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ABSTRACT
Classical r- vs. K-selection theory describes the trade-offs between high reproductive output and
competitiveness and guides research in evolutionary ecology. While its impact has waned in the recent past,
cancer evolution may rekindle it. Herein, we impose r- or K-selection on cancer cell lines to obtain strongly
proliferative r cells and highly competitive K cells to test ideas on life-history strategy evolution. RNA-seq
indicates that the trade-offs are associated with distinct expression of genes involved in the cell cycle,
adhesion, apoptosis, and contact inhibition. Both empirical observations and simulations based on an
ecological competition model show that the trade-off between cell proliferation and competitiveness can
evolve adaptively. When the r and K cells are mixed, they exhibit strikingly different spatial and temporal
distributions. Due to this niche separation, the fitness of the entire tumor increases.The contrasting
selective pressure may operate in a realistic ecological setting of actual tumors.
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INTRODUCTION
Diverse environmental conditions act on popula-
tions and species, leading to selection-driven emer-
genceof niche-specific adaptivephenotypes andpre-
venting the emergence of a ‘superorganism’ [1].
Such a superorganism, often dubbed ‘Darwinian de-
mon,’ would produce very large numbers of off-
spring and live indefinitely [2]. Existence of such
entities is contrary to life history theory and em-
pirical observation. Indeed, evolution of adaptive
traits is typically restricted by fitness constrains [3].
These constrains often take the form of trade-offs
whereby a life history trait can affect different com-
ponents of fitness in opposite directions [4]. In
contrast to natural organisms, cancers appear to be
exempt from all constraints during the process of
somatic cell evolution. A series of biological fea-
tures, the so-called ‘hallmarks of cancer,’ are char-
acterized by fast proliferation, resistance to low oxy-
gen and crowded environment, and the ability to re-
cruit blood vessels and escape the immune system
[5]. How can all aspects of fitness be maximized in

cancers? Perhaps heterogeneity within tumors en-
ables several cell lineages to adopt a variety of char-
acteristics and colonize different niches in a chang-
ing environment [6–14]. The internal and external
microenvironments that cancer cells are confronted
with in a multicellular organism are akin to com-
plex ecosystems [15–21]. Trade-offs between cell
proliferation and survival may apply to such cancer
cell populations [6,22]. Both rapid cell proliferation
and stable survival strategiesmust complement each
other to achieve high fitness of a tumor as a whole
[6]. Selection pressures that govern the trade-off be-
tween increasing proliferation and survival, and the
ecologicalmechanisms that underlie these trade-offs
in heterogenous populations remain uncertain.

A well-defined environmental variable governing
evolutionary change is population density relative
to essential resources [23]. The theory of density-
dependent natural selection, often called r- and K-
selection, states that at extreme population densi-
ties evolution produces alternative strategies [24].
The trade-offs are presumed to arise because the
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Figure 1. r- and K-selection in HeLa cells and their growth rate in 2D and 3D cultures. a) r- and K-selection strategies. An
initial single cell clone was split into six populations, with three labeled with dsRed (R; red dots) and three with eGFP (G;
green dots). Each cell line was cultured about 200 days at low (r-selection) and high density (K-selection). Fitness tests were
performed at b) low and c) high density. The Y-axis is the proportion of r and K cells estimated by flow cytometry during five
passages (x-axis) of r-K mixed cell cultures. d) The growth rate of r and K cells across culture conditions. Cells in 111 r- and
141 K-cell clones were counted every 24 hours. Growth rate is calculated based on cell number change within seven days.
The tumorigenicity of r and K cells is presented based on the number e) and size f) of tumor colonies in a soft agar assay on
the 7th and 21st day, respectively. The lower panels of f) present the microscopy images of one of the r and K colonies in the
upper panels of f). Dash lines separate culture conditions or strategies. Error bars represent standard deviations. Student’s
t-test: ∗P < 0.05, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001. Scale bars in f) represent 500 μm. n = 3 independent experiments per
population in b), c), d), and e).

genotypes with the highest fitness at high popula-
tion densities have low fitness at low density and
vice-versa [3,25,26]. The r-populations are selected
for high intrinsic rate of growth (r) in environ-
mentswhere populationdensity is lowand resources
are abundant but perform badly at high density. In
contrast, K-populations, experiencing strong com-
petition for limited resources under high density
conditions, should evolve high intraspecific com-
petitive ability and enhance their carrying capacity
(K).K-selectedpopulationsdonothavehighgrowth

rates because they are near the carrying capacity for
their environment [25,27].

In this study, we performed artificial selection for
cell density on HeLa cell line in order to amplify
the diversity of cell growth within tumors (Fig. 1a).
We asked whether selection under different density
regimes modifies per capita growth rates and com-
petitiveness as predicted by models that postulate
a trade-off between r- and K-selection. To exam-
ine the phenotypic trade-offs at the molecular level,
we carried out RNA-seq and explored the specific
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gene expression and pathway characteristics of r and
K cells. The dynamics of density-dependent pop-
ulation growth in mixed populations change with
the proportions of r and K cells within them. We
modeled these dynamics and fitted our models to
empirical observations in order to quantify the inter-
action among the various trade-off phenotypes in a
heterogenous population and their effect on fitness
of the entire tumor.

RESULTS
Fitness changes of r- and K-selected
cells
The initial cell population (IN cells) was a single
cell clone from a HeLa cell line. When the size of
the population reached 107 cells, we divided the
clone into two sub-populations.One sub-population
was marked with eGFP (IN G) and the other
with dsRed (IN R) through lentivirus transfec-
tion. After approximately 200 generations under
r-selection (the low-density condition) and about
130 generations underK-selection (the high-density
condition), we obtained r-selected (r cells) and
K-selected cells (K cells). The density-dependent
selection scheme is illustrated in Fig. 1a.

To test whether r and K cells are more adapted
to their corresponding conditions than the ancestral
IN cells, we pairwisely co-cultured the three types of
cells at high and low density. r cells become domi-
nant within two passages (three days, Supplemen-
tary Fig. 1a) in the r-IN mix, suggesting that the
r cells have evolved higher fitness than IN cells un-
der these conditions. Likewise, K cells rapidly take
over the K-IN mixed population (in four days, two
passages, Supplementary Fig. 1b). Both r and K cells
display better fitness than their counterpart in the
r-K mix under corresponding selection conditions
(Fig. 1b and c). We thus successfully selected for
alternative life histories in our experiment.

Trade-off between cell proliferation and
survival
To explore the possibility that the r and K cells ex-
hibit a trade-off in their density-dependent popula-
tion growth, we first measured the growth rates of
these cells in 2D in vitro systems at low and high den-
sity. Under low-density, r cells grow faster than K
cells (Fig. 1d). When the test was performed at high
density, there is no significant difference between r
and K cells, whereas growth rates of r-cell popula-
tions decrease remarkably compared to low density
conditions (Fig. 1d).

We next tested the difference between r and
K cells in their density-dependent rates of popula-
tion growth in 3D cellular environments.We quanti-
fied tumorigenicity bymeasuring colony growth and
formation in a semi-solid agarose gel.The r cells dis-
played a significantly higher rate of colony forma-
tion than K cells within seven days (Fig. 1e). After-
wards, the number of colonies did not increase for
both of r and K cells, while the colony size kept in-
creasing. The K colonies grew faster than r colonies.
Finally, K colonies were significantly larger than
r colonies on day 21 (Fig. 1f). The diameter of K
colonies was 0.46mm(± 0.446) on average, while it
was 0.31 mm (± 0.207) for r colonies.This suggests
K cells have evolved to tolerate high density better
than r cells.

The net rate of population growth is determined
by both cell death and birth rates. Using annexin-V
and PI staining, reflecting cell death and the G0/G1
phase of the cell cycle, wemeasured the proportions
of dead cells anddistinguished the resting/quiescent
(G0/G1) from total cells in the r and K populations
at high and lowdensity. Figure 2a shows that thepro-
portion of G0/G1 phase cells is lower in the r- than
in the K-cell populations, indicating that r cells pro-
liferate relatively quickly at both low and high den-
sity. It also demonstrates that K cell birth rate does
not increase at high density.

The K cell death rate is relatively stable under
both conditions (Fig. 2b). In contrast, the r cell
death rate increases significantly under high com-
pared to low density. The r cells also die more fre-
quently at high density than K cells (Fig. 2b). The
high birth and death rates of r cells suggest that they
have evolved to quickly produce offspring rather
than to increase their survival, while K cells tend
to ensure offspring quality rather than number. The
high incidence of cell death leads to a decrease in
growth rate of r cells at high density, and the effect
of density in r-selected populations is mainly on cell
death.

Transcriptional divergence between
r and K cells
To find molecular characteristics that may be cor-
related with the phenotypic trade-offs in r and
K cells, we carried out RNA-seq in 22 samples, in-
cluding two replicates of initial cell populations, five
K cell lines, five r cell lines under routine cell cul-
ture conditions, and r- and K-replicate lines under
high density stress. Multiple comparisons were per-
formed among transcriptional profiles of cell lines
across and within density conditions. Differentially
expressed genes (DEGs) in these comparisons were
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Figure 2. Differences in cell cycle, cell death and gene expression between r and K cells. a) The G0/G1 phase proportion and
b) the proportion of cell death in r (gray) and K cells (black) are analyzed using PI and Annexin V staining via flow cytometry
under high- and low-density conditions. Dashed lines separate culture conditions. Error bars represent standard deviations.
(n= 3 independent experiments per population; Student’s t-test: ∗∗P< 0.01, ∗∗∗P< 0.005, ∗∗∗∗P< 0.0001; mean ± SD). c)
Gene expression correlation between IN, r-, and K-cell populations. d) Pathways that show significantly different expression
between r and K cells. The upper heatmap presents signaling pathways that are overexpressed in five K-cell populations
(red), the bottom heatmap presents pathways overexpressed in five r-cell populations (green). The z-score heatmap indicates
the scale of gene expression difference. The upper panel shows the cell cycle (CC; see Supplementary Table 6 for pathway
abbreviations) pathway with relatively over- (red) and under- (green) expressed genes in r vs. K cells highlighted.
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identified using standard methods [28]. Figure 2c
shows that r and IN cell populations cluster closely
and differ from the K-cell populations under routine
cell-culture conditions (at low density). We detect
that 3161 genes show significant difference in gene
expression between the r and K cells (Supplemen-
taryTable1).Using theFunctionalAnnotationTool
from the DAVID package [29], we found 25 path-
ways significantly enriched for these differentially
expressed genes, including spliceosome, pathways
involved in cancer, and ribosome biogenesis (Sup-
plementary Table 2).

The top 20 highly expressed pathways in K or
r cells based on the GAGE (General Applicable
Gene-set Enrichment for Pathway Analysis) [30]
are listed in Fig. 2d. The upregulated pathways in K
cells include cell and focal adhesion, ErbB signaling,
ECM-receptor interaction, phagosome, regulation
of actin cytoskeleton, and Jak-STAT signaling. The
cell cycle (upper panel in Fig. 2d), metabolism,
and genetic information processing (such as
ribosome biogenesis and mRNA surveillance)
pathways are significantly highly expressed in r cells
(Fig. 2d).

We next detected the transcriptional difference
in responding to density constraints between r and
K cells. Dramatic change at the transcriptional level
is found in r cells when they are grown at high den-
sity. The expression levels of 6373 genes are signif-
icantly different from low density (Supplementary
Table 1, Supplementary Data 2), while the number
of DEGs is 2278 in K cells (Supplementary Table 1,
Supplementary Data 3). Compared to the gene ex-
pressionprofiles under low-density conditions, 1775
genes present the same trend of expression change
in both r and K cells under high density. These are
involved in metabolic and serial RNA related path-
ways. These results suggest that high culture den-
sity has a prominent effect on cell metabolism (Sup-
plementary Table 3). In addition to these common
changes, only 503 ( = 2278−1775) genes respond
to density change specifically in K cells.The number
of genes (6373−1775= 4598 genes) responding to
the density change in r cells is approximately nine
times larger than that, indicating that r cells aremore
sensitive and less stable at high density than K cells.

Previous studies found that the amount of ex-
pression plasticity between two environments is
positively correlated with the fitness difference of
the genotype between the two environments [31].
Changes in transcriptional profiles reveal that r cells
are much more sensitive, in other words, less plas-
tic to density change than K cells, consistent with
the observation that r cells have lower fitness at high
density in competition assays (Fig. 1b and c, Sup-
plementary Fig. 1a and b). Differentially expressed

genes that respond to density change in r cells are
enriched in the cell cycle and DNA replication path-
ways (Supplementary Fig. 7 and 8), consistent with
direct measurements of growth rate at high and low
density (Fig. 1d).

Suppression of contact inhibition
pathways in K cells
Thedirect cellular response to cell density is contact
inhibition which mediates cell growth and prolifer-
ation via interplay between growth signaling path-
ways and density constraints. Contact inhibition
of proliferation is typically absent in cancer cells
[32]. Both RNA-seq analysis and trypsinization as-
say showed that K cells are prone to form cell-cell
adhesion at high density (Fig. 2d and Supplemen-
tary Fig. 6), implying a loss or decrease of contact
inhibition [33]. In contrast, cell cycle arrest and the
slower growth may still be triggered in r cells by sig-
naling pathways that downregulate proliferation in
a cell-density dependent manner [34]. One of such
pathways, and well-studied, is the Hippo-YAP sig-
naling pathway, which is largely responsible for in-
hibiting cell growth and controls organ size in many
organisms [35]. The RNA seq results in this study
show that the Hippo signaling pathway is overrep-
resented in gene expression comparison between
r and K cells, and expression of YAP/TAZ is signif-
icantly upregulated in K cells (Supplementary Data
1, SupplementaryTable 2). In addition, the crosstalk
among the Hippo signaling and eight other path-
ways (including adherens junction, focal adhesion,
tight junction, PI3K-Akt signaling,mTOR signaling,
ErbB signaling, TGF-beta signaling, andWnt signal-
ing) constructs a regulation network associated with
cell cycle, cell survival, cell proliferation, and apopto-
sis [36]. A gene cluster analysis shows that the r and
K cells can be distinguished by the expression profile
of DEGs involved in these nine signaling pathways
(Supplementary Fig. 2).

The expression of anti-apoptotic factors can be
activated by the transport of dephosphorylated YAP
into the cell nucleus [37]. In reacting to high
cell density, activated LATS1/2 regulates phospho-
rylation of the coactivator YAP/TAZ, promoting
cytoplasmic localization of YAP and leading to
cell apoptosis and restriction of organ overgrowth.
Overexpression or hyperactivation of YAP/TAZ has
been observed in many types of tumors, stimulat-
ing growth and proliferation [38]. We performed
an immunofluorescence assay to identify the lo-
calization of YAP/TAZ in r and K cells under
both low- and high-density conditions.The localiza-
tion of YAP/TAZ in the cytoplasm and nuclei was
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Figure 3. YAP/TAZ colocalization in r and K cells under high density and the effect of DLG-2 knock-down in K cells. a)
YAP/TAZ colocalization in the cytoplasm and nuclei under high density. YAP/TAZ was stained with FITC via immunofluores-
cent. Hoechst staining marks nuclei. Scale bars represent 25μm. b) The expression level of DLG-2 in r and K cells under high
cultural conditions. The expression levels were validated by q-PCR. c) The proportion of cell death in DLG-2 knockdown K
cells under high density. The death rate was measured by Annexin V staining via flow cytometry. (Student’s t-test: ∗∗P< 0.01,
∗∗∗P< 0.005; n= 8 independent experiments per population; mean ± SD).

observed in both r andK cells at low density (Fig. 3).
In contrast, the nuclear localization of YAP/TAZ is
absent in r cells but is still maintained in K cells
grown at high density (Fig. 3a). This suggests that
YAP/TAZ phosphorylation is inhibited in K cells
under high density, resulting in the loss of cell
contact inhibition [39]. Consequently, cell apop-
tosis may be triggered by cytoplasmic localization
of YAP in r cells but not in K cells as cell density
increases.

In addition, DLG-2 is a cell polarity gene in the
hippo signaling pathway, regulating the inhibition
of phosphorylated active YAP/TAZ proteins in the
cytoplasm [40]. Our transcriptome analysis shows
that expression of DLG-2 is significantly higher in
K cells at high than at low density (Supplementary
Data 1). We confirmed this by RT-PCR (Fig. 3b).
We carried out an siRNA assay to knock down
the expression of DLG-2 in K cells (Supplementary
Fig. 3). The apoptosis rate ofDLG-2 knock-down K
cells significantly increased at high density (Fig. 3c),
confirming that the high expression level of DLG-2

contributes to survival of K cells grown under these
conditions.

The competitiveness of r and K cells
The increased death rate of r cells and the underrep-
resentation of contact inhibition in K cells at high
density indicate that cell interaction strength may
be associated with the change in fitness of r and
K cells as the environmental density increases. The
theory of r- and K-selection predicts that popula-
tions living at high density and, hence, experienc-
ing strong competition for limited resources should
evolve high competitive ability [41]. As a result, the
carrying capacity of K-selected populations is en-
hanced. In contrast, r-selected populations are typ-
ically far from their carrying capacity and thus can
grow exponentially using an abundance of available
resources. Competition among the members of an r
population is supposed to be weak, which is disad-
vantageous for the fitness of these populations when
space and resources are limited. The prediction
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Figure 4. Inter-population interaction and temporal and spatial growth of r and K cells in mixed populations. a) Cell death and b) G0/G1 phase pro-
portion of r and K cells in individual and mixed cultures. The y-axis in a) and b) shows death rates and G0/G1 phase proportion of r (gray) and K
(black) cells. Death rates were measured by Annexin V staining. G0/G1 phase proportions were measured by PI staining via flow cytometry. Cells
were cultured alone or co-cultivated at high density. Dashed lines separate culture strategies. (n = 3 independent experiments per population; Stu-
dent’s t-test: ns: non-significant, ∗P < 0.05, ∗∗∗∗P < 0.0001; mean ± SD) c) Spatial structure in an r-K mixed population. K and r cells are well mixed
in equal proportion and seeded in the center of a six-well plate with total cell number ∼106. Each column represents time points from the 3rd to
9th day after cell seeding. r and K cells are eGFP and dsRed positive shown in green and red, respectively. The top and bottom panels show the spatial
distribution of r and K cells in empirical observations and computer simulations, respectively. d) The distribution of r cell fractions estimated in vitro
(blue (r:K = 9:1)) and in silico (red (α = 2.2, β = 0; r:K = 9:1); green (α = β = 0; r:K = 9:1); light green (α = β = 0; r:K = 1:1) and green yellow
(α = β = 0; r:K= 1:9)). The y-axis reflects the fraction of r cells in the co-culture; x-axis represents cell passages. (n= 100 stochastic simulations per
population; n= 3 independent experiments; mean ± SD).

implies that K cells should outcompete r cells in co-
cultures under crowded conditions. In order to test
this prediction, we established a co-culture assay of
r and K cells to illustrate their temporal and spatial
distribution. In addition, we simulated the dynam-
ics of r and K mixed population distributions based
on theLotka–Volterramodel [42,43]. Parameters of
interaction strength between r andK cells in the sim-
ulations were estimated by fitting our models to em-
pirical observations.

Empirical observations
Population proportion changes, as well birth and
death rates of r and K cells were measured in a co-
culture assay. When r and K cells are co-cultured
at high density, the proportion of r cells decreases
over time (Fig. 1c, Supplementary Fig. 4) and the
death incidence of r cells is significantly higher than
of K cells (Fig. 4a). The death rate and G0/G1

phase proportion among r cells in co-cultures are
both significantly higher than when the r cells
are cultured individually under crowded conditions
(Fig. 4a and b). Compared to r, K cells have a rel-
atively stable incidence of death and proportion of
cells in G0/G1 phase under co-culture or in individ-
ual cultures, although their death rate increases un-
der co-culture (Fig. 4a and b). These results show
that the birth of r cells is restrained and cell death
is accelerated when these two different types of cells
are cultured together at high density, suggesting that
they are in competition when they coexist.

Competition may result in niche separation
among co-existing populations in an ecological com-
munity [44]. To examine this possibility, we car-
ried out co-cultures where approximately 106 r and
K cells were well mixed at equal proportion and
seeded in the centers of wells in six-well plates.Three
replicate co-cultures were scanned every 72 hours.
We observed that r and K cells in the co-culture
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assay tended to occupy different regions in a well.
The r cells disperse to the periphery, while K cells
grow and occupy the crowded central area (the
upper panel of Fig. 4c). This observation reveals
an additional density-dependent difference in the
phenotypes of r and K cells.

Simulation and parameter estimation
To investigate the inter-population relationship
between r and K cells, we adopted the Lotka-
Volterra model which has been widely used to study
population interaction [45,46]. We constructed
computer simulations and looked at r and K cell
population growth in co-cultures, and estimated the
effect of K cells on r cells (α), and vice versa (β),
respectively (equation (1b), see Methods). Param-
eter estimation equations are described in methods
and materials.

Mixed populations were initiated in our com-
puter simulations with different fractions of r and
K cells (Materials andMethods), followed by 30 cell
passages at high density. We compared the growth
curves of r and K populations in the simulation to
the empirical observations described in the previous
section. Figure 4d shows that even when the initial
proportion of r cells was lowest (r:K = 1:9) the
extinction time of r cells in the simulation with no
between-cell type interaction (α = β = 0; no effect
of one cell population on the other) is approximately
five times longer than observed with the highest
proportion of r cells (r:K = 9:1). Simulations
reveal that the extinction time of the r cell pop-
ulation is shortened when α is higher than β

(Supplementary Fig. 5). Comparing the growth
curves from empirical observations (blue line
in Fig. 4d) and in simulations across values of
α and β (green and red lines in Fig. 4d), we find
that the values of α = 2.2 and β = 0 fit the data best
(Fig. 4d and Supplementary Fig. 16).Thus, we infer
that there is an interaction between r and K cells and
K cells influence r cell death.

Phenotypic diversity and competition
promotes tumor fitness
In silico
To test whether the existence of phenotypic diver-
sity and inter-population interaction promote total
fitness, we first carried out stochastic simulations to
compare the growth dynamics of r-K mixed popula-
tions to pure r andK cells assemblages. Unlike in the
previous section, the current computational model
considers space and density heterogeneity in the en-
vironment where the tumor cells grow, and the in-
teraction of r and K cells in these conditions. The
rates of cell division and death depend on local cell

density. Due to the density effect, cells are able to
divide and migrate only if there is sufficient nearby
space. The simulation is described in detail in the
Materials and Methods and Supplementary Fig. 13.
Figure 4c illustrates that in silico growth distribution
of r and K cells in the mixed population is consis-
tent with empirical observations (the upper panel of
Fig. 4c). Among-cell interaction and the density ef-
fect promote the re-localization of r andK cells, from
well-mixed at the beginning of cell culture to a biased
distribution with the entire occupation of the K cells
in the middle and the outward spread of r cells (the
bottom panel of Fig. 4c).Themixed populations ex-
hibit significantly higher rate of growth than the pure
r- or K-cell populations (Fig. 5a and b).

In vivo
Mouse xenografts initiated with r, K, and r-K mixed
cells were weighed on the 34th day, followed by H
& E staining.The necrotic and non-necrotic regions
were distinguished using the gray threshold method
[47]. We observed a high incidence of death in the
r xenografts (Fig. 5c) and a significantly higher pro-
portion of non-necrotic cells in themixed xenografts
(Fig. 5d). Although average fresh weight of the r
xenografts is much larger than the fresh weight of
K and mixed xenografts (reflecting the higher r cell
proliferation rate, Fig. 5e), the mean weight of vi-
able cells in the mixed xenografts is the highest. It
indicates that the existence of phenotypic trade-offs
within a cell population is advantageous to cell via-
bility and population growth.

DISCUSSION
r- and K-selection theory predicts that natural se-
lection increases density-dependent rates of popula-
tion growth. The notion of trade-offs in life-history
evolution became a prominent feature of the the-
ory and prompted a focus of theoreticians and field
scientists both in ecology and evolutionary biology
[3,24,27,48]. However, the heart of continuing con-
troversy on the theory of r- andK-selection between
theoreticians and field biologists is that many com-
plex life-history characters of natural populations
contradict theoretical expectations [27,49,50]. It is
unrealistic to expect that a theory could account
for all aspects of the natural environment and its
impact on evolutionary processes in all organisms
[27,49,51]. Thus, an optimal way to test the theo-
retical predictions is in controlled settings congruent
with the assumptions of the simple models.

Tumorigenesis is an evolving and dynamic pro-
cess where highly genetically and phenotypically
heterogeneous neoplastic cell populations persist
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Figure 5. Population fitness of r, K, and r-K mixtures. a) Growth curves for different populations from the spatial com-
putational model. The yellow line represents the r-cell population, the green line represents the mixture population of
r and K cells and the red line represents the K-cell population. The Y-axis represents population size. The X-axis represents
time. (n = 100 stochastic simulations per population; mean ± SD). b) Mean growth rate comparison among populations.
The growth rate was measured at one-hour intervals. The Y-axis represents mean growth rate. The X-axis represents time.
(n = 100 stochastic simulations per population; mean ± SD, Student’s t-test: ∗∗∗∗P < 0.0001). c) Necrotic area detection.
The second column represents the necrotic area (colored) in xenografts. d) Proportion of the non-necrotic area (y-axis) in
xenografts (n = 6 for each xenograft type; Student’s t-test: ∗P < 0.05, mean ± SD). e) Whole tumor (black) and viable cell
(gray) weight in xenografts. The xenografts were extracted at the sixth week after cell inoculation. (n= 6 for each xenograft
type; mean ± SD).

in challenging environments [52,53]. In fact hall-
marks of cancer cannot be acquired in all cancer cells
all the time [54]. An important cell-to-cell pheno-
typic variability is determinedby several exterior and
interior constrains [6]. For instance, environments
in tumors are both stable (but crowded, hypoxic, and
nutrient-poor) in the interior, and fluctuating in nu-
trients, space, and interaction between the compo-
nents in the microenvironment at the edge of the
tumors [55]. The consequences of somatic cell evo-
lution under complex environmental pressures par-
allel ecological processes in nature, with inevitable
survival-reproduction trade-offs because organisms
have to allocate limited resources among several
functions that affect fitness.Neoplastic cellsmay also
be subject to evolutionary trade-offs with respect to
resource allocation and growth constraints [6,22].
The mixture of biotypes that form cancer cell popu-
lations can be characterized by survival-proliferation
trade-offs, and directly quantified in controlled en-
vironments in vitro. Carrying out experimental evo-
lution under r- and K-selection in cancer cell lines,
we observe that cancer cell populations face a

survival-reproduction trade-off. The higher growth
and death rates in r cells, compared to K cells
(Figs 1d and 2b), indicates that r cells are selectively
favored to allocate the majority of their resources
to reproductive activities at the cost of their abil-
ity to propagate under crowded conditions, consis-
tent with the central idea of the r- and K-selection
theory [50]. Our analysis of pathway enrichment
and expression of differentially expressed genes re-
flects phenotypic differences in cell proliferation, cell
death, andadhesionbetween r andK cells in vitro and
in vivo. Notably, our observation that r cells always
locate at the peripheral in the co-culture of r-Kmix is
consistent with previous reports in HCC and breast
carcinoma cases. Those histopathological images by
Ki67 staining suggested that the cells replication is
faster at the edge of the tumor [56,57].

The positive correlations between r and K have
been reported, which indicating that the trade-offs
are not the whole story [58,59]. The r-K correlation
appears trade-up in low-quality environments
[58]. In this study, 1775 genes present concordant
changes in r and K cells at high density and are
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enriched in the processes of response to hypoxia,
regulationof apoptotic process, regulationofmRNA
stability, and so on, based on GO Term and KEGG
enrichment analysis (Supplementary Table 4).
Although the question whether those changes cor-
respond to the trade-up or the short-term response
to the high-density stress remains unclear, it would
be interesting to test if the trade-up between cell
proliferation and survival could emerge during long-
term adaptive evolution under certain kinds of poor
conditions in tumor microenvironment. Moreover,
both trade-up and trade-off may be triggered in
the tumors in which the variations in blood flow,
immunoreaction, and drug treatment lead to the
heterogeneous and fluctuant microenvironment.

Computer simulations which integrate of r-
and K-selection theory predictions and parameters
of inter-cell interaction based on Lotka–Volterra
models illustrate temporal and spatial dynamics
of population growth of heterogeneous cell pop-
ulations following r- and K-strategies. The growth
curves based on empirical data and mathematical
models show that growth rates and fitness of r-
and K-selected cells follow the logistic equations
predicted by theory. As density increases, K cells
dominate mixed cell populations. Our simulations,
fitted to empirical data, establish a competitive
relationship between phenotypically diverse cancer
cells. It indicates that a tumor is not a ‘Darwinian
demon’ per se, but is a mix of diverged cell popula-
tions. The populations with trade-off phenotypes
are competing for space and different resources in
the micro-ecosystem during the cancer progression.
In the short term, the competition may decrease
whole-population fitness, whereas, it triggers niche
differentiation leading cell types to occupy differ-
ent niches, thus maximizing the use of available
resources in the ecosystem and leading to the emer-
gence of resistance to environmental stress, such
as drug treatment as well [19,44]. Therefore, the
competitive interaction between tumor cells further
improves the total fitness of a tumor in the long term.
Our analyses of life-history trade-offs are pertinent
to evolutionary ecology as well as cancer biology.

MATERIALS AND METHODS
For detailed materials and methods, please see the
supplementary data.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.

ACKNOWLEDGEMENTS
We are grateful to all participants in this study.

FUNDING
This project was supported by National Natural Science Foun-
dation of China grants (31771416, 91531305 and 31801094),
the Key Research Program of the Chinese Academy of Sciences
grant (KFZD-SW-220-1), the Strategic Priority Research Pro-
gram of the Chinese Academy of Sciences (XDB13000000),
CAS ‘Light of West China’ Program and the National Key R&D
Program of China (2018YFC0910402).

AUTHOR CONTRIBUTIONS
Correspondence to Xuemei Lu. Tao Li, Jialin Liu, and Jing Feng
contributed equally to thiswork. Xuemei Ludesigned the project;
Tao Li, Jialin Liu, Jing Feng, Zhenzhen Liu, and Yuezheng Zhang
performed cell culture related experiments; Tao Li, Zhenzhen
Liu, and Minjie Zhang established tumor xenograft models in
nude mice and performed immunofluorescence assay; Zhenzhen
Liu and Chunyan Li performed siRNA knockdown experiments
and soft agar colony formation assay; Jing Feng performedmigra-
tion assay and trypsinization assay; Tao Li and Jialin Liu analysed
the sequencing datawith help fromSixueLiu andYaliHou;Zhen-
zhen Liu andDafeiWu extracted the RNA;DafeiWu ensured the
quality control of sequencing library; Tao Li and Yongbin Chen
analysed the gene expression and siRNA data related the Hippo-
Yap signaling pathway. Tao Li constructed the growth models
with help from Hua Chen; Xuemei Lu supervised the project;
XuemeiLu,TaoLi, JialinLiu, and JingFengwrote themanuscript.

Conflict of interest statement.None declared.

REFERENCES
1. Silvertown J. Demons in Eden: The Paradox of Plant Diversity.
University of Chicago Press, 2008.

2. Law R. Optimal life histories under age-specific predation. Am
Nat 1979; 114: 399–417.

3. Stearns S. Trade-offs in life-history evolution. Funct Ecol 1989;
3: 259–68.

4. Cain ML, Bowman WD and Hacker SD. Ecology. Sinauer, 2014.
5. Hanahan D andWeinberg RA. Hallmarks of cancer: the next gen-
eration. Cell 2011; 144: 646–74.

6. Aktipis CA, Boddy AM and Gatenby RA et al. Life history trade-
offs in cancer evolution. Nat Rev Cancer 2013; 13: 883–92.

7. Wu C-I, Wang H-Y and Ling S et al. The ecology and evolution
of cancer: the ultra-microevolutionary process. Annu Rev Genet
2016; 50: 347–69.

8. Li C, Hou Y and Xu J et al. A direct test of selection in cell pop-
ulations using the diversity in gene expression within tumors.
Mol Biol Evol 2017; 34: 1730–42.

9. Roerink SF, Sasaki N and Lee-Six H et al. Intra-tumour diversifi-
cation in colorectal cancer at the single-cell level. Nature 2018;
556: 457–62.

10. AngelovaM,Mlecnik B and Vasaturo A et al. Evolution of metas-
tases in space and time under immune selection. Cell 2018; 175:
751–65.

11. Ling S, Hu Z and Yang Z et al. Extremely high genetic diversity in
a single tumor points to prevalence of non-Darwinian cell evo-
lution. Proc Natl Acad Sci USA 2015; 112: E6496–505.

Page 10 of 11

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaa124#supplementary-data


Natl Sci Rev, 2021, Vol. 8, nwaa124

12. Wang H-Y, Chen Y and Tong D et al. Is the evolution in tumors Darwinian or
non-Darwinian? Natl Sci Rev 2017; 5: 15–7.

13. Chen B, Shi Z and Chen Q et al. Tumorigenesis as the paradigm of quasi-neutral
molecular evolution.Mol Biol Evol 2019; 36: 1430–41.

14. Maley CC, Galipeau PC and Finley JC et al. Genetic clonal diversity predicts
progression to esophageal adenocarcinoma. Nat Genet 2006; 38: 468–73.

15. NowakMA. Evolutionary Dynamics: Exploring the Equations of Life. Cambridge:
Harvard University Press, 2006.

16. Basanta D and Anderson ARA. Exploiting ecological principles to better un-
derstand cancer progression and treatment. Interface Focus 2013; 3, doi:
10.1098/rsfs.2013.0020.

17. Maley CC, Aktipis A and Graham TA et al. Classifying the evolutionary and
ecological features of neoplasms. Nat Rev Cancer 2017; 17: 605–19.

18. Korolev KS, Xavier JB and Gore J. Turning ecology and evolution against cancer.
Nat Rev Cancer 2014; 14: 371–80.

19. Yang KR, Mooney SM and Zarif JC et al. Niche inheritance: a cooperative
pathway to enhance cancer cell fitness through ecosystem engineering. J Cell
Biochem 2014; 115: 1478–85.

20. Tabassum DP and Polyak K. Tumorigenesis: it takes a village. Nat Rev Cancer
2015; 15: 473–83.

21. Hu Y, Chen A and Zheng X et al. Ecological principle meets cancer treatment:
treating children with acute myeloid leukemia with low-dose chemotherapy.
Natl Sci Rev 2019; 6: 469–79.

22. Boddy AM, HuangWandAktipis A. Life history trade-offs in tumors.Curr Patho-
biol Rep 2018; 6: 201–7.

23. Mueller LD. Density-dependent population growth and natural selection
in food-limited environments: the drosophila model. Am Nat 1988; 132:
786–809.

24. MacArthur RH and Wilson EO. The Theory of Island Biogeography. Princeton
University Press, 2001.

25. Lansing E, Velicer GJ and Lenski RE. Evolutionary trade-offs under conditions
of resource abundance and scarcity: experiments with bacteria. Ecology 1999;
80: 1168–79.

26. Mueller LD. Theoretical and empirical examination of density-dependent se-
lection. Annu Rev Ecol Syst 1997; 28: 269–88.

27. Parry GD. The meanings of r- and K-selection. Oecologia 1981; 48: 260–4.
28. Li B and Dewey CN. RSEM: Accurate transcript quantification from RNA-Seq

data with or without a reference genome. BMC Bioinformatics 2011; 12, doi:
10.1186/1471-2105-12-323.

29. Huang DW, Sherman BT and Lempicki RA. Systematic and integrative analy-
sis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2008;
4: 44.

30. Luo W, Friedman MS and Shedden K et al. GAGE: Generally applicable
gene set enrichment for pathway analysis. BMC Bioinformatics 2009; 10:
1–17.

31. Ho W-C and Zhang J. Evolutionary adaptations to new environments generally
reverse plastic phenotypic changes. Nat Commun 2018; 9: 350.

32. Kim S, Chin K and Gray JW et al. A screen for genes that suppress loss of
contact inhibition: identification of ING4 as a candidate tumor suppressor gene
in human cancer. Proc Natl Acad Sci USA 2004; 101: 16251–6.

33. Takai Y, Miyoshi J and Ikeda W et al. Nectins and nectin-like molecules: roles
in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol
2008; 9: 603–15.

34. Gumbiner BM and Kim N-G. The Hippo-YAP signaling pathway and contact in-
hibition of growth. J Cell Sci 2014; 127: 709–17.

35. Halder G and Johnson RL. Hippo signaling: growth control and beyond. Devel-
opment 2011; 138: 9–22.

36. Ma X, Li W and Yu H et al. Bendless modulates JNK-mediated cell death and
migration in Drosophila. Cell Death Differ 2014; 21: 407–15.

37. Yu FX, Zhao B and Panupinthu N et al. Regulation of the Hippo-YAP pathway
by G-protein-coupled receptor signaling. Cell 2012; 150: 780–91.
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