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Over the past few decades, global metapopulation epidemic simulations built with worldwide

air-transportation data have been the main tool for studying how epidemics spread from the

origin to other parts of the world (e.g., for pandemic influenza, SARS, and Ebola). However, it

remains unclear how disease epidemiology and the air-transportation network structure

determine epidemic arrivals for different populations around the globe. Here, we fill this

knowledge gap by developing and validating an analytical framework that requires only basic

analytics from stochastic processes. We apply this framework retrospectively to the 2009

influenza pandemic and 2014 Ebola epidemic to show that key epidemic parameters could be

robustly estimated in real-time from public data on local and global spread at very low

computational cost. Our framework not only elucidates the dynamics underlying global

spread of epidemics but also advances our capability in nowcasting and forecasting

epidemics.
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S ince the 1980s, metapopulation epidemic models built with
worldwide air-transportation network (WAN) data have
been the main tool for studying global spread of epidemics,

such as pandemic influenza1–4, SARS5,6, MERS-CoV7, Ebola8,
and Zika9,10. The complexity of these models has substantially
grown over the past few decades, advancing from 55 populations
in the Rvachev–Longini model in 19851 to more than 3500
populations in the state-of-the-art simulator GLEAM powered by
supercomputer11,12. Despite the long history and widespread use
of these models13–17, most studies on global spread of epidemics
have relied on computationally intensive simulations that provide
limited epidemiologic insights, whereas an analytical under-
standing of the underlying epidemic dynamics has only been
partially elucidated in recent years18–20. Here, we build on these
recent advancements and develop a novel framework for analy-
tically characterizing how epidemic arrivals for different popu-
lations around the world depend on the epidemiologic
parameters and structure of the WAN. We first validate this
framework using global epidemic simulations. We then illustrate
its potential to enhance our ability to nowcast and forecast epi-
demics by applying it retrospectively to the 2009 influenza
A/H1N1 pandemic and the 2014 West African Ebola epidemic in
Liberia.

Results
Major assumptions in the framework. Throughout this paper,
we consider only global spread of epidemics with relatively fast
timescales in which epidemics in each population peak within
300 days after establishment (e.g., pandemic influenza, MERS,
Ebola) such that changes in demographics (e.g., births, aging) is
negligible. In metapopulation epidemic models, populations (e.g.,
cities) around the world are connected through the travel of
individuals via the WAN (see WAN metapopulation epidemic
model in Methods for details). We designate population i as the
epidemic origin which is seeded with si infections at time 0. For
any given population j, we denote its population size by Nj and
initial epidemic growth rate by λj. If populations j and k are
directly connected in the WAN, the mobility rate from popula-
tion j to k is defined as wjk = Fjk/Nj, where Fjk is the direct air-
traffic (passengers per day) and wjk ranges mostly between 10–6

and 10–3 per day in the WAN (Supplementary Fig. 1). Let Tn
ij be

the time at which population j receives its nth imported infection.
The epidemic arrival time (EAT) for population j is defined as T1

ij .
Our framework is built upon the following assumption19,21.

Assumption 1: Suppose populations j and k are directly
connected in the WAN and only population j is infected.
Exportation of infections from population j to k is a non-
homogeneous Poisson process (NPP)22 with intensity function
wjkIj(t) where Ij(t) is the disease prevalence (number of infectives)
in population j at time t (see Details on assumption 1 in Methods
for details).

Supplementary Figure 2 shows that assumption 1 is very
accurate for a wide range of plausible epidemic scenarios. We will
show that the dynamics of global spread is largely analytically
tractable because the following assumption is also accurate across
these same scenarios.

Assumption 2: After the epidemic has established in a given
population j, the first few exportations occur while disease
prevalence is still growing exponentially, i.e., Ij tð Þ ¼ sj exp λjt

� �
.

To this end, we progressively build up our framework by
characterizing the probability distribution of EATs for all
populations in three metapopulation networks with increasingly
complex structure: (i) The two-population network which has the
simplest metapopulation structure; (ii) the shortest-path-tree of
the WAN (WAN-SPT hereafter) which is the dominant

subnetwork driving global spread of epidemics as described by
the seminal study by Brockmann and Helbing20; and (iii) the
WAN.

The two-population network. In the two-population network,
the origin population i is only connected to population j. Under
assumption 2, the probability density function (pdf) of Tn

ij can be
expressed in closed-form:

fnðtjλi; αijÞ ¼ exp λitð Þ � 1
λi

� �n�1 αnij
n� 1ð Þ!

exp λit �
αij
λi

exp λitð Þ � 1ð Þ
� �

;

ð1Þ

where αij = wijsi, which we term adjusted mobility rate. Figure 1
shows that if n is smaller than 10, Eq. 1 is accurate across a wide
range of realistic scenarios (e.g., the percent error in expected
EAT is uniformly below 2%), which correspond to epidemics
ranging from pandemic influenza (with doubling time around 4
−5 days) to Ebola (with doubling time longer than 20 days). This
result leads to the following corollaries for the WAN-SPT and
WAN analysis: (i) Exportation of the first n infections is essen-
tially an NPP with intensity function αij exp λitð Þ; and (ii) the
expected time of the nth exportation is given by

E Tn
ij

h i
¼ 1

λi
exp αij

λi

� 	 Pn
m¼1

Em
αij
λi

� 	
, where Em(x) is the exponential

integral. Hence,

E Tn
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1
ij
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¼ T1
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αij exp λiT1
ij
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1
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λi

0
@
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A;

ð2Þ

which corresponds to the (n−1)th exportation for an epidemic

that starts at time T1
ij with seed size si exp λiT1

ij

� 	
.

These analytics can be used to formulate closed-form like-
lihood functions for inferring parameters from disease surveil-
lance and global spread data (see Methods).

WAN-SPT. For the WAN-SPT and WAN analysis, we use the
worldwide passenger booking data from the Official Airline
Guide (OAG) and the Gridded Population of the World data set
(Version 4) from the NASA Socioeconomic Data and Applica-
tions Center at Columbia University to build a stochastic meta-
population global epidemic simulator with 2309 populations and
54,106 connections (see The global epidemic simulator in
Methods). This simulator is similar to GLEAM but without the
effect of local commuting which has negligible impact on global
spread23. Brockmann and Helbing20 suggested that global spread
of epidemics is primarily driven by the WAN-SPT subnetwork in
which each population is connected to the epidemic origin via
only one path. We will show that for each population k in the
WAN-SPT, the time at which the nth importation occurs, namely
Tn
ik, can be well characterized by fn(t|λ,α) (Eq. 1), where λ and α

are specifically parameterized to account for the hub-effect and
continuous seeding (explained in the next two sections and
Fig. 2a, b). This provides a profound insight: the epidemic arrival
process for each population k in the WAN-SPT can be
approximated as an NPP with intensity function in the form of
α exp λtð Þ.

Hub-effect: Hubs are populations that have direct connections
to many populations in the WAN, e.g., Hong Kong, Beijing, New
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York. If the epidemic origin is a hub, the growth of local disease
prevalence can be substantially reduced if a significant proportion
of infections travel outward as the epidemic unfolds18. Let Di,c be
the set of populations that are c degrees of separation from the
epidemic origin in the WAN-SPT24. From the perspective of the
importation process for a given population j ∈Di,1 (i.e., directly
connected to the epidemic origin), the prevalence in population i
grows exponentially at rate λij = λi −∑k ≠ jwik (see Fig. 2a and The
WAN-SPT analysis in Methods for details). Figure 2d and
Supplementary Fig. 3 show that with this hub-effect adjustment,
fn(t|λij,αij) accurately characterizes the probability distribution of
Tn
ij for all populations in Di,1 (e.g., the percent error in expected

EAT is uniformly below 4%).
Continuous seeding: Unlike the epidemic origin which has a

single seeding event at time 0, all the other populations in the
WAN-SPT are continuously seeded by infections coming from
their upstream populations. Suppose population k ∈Di,2 is
connected to the epidemic origin via population j along the path
ψ: i→ j→ k. After the epidemic has arrived at population j at time
T1
ij , population i continues to export infections to population j

before the epidemic arrives at population k at time T1
ik (illustrated

in Fig. 2b). Under assumption 2, each imported infection in
population j (arriving at times T1

ij , T
2
ij , …) spawns an infection

tree that grows exponentially at the hub-adjusted rate λjk.
Therefore, the prevalence in population j, namely Ij(t), is simply
the sum of the prevalence for all these infection trees. As such,
assumption 1 warrants that the exportation of infections from
population j to k is an NPP with intensity function wjkIj(t), which
is itself a stochastic process because of its dependence on the
random variables T1

ij , T
2
ij , … (see The WAN-SPT analysis in

Methods). We conjecture that this highly complex stochastic
process can be greatly simplified with little loss of accuracy by
assuming that conditional on T1

ij (the EAT for population j),
Tm
ij � E Tm

ij jT1
ij

h i
for all m> 1 (see Eq. 2). In other words, the

major source of stochasticity in Ij(t) comes from T1
ij , which is

characterized by f1(t|λij,αij) (Eq. 1). Figure 2e and Supplementary
Fig. 4 show that our conjecture is valid. The resulting
approximate pdf of Tn

ik is accurate for Di,2 populations for all
realistic epidemic scenarios. Furthermore, this pdf can in turn be
well approximated with f1(t|λψ,αψ), where λψ and αψ are obtained
by minimizing the relative entropy25 (see The WAN-SPT analysis
in Methods). This implies that the spread of epidemics from the
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Fig. 1 Validating the framework in the two-population model. a–c The analytical (red dashed lines) and simulated (gray lines) pdf of T1
ij, T

5
ij , and T10

ij for an
exemplary influenza pandemic, where the mean generation time Tg is 3.5 days and the initial epidemic doubling time td is 5 days. The epidemic origin has a
population size of 7 million and is seeded with 10 infections at time 0. The mobility rate wij is 5 × 10–6, 5 × 10–5, and 5 × 10–4 per day, which span the
realistic range for populations with 1–10 million people in the WAN (Supplementary Fig. 1). d–f Quantile–quantile (Q–Q) plots for the analytical and
simulated quantiles of T1

ij, T
5
ij , and T10

ij across 100 epidemic scenarios randomly generated from the following parameter space using Latin-hypercube
sampling: doubling time td and generation time Tg both between 3 and 30 days, seed size si between 1 and 100. Each epidemic scenario is coupled with a
set of network parameters randomly generated with mobility rate wij between 10–6 and 10–3 and population size Ni between 0.1 and 10 million. Simulated
quantiles in each scenario are compiled using 10,000 stochastic realizations. In the Q—Q plots, deviations from the diagonal indicate discrepancies
between the analytical and simulated quantiles. Data points are colored in blue if the number of exportations is n or above with probability 1, and yellow
otherwise. Insets show the corresponding histograms of percent error in E½Tn

ij �
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origin to any population k ∈Di,2 can be regarded as a two-
population model, in which the adjusted mobility rate is αψ and
the epidemic in the origin grows exponentially at rate λψ. We
term this procedure path reduction. By induction, we can
recursively apply path reduction to characterize the EATs with
comparable accuracy for all populations in Di,3, Di,4, etc. Figure 2f
and Supplementary Fig. 5 verify this claim (e.g., the percent error
in expected EAT is uniformly below 4%).

WAN. The accuracy of our framework for the WAN-SPT implies
that for each (acyclic) path ψ connecting an arbitrary population
k to the epidemic origin, the epidemic arrival process for popu-
lation k along this path can be approximated as an NPP with
intensity function αψ exp λψ t

� �
. In the entire WAN, each popu-

lation may be connected to the epidemic origin via multiple paths
(hence the difference in EATs between WAN-SPT and WAN, as
shown in Supplementary Fig. 6), some of which may intersect and
are therefore dependent. We conjecture that the dependence
among such paths is sufficiently weak such that the overall epi-
demic arrival process for any population k is well approximated
by the superposition of the NPPs22 that correspond to these
pseudo-independent paths. That is, if Ψik is the set of all acyclic
paths connecting population k to the epidemic origin, the

epidemic arrival process for population k can be well approxi-
mated by an NPP with intensity function

P
ψ2Ψ ik

αψ exp λψ t
� �

.
Figure 3 and Supplementary Fig. 7 show that our framework is
accurate for all populations and epidemic scenarios.

Public health applications. Our framework provides both ana-
lytical and computational advancements for studying global
spread of epidemics. First, not only can our framework be easily
used to forecast EATs for all populations in the WAN, but it also
analytically elucidates the dependence of EATs on the epide-
miologic parameters (growth rate and seed size) and the network
properties of the WAN (air-traffic volume and connectivity).
Second, our framework provides closed-form probability dis-
tributions (Eq. 1) to support likelihood-based inference of key
epidemiologic parameters from surveillance data on global and
local spread. We exemplify the public health applications of our
framework by retrospectively applying it to the 2009 influenza
pandemic and the 2014 Ebola epidemic as follows.

In our first case study, we infer the transmissibility of the 2009
pandemic influenza A/H1N1 virus in Greater Mexico City
following the formulation in Balcan et al.26 Shortly after the
pandemic influenza A/H1N1 virus was first detected in the USA
and Mexico in April 2009, many countries enhanced their
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Fig. 2 Validating the framework in the WAN-SPT. a, b Schema of the hub-effect and continuous seeding. In this example, the epidemic arrives at population
k after population j has imported three infections from the epidemic origin, i.e., T3

ij<T
1
ik<T

4
ij . In the absence of continuous-seeding adjustment, infection trees

spawned by the second and subsequent importations in population j are ignored18. c Basic network properties of the WAN-SPT with Hong Kong as the
epidemic origin (WAN-SPT-HK). d–f Q–Q plots for the analytical and simulated quantiles of EATs for all 2308 populations in the WAN-SPT-HK across all
100 epidemic scenarios considered in Fig. 1 (i.e., 230,800 Q—Q plots in total). Insets show the corresponding histograms of percent error in expected EAT.
d EATs for all 246 populations in Di,1 before (red) and after (blue) adjusting for the hub-effect. e EATs for all 1828 populations in Di,2 before (red) and after
(blue) adjusting for continuous-seeding and path reduction; hub-effect has been adjusted for the epidemic origin and all populations in Di,1. f EATs for the
remaining 234 populations in Di,3 and Di,4 after adjusting for the hub-effect, continuous seeding and path reduction. Supplementary Figures 3–5 provide
analogous results for the WAN-SPT with other major hubs as the epidemic origin
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surveillance to monitor importations of pandemic infections. As
such, data on EATs for these countries were deemed more reliable
than epidemic curve data, which are typically confounded by
reporting behavior and surveillance capacity26–28. Using GLEAM
simulations powered by supercomputers to perform maximum-
likelihood analyses of EATs for 12 countries seeded by Mexico,
Balcan et al.26 estimated that if the 2009 influenza pandemic
started in La Gloria on 11, 18, or 25 February 2009, the basic
reproductive number R0 would be 1.65 (1.54–1.77), 1.75
(1.64–1.88), or 1.89 (1.77–2.01), respectively (Fig. 4a). Integrating
our framework into their inference formulation, we can express
the likelihood as a simple analytical function of R0 (see case study
on the 2009 influenza A/H1N1 pandemic in Methods) and obtain
essentially the same R0 estimates without the need for super-
computing (Fig. 4a). Specifically, our point estimate of R0 would
be the same as that in Balcan et al. if the epidemic in Greater
Mexico City began with a single seed on 22 February, 1 March, or
9 March 2009, respectively, which are all consistent with range of
the epidemic start times documented in surveillance reports29

and other studies27,28,30,31. The reduction in computational
complexity and requirement provided by our framework
translates into substantial improvement for timeliness and
efficiency in situational awareness.

In our second case study, we analyze the 2014 West African
Ebola epidemic in Montserrado and Margibi, Liberia (Montser-
rado henceforth for brevity). Specifically, we apply our framework
to retrospectively nowcast the reporting proportion of Ebola cases
(and hence the total number of cases) in Montserrado, and
forecast the time to the next international case exportation from
Montserrado assuming that the local epidemic would continue to
grow exponentially at the nowcasted growth rate and the forward
air-traffic would remain constant.

The Montserrado Ebola epidemic started in May 201432,33. By
September 2014, two indigenous Ebola cases had been exported
from Montserrado to other nations via commercial air travel: The
first to Lagos, Nigeria, on 20 July 201434; and the second to
Dallas, USA, on 19 September 201435. By combining these global
spread data with the World Health Organization patient
database33 on the weekly number of confirmed and probable
cases in Montserrado and accounting for the effect of the opening
of new Ebola treatment units in August36,37, we can use our
framework to express the likelihood function in simple analytical
form (see case study on the 2014 Liberian Ebola outbreak in
Methods). We estimate that the reporting proportion (and hence

the total number of cases) would have been statistically
identifiable starting from 6 July 2014 onwards. We estimate that
by 6 July 2014, the confirmed and probable cases only accounted
for 18% (95% credible interval 7−33%) of all Ebola cases in
Montserrado. The opening of new treatment units during August
increased the reporting proportion to 30% (15−48%) by 17
August 2014, which is congruent with an independent estimate38

based on capture–recapture sampling of raw patient records over
a similar time horizon (34%; 95% confidence interval 26−50%).
Retrospective real-time forecasts of the time to next exportation
are consistent with the observed exportation times (namely 20
July and 19 September) except on 21−28 July during which the
next exportation occurred later than predicted. The prediction
errors on 21−28 July could be attributed to travel restrictions
started in August8, the effect of which could not be included in
the forecasts until they have actually occurred during August. If
travel restrictions could have been foreseen on 21−28 July and
incorporated into the forecasts (as a counterfactual scenario for
illustration), the observed case exportation on 19 September 2014
would be consistent with the forecast range (Fig. 4b). These
conclusions are robust against temporal variations in epidemic
growth rate (see case study on the 2014 Liberian Ebola outbreak
in Methods).

Discussion
In summary, our framework for characterizing the dynamics
underlying global spread of epidemics comprises five approx-
imations: (i) a closed-form pdf for EAT for any two directly
connected populations (Eq. 1); (ii) adjustment for hub-effects;
(iii) adjustment for continuous seeding; (iv) path reduction; and
(v) path superposition. Approximation (i) is the indispensable
centerpiece of our framework, whereas the necessity of approx-
imations (ii)–(v) would depend on the specific application. Hub-
effect adjustment is necessary when estimating the times of case
exportation for populations that are directly connected to mul-
tiple populations and have relatively high outbound mobility
rates. Continuous-seeding adjustment is necessary when esti-
mating the times of case exportation for all populations except the
epidemic origin (for which seeding is assumed to occur only at
time 0). Path reduction and superposition are developed for
simplifying computation as well as generating insights regarding
global spread dynamics. In terms of computation, path reduction
is required for populations that are three or more degrees of
separation from the epidemic origin in a given acyclic path
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(which typically account for <20% of all populations), whereas
path superposition is used for all populations (however, path
superposition may not be necessary for populations that are
directly connected to the epidemic origin with high mobility rates
because the indirect paths have only minor impact on their EATs;
see Supplementary Fig. 6). In terms of insights, the accuracy of
path reduction implies that the epidemic arrival process from the
epidemic origin to any given population along any given acyclic
path ψ can be accurately approximated as an NPP with intensity
function αψ exp λψ t

� �
, whereas the accuracy of path superposition

implies that the dependence of multiple paths connecting a given
population to the epidemic origin is relatively weak for the pur-
pose of estimating EAT.

Although approximation (ii)–(v) are all necessary for esti-
mating EAT in the WAN (Figs. 1–3), they are not needed in our
case studies on inference of transmission parameters: In the 2009
pandemic influenza A/H1N1 case study, we follow the inference
formulation in Balcan et al.26 which included only populations
that are directly connected to Mexico City in the WAN. In the
2014 Ebola case study, the inference formulation tracks the
timing of only two case exportations without the need to stratify
them by outbound populations (see Case study on the 2014
Liberian Ebola outbreak in Methods).

Our study has several limitations. First, we did not consider age
structure because the OAG air-traffic data do not have age
information. If data are available for stratifying mobility rates and
incidence by age, our framework should remain valid if the
mobility rates wij are calculated as the cross-product of age-
specific mobility rates and age distribution of the disease. Second,
we have assumed that each imported case spawns an exponen-
tially growing infection tree with probability 1, whereas if we
account for stochasticity in transmission dynamics, each impor-
ted case will fail to spawn an exponentially growing infection tree
with probability p = 1/R016. Because this effect is similar to that of
border control19, we conjecture that our framework can be
extended to account for such stochasticity in transmission
dynamics by discounting wij with 1 − p. Third, we present our
framework in the context of the classic SIR model. Nonetheless,
our results can be generalized to all SEmInR models39 (see Gen-
eralizing to SEmInR models in Methods). Fourth, we have not
accounted for seasonality effects which may be strong and geo-
graphically heterogeneous for diseases such as seasonal influ-
enza40,41. Although the epidemic dynamics will certainly be less
analytically tractable in the presence of seasonality (e.g., the pdf of
the EAT can no longer be well approximated by simple closed-
form expressions as Eq. 1), we conjecture that the new analytics
introduced here, namely adjustments for the hub-effect and
continuous seeding as well as path reduction and superposition,
will be useful for building a more general framework for global
spread of epidemics. Finally, in our case studies, we have impli-
citly assumed that surveillance data were available in near real-
time for nowcasting and forecasting, whereas in reality the
availability of reliable data would likely incur longer lead times,
and hence the timeliness of situational awareness implied here
should be interpreted within such context.

In summary, we have developed a novel framework that can
accurately characterize how global spread of epidemics depends
on the infectious disease epidemiology and network properties of
the WAN. Together with state-of-the-art global epidemic simu-
lators such as GLEAM, our framework advances the frontiers of
the next-generation informatics for pandemic preparedness and
responses.

Methods
WAN metapopulation epidemic model. Let Sj(t), Ij(t), and Rj(t) be the number of
susceptible, infected and removed individuals in population j at time t. Suppose R0,j
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Influenza A/H1N1 pandemic in Greater Mexico City, 2009a

Fig. 4 Inferring key epidemiologic parameters from surveillance data on
global and local spread. Red lines and shades indicate posterior medians
and 95% credible intervals of parameter estimates, respectively. a Case
study of the 2009 influenza A/H1N1 pandemic in Greater Mexico City. The
basic reproductive number R0 is inferred from the observed EATs for the 12
countries seeded by Mexico as formulated in Balcan et al.26 Blue circles and
error bars indicate the R0 estimates and their 95% confidence intervals in
Balcan et al. assuming that the pandemic started in La Gloria on 11, 18, or 25
February 2009. b Case study of the 2014 Ebola epidemic in Montserrado
and Margibi, Liberia. The top panel shows the weekly number of confirmed
and probable Ebola cases (bars) and the fitted epidemic curve based on
parameters estimated from surveillance data up to 21 September 2014. The
middle panel shows retrospective real-time estimates (i.e., nowcasting) of
reporting proportion, where the x-axis indicates the date of inference. The
bottom panel shows retrospective real-time forecasts of the time to the
next international case exportation, with and without adjusting for air travel
restrictions started in August 2014. Circles and bars indicate the medians
and 99% range of forecasts, respectively. Blue horizontal lines indicate the
international case exportations occurred on 20 July and 19 September,
2014. Methods and Supplementary Fig. 10 provide more details and
sensitivity analysis
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is the basic reproductive number and Tg,j is the mean generation time in population
j. Let βj = R0,j/Tg,j be the disease transmission rate in population j, and wjk be the
mobility rate from population j to k. The stochastic metapopulation model with G
populations is specified by the following equations where Δt is a very small time
interval:

Sjðt þ ΔtÞ ¼ SjðtÞ � UjðtÞ|ffl{zffl}
No: of infections in

population j between

time t and t þ Δt

þP
k

XkjðtÞ|fflffl{zfflffl}
No: of susceptibles who

travel from population k

to population j between

time t and t þ Δt
�P

k
XjkðtÞ|fflffl{zfflffl}

No. of susceptibles who

travel from population j

to population k between

time t and t þ Δt
Ijðt þ ΔtÞ ¼ IjðtÞ þ UjðtÞ|ffl{zffl}

No. of infections in

population j between

time t and tþΔt

� VjðtÞ|ffl{zffl}
No. of infected cases who

recover or die in population j

between time t and tþΔt

þP
k

YkjðtÞ|fflffl{zfflffl}
No. of infected cases who

travel from population k

to population j between

time t and t þ Δt

�P
k

YjkðtÞ|fflffl{zfflffl}
No. of infected cases who

travel from population j

to population k between

time t and t þ Δt
Rjðt þ ΔtÞ ¼ RjðtÞ þ VjðtÞ|ffl{zffl}

No. of infected cases who

recover or die in population j

between time t and tþΔt

þP
k

ZkjðtÞ|fflffl{zfflffl}
No. of recovered cases who

travel from population k

to population j between

time t and t þ Δt

�P
k

ZjkðtÞ|fflffl{zfflffl}
No. of recovered cases who

travel from population j

to population k between

time t and t þ Δt

UjðtÞ ¼ βjSjðtÞIjðtÞΔt=Nj

VjðtÞ ¼ IjðtÞΔt=Tg;j

XjðtÞ � Multinomial SjðtÞ
� 

;wj1Δt; ¼ ;wjGΔt
� �

YjðtÞ � Multinomial IjðtÞ
� 

;wj1Δt; ¼ ;wjGΔt
� �

ZjðtÞ � Multinomial RjðtÞ
� 

;wj1Δt; ¼ ;wjGΔt
� �

;

where Xjk(t),Yjk(t), and Zjk(t) are the kth component of Xj(t), Yj(t), and Zj(t),
respectively. Multinomial(n, p1,...,pG) denotes a multinomial random variable with
n trials and probabilities p1,...,pG. We use Δt = 0.05 days in all of our simulations.

The global epidemic simulator. We build the global simulator using 2015
worldwide flight booking data from the Official Airline Guide (OAG, https://www.
oag.com/) and the Gridded Population of the World Version 4 (GPWv4, http://
sedac.ciesin.columbia.edu/data/collection/gpw-v4/) data set from the NASA
Socioeconomic Data and Applications Center (SEDAC) at Columbia University.

Worldwide air-transportation data: Our OAG worldwide flight booking data set
contains all air bookings that have taken place in all commercial airports worldwide
during 2015. Each data record contains the following information for a flight route:
(i) origin airport, (ii) destination airport, (iii) connecting airports (if any), and (iv)
passenger bookings for each month. The city and country served by each airport
and the coordinates of each airport are known. The raw data comprises 0.947
million records. Parameterizing the WAN using these raw data would therefore
generate 0.947 million connections in the network, which is beyond our
computational capacity and unnecessary for an accurate description of global
spread (because the WAN is densely connected)3–6,12,42–44. As such, we perform
the following steps to exclude flight routes with weak traffic from the WAN
without compromising the realism of the global epidemic simulator:

1. We exclude all routes with no bookings for one or more months during 2015.
2. We exclude all routes in which the origin or destination is a remote area with

very small population size (e.g., hamlets, settlements, or communities in
Alaska and Northern Canada).

3. We exclude all routes with strong seasonality as measured by
normalized information entropy11: Hij ¼ � 1

logð12Þ
P12

m¼1 ρijm log ρijm , where
ρijm ¼ Fijm=

P12
m¼1 Fijm and Fijm denotes the number of air bookings from

origin airport i to destination airport j in month m. The measure Hij ranges
between 0 and 1, and decreases as temporal variation in air-traffic increases
(e.g., if air-traffic is the same across all months, then Hij = 1). On the basis of
the distribution of Hij in our OAG raw data, we exclude all routes with Hij<
0.8 (Supplementary Fig. 8a).

Global population data: The GPWv4 data set integrates the highest resolution
census data from the 2010 round of Population and Housing Censuses collected
from hundreds of national statistics departments and organizations45,46. GPWv4
provides eight different data sets, most of which are specialized geospatial metadata
that partition the global population into a grid of cells with resolution of 30 arc-
second (~1 km at the equator). We use the vector data set “Administrative Unit
Center Points with Population Estimates, v4 (2000, 2005, 2010, 2015, 2020)”47,
because it provides all the information that we need to build the global epidemic
model, e.g., the coordinates of centroid are available for each of the ~12.5 million
administrative census units (ACUs).

The WAN model: We combine our OAG data with the GPWv4 data to
calculate the population size of the catchment area of each airport as follows:

1. We use the coordinates of the centroids of all ACUs and airports to calculate
the great circle distance for all possible combinations of ACUs and airports
within the same country. We use a Voronoi-like tessellation algorithm
proposed by Balcan et al.23 to link each ACU to its serving airport (i.e., the
closest airport in its country). In this algorithm, we impose the constraint that
the great circle distance between any pair of ACU and airport cannot exceed
200 km, according to the distribution of great circle distance for all
combinations of ACUs and airports (Supplementary Fig. 8b). This reflects a
reasonable upper bound on the distance of land transportation for reaching an
airport23. Without this constraint, the algorithm may generate unreasonably
large catchment areas for airports located in sparsely populated regions.
Among the 7,995,985 ACUs with human habitats, only 45,692 are excluded
from our model because of this constraint. The total population size served by
an airport is the sum of populations for all ACUs assigned to that airport.

2. To strike a balance between computational requirement (within our capacity)
and realism of our global epidemic simulator, we exclude all routes having less
than 3000 air passengers throughout the year (Fig. S8c‒f). This simplification
is in line with the passenger threshold reported by Khan et al.48 and hence has
little impact on the accuracy of global spread dynamics.

3. In our OAG data set, some metropolitans (e.g., London, New York City, and
Shanghai) and tourist locations (e.g., Hawaii and Canary Islands) have
multiple airports. We model each of these locations as a single population by
merging its serving airports and the corresponding catchment areas.

4. The daily air-traffic of each connection Fij is the average number of
air passengers per day for that connection during the year of 2015. The
ensemble of all connections shows a high degree of statistical symmetry,
Fij ≈ Fji (R2 = 0.9981), as in refs. 3–7,11,18,20,42–44. As such, we symmetrize the
air-traffic between each pair of populations by setting Fij = Fji = (Fij + Fji)/2.

In summary, the WAN in our global metapopulation epidemic model
comprises 54,106 connections and 2309 populations and preserves more than 92%
of the global air bookings.

Details on assumption 1. Assumption 1 is stated as follows: suppose populations j
and k are directly connected in the WAN and only population j is infected.
Exportation of infections from population j to k is an NPP22 with intensity function
wjkIj(t) where Ij(t) is the disease prevalence in population j at time t.

Previous studies19,21 on global spread have made similar assumptions.
A counting process {A(t),t ≥ 0}, where A(t) is the number of events by time t, is

an NPP22 with intensity function μ(t) for some small time interval Δt if:

1. A(0) = 0.
2. Non-overlapping increments are independent, i.e., A(T2) − A(T1) and A(T4) −

A(T3) are independent if the time intervals [T1,T2] and [T3,T4] do not overlap.
3. P(A(t +Δt) −A(t) = 1) = μ(t)Δt + o(Δt) and P(A(t +Δt) −A(t)>1) = o(Δt) for

all t and o(Δt)/Δt→ 0 as Δt→ 0.

For populations j and k mentioned above, the exportation process of infections
from population j to population k clearly satisfies conditions 1 with intensity
function wjkIj(t). If the mobility rate wjk is sufficiently small, the number of
exportations is only a very small proportion of the disease prevalence in population
j, and hence conditions 2 and 3 are also satisfied.

The two-population model analysis. Population i is the epidemic origin and only
connected to population j. Let si and λi be the seed size and the initial epidemic
growth rate. Let Xij be the total number of infections imported by population j over
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the course of the epidemic. We denote the Poisson pdf at value x with mean M by
fPoisson(x,M). Under assumption 1:

1. Xij is Poisson distributed with mean AiTgFij, where Tg is the mean generation
time, Ai is the final attack rate in population i and Fij is the daily average
number of passengers traveling from population i to j. That is, P(Xij = n) =
fPoisson(n,AiTgFij).

2. Applying the framework of NPP22, we express the pdf of Tn
ij conditional on

Xij ≥ n as

fPoisson n� 1;wij
R t
0Ii uð Þdu

� 	
P Xij � n
� � wijIi tð Þ: ðS1Þ

Supplementary Figure 2 shows that the pdf in Eq. S1 is very accurate for all realistic
epidemic scenarios. If assumption 2 is also valid, i.e., IiðtÞ ¼ si exp λitð Þ, then P
(Xij ≥ n) = 1 and Eq. S1 can be simplified to

fnðtjλi; αijÞ ¼ exp λitð Þ � 1
λi

� �n�1 αnij
n� 1ð Þ! exp λit �

αij
λi

exp λitð Þ � 1ð Þ
� �

;

which is Eq. 1 in the main text with αij = siwij. The corresponding cumulative
distribution function (cdf) is given by

Fn tjλi; αij
� � ¼ Γ n;

αij
λi

exp λitð Þ � 1ð Þ
� �

;

where Γ is the lower incomplete gamma function. The expected EAT is given by

E T1
ij

h i
¼ 1

λi
exp

αij
λi

� �
E1

αij
λi

� �
;

where Em xð Þ ¼ xm�1
R1
x

exp �uð Þ
um du is the exponential integral.

If αij≪ λi and γ denotes the Euler constant, we obtain the following
approximation

E T1
ij

h i
� 1

λi
ln

λi
αij

� �
� γ

� �
;

which is congruent with the EAT statistic in Gautreau et al.18 for estimating the
order of epidemic arrival across different populations.

The expected time of the nth exportation is given by

E½Tn
ij � ¼

1
λi
exp

αij
λi

� �Xn
m¼1

Em
αij
λi

� �
:

For any positive integers m and n such that m< n, the pdf of Tn
ij � Tm

ij conditional

on Tm
ij is simply fn�m tjλi; αij exp λiTm

ij

� 	� 	
which corresponds to the time of the (n

−m)th exportation for an epidemic with seed size si exp λiTm
ij

� 	
. Using this relation

recursively, we deduce that the joint pdf of T1
ij ¼ t1; ¼ ;Tn

ij ¼ tn is simplyYn

m¼1
f1 tmjλi; αij exp λitm�1ð Þ� �

for all 0 ¼ t0<t1<t2<¼<tn�1<tn; ðS2Þ

which is the basis that supports our likelihood-based inference framework. By the
same token,

E½Tn
ij jT1

ij � ¼ T1
ij þ

1
λi
exp

αij exp λiT1
ij

� 	
λi

0
@

1
AXn�1

m¼1

Em
αij exp λiT1

ij

� 	
λi

0
@

1
A

which is Eq. 2 in the main text.

The WAN-SPT analysis. Hub-effect: Suppose the epidemic origin (population i) is
directly connected to one or more populations, one of which is population j (as
illustrated in Fig. 2a). In the deterministic version of our metapopulation epidemic
model (see WAN metapopulation epidemic model in Methods), the disease pre-
valence in population i during the exponential growth phase is well approximated
by the differential equation

dIi
dt

¼ λiIi �
X
k

wikIi ¼ λi �
X
k≠j

wik

0
@

1
AIi � wijIi;

where the actual growth rate of the disease prevalence in population i is
λi �

P
k wik . This differential equation leads us to make the following conjecture:

In our original stochastic model, in which the epidemic arrival process for popu-
lation j is essentially an NPP with intensity function being the second term of the
above equation (i.e., wijIi), we can estimate the EAT for population j using the
results from the two-population model (The two-population model analysis in
Methods) in which population i is exporting cases to population j at mobility rate

wij (viewed as a stochastic process) and the disease prevalence in population i is
growing exponentially at rate λij = λi −∑k ≠ jwik (viewed as a deterministic process).
The hub-adjusted growth rate λij can be interpreted as the rate at which disease
prevalence in population i is growing exponentially before population j imports its
first case from population i. Note that the hub-adjusted rate λij = λi −∑k ≠ jwik is not
the same as the actual growth rate, namely λi �

P
k wik. To see this, consider the

two-population model in which population i is only connected to population j. In
this case, the EAT distribution is given by Eq. 1, which requires λij to be the hub-
adjusted rate λi −∑k ≠ jwik = λi but not the actual growth rate
λi �

P
k wik ¼ λi � wij .

Continuous seeding: Consider the path connecting the epidemic origin to
population k via population j, i.e., ψ : i→ j→ k. Let λij and λjk be the hub-adjusted
growth rate in populations i and j for this path. Under assumption 2, the
prevalence in population j at time t that are spawned by the mth infection imported

from population i is I t>Tm
ij

n o
exp λjk t � Tm

ij

� 	� 	
where I{ ⋅ } is the indicator

function. Therefore, the total prevalence in population j at time t is

Ij tð Þ ¼
P1

m¼1 I t>Tm
ij

n o
exp λjk t � Tm

ij

� 	� 	
. The NPP intensity function for the

exportation of infections from population j to population k is wjkIj(t).

Conditional on Ij and hence T1
ij , T

2
ij ,…, the pdf of Tn

ik is gn tjwjkIj
� � ¼

fPoisson n� 1;wjk
R t
0Ij uð Þdu

� 	
wjkIj tð Þ for n = 1, 2,…. The unconditional pdf of Tn

ik is

thus ET1
ij ;T

2
ij ;¼

gn tjwjkIj
� �� �

where the joint pdf of T1
ij ¼ t1,T2

ij ¼ t2,…, is simply the

product of f1 tmjλij;wijsi exp λijtm�1
� �� �

for m = 1, 2, … (see Eq. S2). As described in
the main text, we make the certainty equivalent assumption (CEA) that conditional

on T1
ij , T

m
ij ¼ E Tm

ij jT1
ij

h i
for all m > 1. As such, conditional on T1

ij , we approximate

Ij with

ICEAj tð Þ ¼ P1
m¼1 I t>E Tm

ij jT1
ij

h in o
exp λjk t � E Tm

ij jT1
ij

h i� 	� 	

¼ P1
m¼1 I t>T1

ij þ ΔTm
ij

n o
exp λjk t � T1

ij � ΔTm
ij

� 	� 	

¼ exp λjk t � T1
ij

� 	� 	P1
m¼1 I t>T1

ij þ ΔTm
ij

n o
exp �λjkΔTm

ij

� 	

where ΔTm
ij ¼ E Tm

ij T1
ij




h i
� T1

ij ¼ 1
λij
exp

wij si exp λijT1
ijð Þ

λij

� � Pm�1

q¼1
Eq

wij si exp λijT1
ijð Þ

λij

� �
(see

Eq. 2 and the previous section).
The resulting unconditional pdf of Tn

ik is ET1
ij
gn tjwjkICEAj

� 	h i
where the pdf of

T1
ij is f1(⋅|λij,siwij).
Path reduction: Consider the path ψ: i→ j→ k in the previous section. We can

approximate the pdf ET1
ij
gn tjwjkICEAj

� 	h i
for Tn

ik with fn(t|λψ,αψ), where λψ and αψ

are obtained by minimizing the relative entropy25 for n = 1 (the first exportation)

Z1
0

ET1
ij
g1 tjwjkI

CEA
j

� 	h i
ln

ET1
ij
g1 tjwjkICEAj

� 	h i
f1 t λψ ; αψ



� �
0
@

1
Adt:

This is a simple two-dimensional optimization problem. The accuracy of such path
reduction (Fig. 2f and Supplementary Fig. 5) implies that the spread of epidemics
from the origin to any population k ∈Di,2 can be regarded as a two-population
model, in which (i) the adjusted mobility rate is αψ and (ii) the epidemic in the
origin grows exponentially at rate λψ. Next, consider the path ϕ: i→ j→ k→m, i.e.
m ∈Di,3. Using path reduction, we can approximate ϕ with ϕ': i→ k→m where the
adjusted mobility rate and epidemic growth rate in the origin for the i→ k leg are
αψ and λψ, respectively. The arrival times of imported cases in population m ∈
Di,3(i.e., Tn

im , n = 1, 2,…) can then be estimated using the tools (i.e., adjustments for
hub-effect and continuous seeding) that we have developed for Di,2 populations.
The arrival times of imported cases for population Di,c, c = 4, 5, …, can be
estimated analogously.

The WAN analysis. Superposition of paths: Let population i be the epidemic
origin and consider population k ∈Di,c, i.e., population k is c degrees of separation
from the epidemic origin24. Superposition of NPPs for paths connecting popula-
tion i to k is implemented as follows. As in the main text, let Ψik be the set of all
acyclic paths connecting the epidemic origin to population k. Enumeration of all
paths in Ψik for every population in the WAN is computationally prohibitive49 (and
unnecessary). Instead, we approximate Ψik with the 25 “fastest” paths from
population i to k that are identified using the following algorithm:

1. Use the depth-first search algorithm49 to identify the set of acyclic paths from
the epidemic origin to population k that have at most c + 2 connections. We
denote this set by Ωik and assume that all the paths not in Ωik have negligible
contribution to the EAT for population k.

2. Define the distance between any two directly connected populations a and b
as � ln wabð Þ, which is analogous to the distance metric in Brockmann and
Helbing20, namely 1� ln wab=

P
b wab

� �
. We choose to use this distance

metric because (as described in The two-population model analysis in
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Methods) if population j is directly connected to population i, then E T1
ij

h i
�

1
λi

ln λi=αij
� �� γ

� �
given αij≪ λi, where γ denotes the Euler constant and

αij = siwij. This indicates that the expected EAT is proportional to � ln wij
� �

.
3. Based on our distance metric in step 2, identify the 100 shortest paths in Ωik

by sorting in an ascending order. Denote the resulting set by ΩS
ik .

4. For each path ψ 2 ΩS
ik , use hub-effect adjustment, continuous-seeding

adjustment and path reduction developed in the WAN-SPT analysis to
calculate λψ and αψ and the corresponding expected EAT, namely
1
λψ
exp αψ

λψ

� 	
E1

αψ
λψ

� 	
.

5. Approximate Ψik with the 25 paths in ΩS
ik that have the smallest expected

EATs computed in step 4 (i.e. the 25 “fastest” paths). We choose to use the 25
fastest paths in ΩS

ik to approximate Ψik because Supplementary Fig. 9 shows
that the accuracy of EAT estimates would slightly worsen if we use only the 10
fastest paths in ΩS

ik while there is little improvement in performance if we use
the 50 fastest or all paths in ΩS

ik .

Generalizing to SEmInR models. In the main text, our framework is built using the
SIR model within each population. In this section, we describe how to generalize
our framework to SEmInR models39 in which:

1. The duration of latency is gamma distributed with mean DE and m subclasses
(i.e., with shape m and rate bE =m/DE);

2. The duration of infectiousness is gamma distributed with mean DI and n
subclasses (i.e., with shape n and rate bI = n/DI).

For any given population, let S(t) be the number of susceptible individuals, Ei(t)
the number of individuals in the ith latent subclass, and Ij(t) the number of
individuals in the jth infectious subclass. The SEmInR system is described by the
following differential equations:

dSðtÞ
dt ¼ �β SðtÞ

N

Pn
j¼1

IjðtÞ

dE1ðtÞ
dt ¼ β SðtÞ

N

Pn
j¼1

IjðtÞ � bEE1ðtÞ
dEiðtÞ
dt ¼ bE Ei�1ðtÞ � EiðtÞð Þ for i ¼ 2; :::;m

dI1ðtÞ
dt ¼ bEEmðtÞ � bII1ðtÞ

dIjðtÞ
dt ¼ bI Ij�1ðtÞ � IjðtÞ

� �
for j ¼ 2; :::; n

:

During the early stage of the epidemic (such that S(t) ≈N), the prevalence of latent
and infectious individuals both grows exponentially at rate λ which is the solution
to the following equation39:

λ λþ m
DE

� �m

�β
m
DE

� �m

1� λDI

n
þ 1

� ��n� �
¼ 0:

That is, the prevalence of latent and infectious individuals are well approximated by
E exp λtð Þ and I exp λtð Þ, respectively, where E and I depend on the initial
conditions and parameters of the differential equation systems (the analytical
expressions of E and I can be obtained by solving the linearized system with
S(t) = N). As such, if a proportion 1 − pE and 1 − pl of the latent and infectious
individuals refrain from air travel because of their infections, then the seed size s0 in
the main text is simply pEE þ pI I.

Case study on the 2009 influenza A/H1N1 pandemic. As described in the main
text, by integrating our framework into the inference formulation in Balcan et al.26,
we express the likelihood function for the EATs for the 12 countries seeded by
Mexico (see Supplementary Table 1) as

LðR0Þ ¼
Y
j2A

f1ðtjjλij; αijÞ
Y
j2B

F1ðtjjλij; αijÞ

in which population i (the epidemic origin) is Greater Mexico City50 where the
epidemic began in mid-February to early-March 200927,30, tj is the observed EAT
for population j which can be exact (A) or left-censored (B), λij = λi −∑k ≠ jwik is the
hub-adjusted growth rate, αij is the adjusted mobility rate. Because the air travel
data were not reported in Balcan et al.26, we use the air travel data published in
Fraser et al.27 in which the basic reproductive number R0 was estimated from the
number of confirmed cases in different countries seeded by Mexico during
March–April 2009. Supplementary Table 1 shows the EAT data from Balcan et al.26

and the air-passenger data from Fraser et al.27 The population size of Greater
Mexico City in 2009 was 17.6 million27. We assume that the epidemic started with
a single infected individual (i.e., si = 1) in Greater Mexico City between 18 February
and 14 March 2009 based on the documentation in surveillance reports29 and other
studies27,28,30,31 (Fig. 4a). We adopt the natural history model described in Balcan
et al.26: (i) the mean generation time is Tg = 3.6 days with mean latent duration of
1.1 days; (ii) the latent and infectious duration are exponentially distributed
(regardless of symptoms). Under these assumptions, the basic reproductive number
is R0 = (1 + λi ×mean latent period)(1 + λi ×mean infectious period)51. Balcan et al.

assumed that 67% of infections are symptomatic and 50% of symptomatic infec-
tions refrained from traveling by air. As such, we discount the mobility rates by
multiplying wij with 0.5 × 0.67 = 0.335.

In this case study, R0 is the only parameter subject to inference. We assume
non-informative flat prior and use the Metropolis–Hasting algorithm52,53 to
estimate the posterior distributions of R0. We use five MCMC chains and initialize
each chain with an R0 value randomly chosen between 1 and 10. The trace plot and
Geweke diagnostic indicate that each MCMC chain converges within 5000
iterations and the autocorrelation of the samples in the MCMC chain is essentially
0 when the lag is larger than 10 steps. As such, we estimate the posterior
distribution of R0 by running the Metropolis–Hasting algorithm for 110,000
iterations with a burn-in of 10,000 iterations and a thinning interval of 10. The
Gelman–Rubin diagnostic indicates that all five chains converge to the same
posterior distribution.

Case study on the 2014 Liberian Ebola outbreak. In 2014, the first laboratory
confirmed Ebola case in Montserrado, Liberia, developed symptoms during the
week of 5 May 201432,33. During this Ebola epidemic, two Ebola cases were
exported from Montserrado to the following populations via international com-
mercial air travel34,35:

1. Lagos, Nigeria on 20 July 2014 (t1);
2. Dallas, USA on 19 September 2014 (t2).

Montserrado and Margibi were the major epicenter in Liberia during the 2014
West African Ebola epidemic32,33,54, and they are served by the two contiguous
Liberian commercial airports that have international flights (i.e., Roberts
International Airport and Spriggs Payne Airport). In this case study, we apply our
framework to estimate the reporting proportion and the total number of Ebola
cases in Montserrado and Margibi (Montserrado hererafter for brevity) between 5
May 2014 (the approximate start time of this epidemic) and 21 September 2014
(the last day of the week during which the last exportation occurred). Based on
ref. 54, we assume that the latent period and the incubation period were the same.
We assume that infectious cases did not travel by air (due to their symptoms), and
exportations comprised only air travel of latent individuals (who had not yet
developed symptoms). We note that there was some evidence55 that the case
exported to Lagos had already developed symptoms when he boarded the flight.
Therefore, we include this case in our main analysis but exclude him in the
sensitivity analysis. Results from both analyses are essentially the same
(Supplementary Fig. 10).

Let time 0 be 5 May 2014 and T be 21 September 2014. We denote May, June,
July, August and September 2014 by months 1 to 5, respectively. Denote the last
day of month k since time 0 by τk, and the two observed times of case exportations
since time 0 by t1 and t2, respectively. We assume that the incidence rate was (i) 0
before 5 May 2014, (ii) i0 on 5 May 2014, and (iii) i0 exp λtð Þ thereafter, i.e., this
epidemic grew exponentially at rate λ between 5 May and 21 September 2014. The
incubation period has been estimated to be gamma distributed with shape m = 1.41
and rate bE = 0.154 (which correspond to mean 9.2 days and standard deviation
7.7 days)54. Hence, symptomatic cases occurred at rate

incsymðtÞ ¼
Zt
0

i0 exp λuð Þg t � uð Þdu ¼ i0 exp λtð Þ bE
λþ bE

� �m

Γ λþ bEð Þt;mð Þ;

where g is the pdf of the incubation period, and Γ is the lower incomplete gamma
function. Accordingly, the number of new symptomatic Ebola cases in the kth week
since time 0 was

Ykðλ; i0Þ ¼
Z7k

7ðk�1Þ

incsymðtÞdt:

Let θk be the probability that a true case with onset in week k was reported as
confirmed or probable cases. New Ebola treatment units were established in
Montserrado in early August 201436,37. As such, we assume that θk = θbefore if week
k ended before 4 August 2014, and θk = θafter otherwise. The likelihood for the
observed number of confirmed and probable cases is

Linc λ; i0; θbefore; θafterð Þ ¼
Y
k

fbinomial ykjYkðλ; i0Þ; θkð Þ;

where yk is the observed number of confirmed and probable cases with onset in
week k and fbinomial is the binomial pdf. The observed weekly number of confirmed
and probable Ebola cases in Montserrado is obtained from the World Health
Organization (WHO) patient database33.

Our OAG data set also contains the monthly number of flight bookings in 2014.
Supplementary Table 2 shows the monthly outbound mobility rates from
Montserrado during May–September 2014 in this OAG database. We denote the
outbound mobility rate from population i during month k by Wk (i.e., Wk =∑jwijk,
where wijk is the daily mobility rate from population i to j during month k). Air
travel restrictions were implemented starting in August8, which presumably
resulted in a substantial proportion of canceled flight bookings (in particular for
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August 2014, see Supplementary Table 2). These abnormal cancellations were not
registered in the OAG database. Therefore, as an approximation, we assume that
the actual mobility rate in August 2014 was the same as that in September 2014.

According to our framework, if population i has seed size s, epidemic growth
rate λ, and outbound mobility rate w, the probability that population i has no
exportation up to time t is

1� F1 tjλ; swð Þ ¼ exp � sw
λ

exp λtð Þ � 1ð Þ
� 	

and the probability density that population i has its first exportation at time t is

f1ðtjλ; swÞ ¼ sw exp λtð Þ � 1� F1ðtjλ; swÞð Þ:

Given the incidence rate i0 exp λitð Þ, the seed size of latent infections was effectively
E ¼ i0

λi
1� 1þ λi=bEð Þ�mð Þ. To see this, consider an SEmInR system during the

exponential growth phase with incidence rate i0 exp λitð Þ. The prevalence of latent
individuals during this phase is well approximated by the following system:

dE1 tð Þ
dt ¼ i0 exp λtð Þ � bEE1 tð Þ

dEi tð Þ
dt ¼ bE Ei�1 tð Þ � Ei tð Þð Þfor i ¼ 2; ¼ ;m

:

Solving these differential equations gives

Ei tð Þ ¼ i0 exp λtð Þ
bE 1þ λ=bEð Þi þ exp �bEtð Þ � O tj�1

� �
; for i ¼ 1; ¼ ;m;

and hence the prevalence of latent individuals, namely
Pm

i¼1 EiðtÞ, is well
approximated by Eeλt , where E ¼ i0=λið Þ 1� 1þ λi=bEð Þ�mð Þ.

Taken together, the likelihood for all observed times of case exportations is

Lexport λ; i0ð Þ
¼ 1� F1 τ1jλ;EW1

� �� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
No exportation up to

31 May 2014

1� F1 τ2 � τ1jλ; Eeλτ1W2
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
No exportation up to

30 June 2014

f1 t1 � τ2jλ; Eeλτ2W3
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
The first exportation in

July 2014 occurred on

20 July 2014

1� F1 τ3 � t1jλ;Eeλt1W3
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
No exportation between 21 July 2014

and 31 July 2014

´ 1� F1 τ4 � τ3jλ;Eeλτ3W4
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
No exportation during

August 2014

f1 t2 � τ4jλ; Eeλτ4W5
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
The first exportation in September 2014

occurred on 19 September 2014

1� F1 T � t2jλ; Eeλt2W5
� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
No exportation between

19 September 2014 and

21 September 2014

In summary, we infer (λ,i0,θbefore,θafter) using the likelihood

L λ; i0; θbefore; θafterð Þ ¼ Linc λ; i0; θbefore; θafterð ÞLexport λ; i0ð Þ:

Note that θafter is defined only after 3 August 2014 and hence not inferred until
then. We assume non-informative flat priors for all parameters and use Gibbs
sampling52 to estimate the posterior distributions of (λ, i0, θbefore, θafter). We use five
MCMC chains and initialize each chain with a starting point randomly generated
from the following ranges: lnð2Þ=λ (i.e., the doubling time) between 1 and 100 days,
i0 between 1 and 100, θbefore between 0 and 1, and θafter between 0 and 1. The trace
plot and Geweke diagnostic indicate that each MCMC chain converges within
100,000 iterations and the autocorrelation of the samples in the MCMC chain
drops below 0.05 when the lag is larger than 2000 steps. As such, we estimate the
posterior distribution of (λ, i0, θbefore, θafter) by running the Gibbs sampling for
5.5 million iterations with a burn-in of 0.5 million iterations and a thinning interval
of 5000. The Gelman–Rubin diagnostic indicates that all five chains converge to the
same posterior distribution.

Given an estimate of (λ, i0, θbefore, θafter), the cumulative number of
symptomatic Ebola cases up to time t was:

C tð Þ ¼ i0

Zt
0

eλt
bE

λi þ bE

� �m

Γ ðλi þ bEÞt;mð Þdt

and the reporting proportion up to the end of week K wasXK

k¼1
yk=Cð7KÞ:

The nowcasted posterior estimates of the epidemic doubling time (which is simply
ln(2)/λ) and initial incidence rate (i0) are temporally consistent until mid-August
after which both began to increase significantly. This suggests that the epidemic
growth rate might have dropped since mid-August, which is plausible in view of
substantial increase in mitigation efforts and resources starting in early August36,37.
As such, we perform a sensitivity analysis by assuming that the epidemic doubling

time changed from D1 to D2 starting on 4 August 2014. Supplementary Figure 10
shows that our main result, namely the estimates of reporting proportion, remain
essentially the same.

For the scenario unadjusted for travel restrictions (Fig. 4b, bottom panel), the
retrospective real-time forecasts of the time to next international exportation are
obtained by (i) assuming that mobility rates during the forecasted time period were
the same as the most current mobility rates and (ii) sampling (λ, i0, θbefore, θafter)
from their posterior distributions.

Code availability. Code is available on request from the authors.

Data availability. Global population data (raw data) that support the findings of
this study are available from the Gridded Population of the World Version 4
(GPWv4) database at http://sedac.ciesin.columbia.edu/data/collection/gpw-v4.
Restrictions apply to the availability of the worldwide air-traffic data set from the
Official Airline Guide (https://www.oag.com/), which were used under license for
the current study. Source data for case studies (Fig. 4; Supplementary Fig. 10) are
tabulated in Supplementary Tables 1 and 2.
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