis Multivariate analysis

HR (95% CI) p value HR (95% CI) p value
Age (count) 1.06 (1.04–1.08) <0.001 1.04 (1.02–1.06) <0.001
BMI (count) 1.18 (1.08–1.28) <0.001 1.14 (1.04–1.24) 0.004
FPG (count) 4.60 (3.28–6.46) <0.001 3.31 (2.28–4.81) <0.001
TC (count) 1.62 (1.22–2.15) 0.001 1.52 (1.23–2.06) 0.006
TG (count) 1.18 (1.16–1.20) <0.001 1.07 (1.05–1.10) <0.001
Family history of T2DM (yes vs. no) 1.41 (1.08–1.82) <0.001 1.46 (1.12–1.88) <0.001
+e above variables were identified by LAOSSO regression; multiple cox regression adjusted the variables including age (count), BMI, FPG, TC, TG, and
family history of T2DM. T2DM, type 2 diabetes mellitus; FPG, fasting plasma glucose; HR, hazard ratio; CI, confidence interval.
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Figure 4: Continued.
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Figure 3: +e receiver operating characteristic curve of nomogram. (a) In training set; (b) in validation set.
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individuals, which may play a vital role in delaying the onset
of diabetes and related complications.

Current study includes several strengths. First, we
established a nomogram to predict T2DM for Chinese
population with overweight and obesity to make individu-
alized screening possible. Second, our study contains larger
sample, multiple study sites, and wider age range, which may
merit the data quality and generalizability. It makes the
report one of the valuable information for public health
sectors and clinical setting. Inevitably, this study has some

limitations. First, the study sample is selected from China,
which may hamper the representativeness of study results.
However, one-fourth of the total people with diabetes live in
China, which makes the nomogram significantly useful.
Second, our research database is derived from the health
check database, so it may bring some deviations to the
selection of the study population. For example, the current
smoking rate of the sample population in this study is
significantly lower than the national average. +ird, drug
treatment of hypertension and dyslipidemia were associated
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Figure 4: Calibration curves of the nomogram prediction in the study. +e observed T2DFS is shown compared with the nomogram at
3 years (a) and 5 years (c) using the training set and validation set (b and d), respectively. Notes: the x-axis represents the predicted T2DFS
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with an increased risk of new onset diabetes [40]. However,
this study failed to include treatment data on hypertension
and dyslipidemia. Fourth, although the robustness of our
nomogram was examined extensively with internal valida-
tion, external validation could not be conducted. +erefore,
the further study of the generalizability to overweight and
obese populations in other cohort studies is warranted.

5. Conclusions

We developed the nomogram as a potentially useful tool to
predict T2DM in Chinese with overweight and obese adults
based on a multicenter database, which includes six pre-
dictors: age, BMI, FPG, TC, TG, and family history. +e
nomogram shows good discriminative and calibrative
ability, which could help healthcare workers and individuals
assess the risk of T2DM in overweight and obese pop-
ulations, and its external evaluation in wider overweight and
obese populations is warranted.
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