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Abstract
Background: Restoration of upper limb movements in subjects recovering from stroke is an essential keystone in
rehabilitative practices. Rehabilitation of arm movements, in fact, is usually a far more difficult one as compared to that
of lower extremities. For these reasons, researchers are developing new methods and technologies so that the
rehabilitative process could be more accurate, rapid and easily accepted by the patient. This paper introduces the proof
of concept for a new non-invasive FES-assisted rehabilitation system for the upper limb, called smartFES (sFES), where
the electrical stimulation is controlled by a biologically inspired neural inverse dynamics model, fed by the kinematic
information associated with the execution of a planar goal-oriented movement. More specifically, this work details two
steps of the proposed system: an ad hoc markerless motion analysis algorithm for the estimation of kinematics, and a
neural controller that drives a synthetic arm. The vision of the entire system is to acquire kinematics from the analysis
of video sequences during planar arm movements and to use it together with a neural inverse dynamics model able to
provide the patient with the electrical stimulation patterns needed to perform the movement with the assisted limb.

Methods: The markerless motion tracking system aims at localizing and monitoring the arm movement by tracking its
silhouette. It uses a specifically designed motion estimation method, that we named Neural Snakes, which predicts the
arm contour deformation as a first step for a silhouette extraction algorithm. The starting and ending points of the arm
movement feed an Artificial Neural Controller, enclosing the muscular Hill's model, which solves the inverse dynamics
to obtain the FES patterns needed to move a simulated arm from the starting point to the desired point. Both position
error with respect to the requested arm trajectory and comparison between curvature factors have been calculated in
order to determine the accuracy of the system.

Results: The proposed method has been tested on real data acquired during the execution of planar goal-oriented arm
movements. Main results concern the capability of the system to accurately recreate the movement task by providing a
synthetic arm model with the stimulation patterns estimated by the inverse dynamics model. In the simulation of
movements with a length of ± 20 cm, the model has shown an unbiased angular error, and a mean (absolute) position
error of about 1.5 cm, thus confirming the ability of the system to reliably drive the model to the desired targets.
Moreover, the curvature factors of the factual human movements and of the reconstructed ones are similar, thus
encouraging future developments of the system in terms of reproducibility of the desired movements.

Conclusion: A novel FES-assisted rehabilitation system for the upper limb is presented and two parts of it have been
designed and tested. The system includes a markerless motion estimation algorithm, and a biologically inspired neural
controller that drives a biomechanical arm model and provides the stimulation patterns that, in a future development,
could be used to drive a smart Functional Electrical Stimulation system (sFES). The system is envisioned to help in the
rehabilitation of post stroke hemiparetic patients, by assisting the movement of the paretic upper limb, once trained with
a set of movements performed by the therapist or in virtual reality. Future work will include the application and testing
of the stimulation patterns in real conditions.
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Background
Rehabilitative practice in stroke survivors has strength-
ened its empirical foundation on the basis of the recent
advances in neuroscience methods, which led to deeper
understanding of motor control and learning mecha-
nisms, also on the basis of the recent discoveries regarding
cells injury and regeneration [1]. In particular, long-term
potentiation (i.e. where synapses are able to encode new
information to represent a movement skill) is considered
to have a key-role for the restoration of impaired func-
tions. A critical element for the success of these mecha-
nisms resides in the repetition of similar inputs for the
motor cortex: these inputs, in fact, act as a biological
teacher for the neuronal acquisition of novel skills. This
process could be easily implemented through experience
and training, which induce physiological and morpholog-
ical plasticity, by strengthening synaptic connections
between neurons encoding common functions [2]. Thus,
the key concept behind the neurological rehabilitation is
the repetition of movements in a learning-by-examples
paradigm: by repeating movements, in either passive or
assisted way, the brain is exposed to reinforcement and
the neurons strengthen their connections.

To accomplish this purpose, the restoration of motor
functions in people recovering from cerebrovascular dis-
eases is typically achieved by means of adaptive equip-
ments and environmental modifications [3,4]. Significant
improvement is being made in understanding the cellular
and molecular events of cell injury and regeneration, and
the paradigm of the massive repetition of movements to
strengthen functional outcome is a necessity thus forcing
new clinical treatments to exploit these new discoveries
[5-10].

Functional Electrical Stimulation (FES) is one of the most
used technologies for restoring the functions of patients
affected by neurological pathologies. By electrically acti-
vating the muscular system, FES is increasingly recognised
as therapy and treatment for subjects impaired by stroke,
multiple sclerosis and cerebral palsy [11,12]. The electri-
cal stimulation has overcome the simple functional limb
substitution [13], and has been proved as a successful
therapy tool both in lower [14] and in upper limb move-
ments [15]. These encouraging results have recently
brought to the development of FES-assisted rehabilitation
programs for hemiplegic patients [16], thus disclosing the
idea of functional electrical therapy, FET [17]. Currently,
FET systems make use of residual motor functions [18] or
EMG recordings from muscular activity [19]. Recent tech-
nologies include non-invasive stimulators, like the hand-
master [20] and the bionic glove [21], but the presence of
external devices does not appear desirable for patients
with neurological injuries. Novel and more sophisticated
technologies, able to convey FES-based rehabilitation pro-

grams in an automatic and non-invasive way, are thus
needed.

Following this objective, a new non-invasive FES-assisted
rehabilitation system for the upper limb is here presented:
the electrical stimulation is controlled by a biologically
inspired neural inverse dynamics model, fed by the kine-
matics associated with the execution of a planar goal-ori-
ented movement. The system, called smartFES (sFES),
exploits the recent neurological discoveries on the effect of
the repetition of rehabilitation exercises for the recovery
of motor functions in stroke survivors.

Figure 1 shows the flow diagram of sFES, which is com-
posed by four main blocks. The first block uses a marker-
less analysis to track the position of the healthy arm. This
is being accomplished without using any kind of sensor or
marker applied to the patient. In the second block a
human machine interface (HMI, not discussed here),
based on subject gaze interpretation, gives information
regarding the intention of the subject (that is, where the
arm has to go to). A neural controller then uses this infor-
mation, regarding "where the arm is" and "where it is
going to", to generate the specific outputs. These outputs
are the muscular forces which are necessary for the execu-
tion of the specific movement via the FES block that pro-
vides the corresponding electrical stimulation.

As a proof of concept, in the current paper only the mark-
erless silhouette tracking algorithm and the neural con-
troller for the execution of point to point planar
movements of the upper limb will be presented. In fact,
these steps are crucial in designing a system which could
help patients in recovering movements through FES,
because they estimate the movement and solve the inverse
problem in terms of the pattern of stimulation needed for
accomplishing the desired movement. For the HMI differ-
ent approaches are possible, while the implementation of
the FES stimulator is the next step in our research pro-
gram.

The use of a markerless motion estimation method for
controlling a FES-based rehabilitation exercise is a novelty
in the research area. There is a rich literature on various
human motion analysis techniques which estimate limb
poses from video sequences for different purposes, like
video surveillance [22], human-computer interaction
[23], gesture recognition [24] and biomechanical applica-
tions [25]. The approaches can be grouped in model-
based and model-free methods (see [26] for a review). The
first group uses human body models in order to estimate
the limb poses from the video sequences. These
approaches generally need more than one video camera
capturing the movement of the entire body and present
high computational costs. On the other hand, model-free
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methods rely on the motion estimation of single pixels
belonging to the body limbs [27], or on the extraction of
the body silhouette [28]. The first approach is basically
sensitive to noise and light changes, and needs an initial-
ization phase for the selection of the pixels of interest.
Conversely, the silhouette-based motion estimation
appears a good compromise between computation time,
automatism and robustness. Edge detectors [29] can be
extracted robustly and at low cost, but they are unsuitable
to deal with cluttered backgrounds or textured clothing.
Therefore, silhouettes are usually located with contour or
shape approaches that are more accurate than edge detect-
ing techniques in tracking non-deformable objects
[30,31]. A recent optimization of the Snake algorithm
[32], which allows to extract the silhouette of deformable
objects, like human body limbs, had been proposed by
the authors of this paper [33]. The method, called Neural
Snake, appears to be a sound choice for the sFES system
where a trade-off between computation time and accuracy
is needed.

The second block of the sFES system is a biologically
inspired controller of the stimulation waveforms for the
arm. Even though some pioneering work has been found
in literature [34], a neural FES controller has not yet been
deeply investigated. For this purpose, Artificial Neural
Networks (ANN), which have been firstly hypothesized as
biologically reasonable controllers [35], are proven to be
an efficient tool for the resolution of the inverse kinemat-
ics [36]. The aim of the ANN is therefore to replace a con-
troller activated step-by-step by the patient (for instance,
with the contraction of residual muscles) with a high level
motor controller driven by the action to be implemented

(i.e. move the arm from position A to B, reach an object
and so on) [37]. For this purpose, after receiving the infor-
mation regarding the desired movement, the stand alone
neural controller drives the stimulator block to make the
assisted arm move in the requested way. Therefore, the
rehabilitation exercise will be composed of movements
shown by a "healthy teaching arm" and reproduced by
means of the neural driven sFES.

Methods
The markerless motion estimation method
The first step of the proposed sFES system is the marker-
less motion estimation of the healthy arm pose. For this
purpose, silhouette approaches, like Active Contour Mod-
els (Snakes), offer a partial solution because they imply
that the shape has to be preserved during the movement.
However, in human movement analysis it is often needed
to track silhouettes whose shape is largely changing from
frame to frame, and dealing with this issue is increasingly
more demanding in presence of low acquisition frame
rates with respect to the velocity in the execution of move-
ment. Therefore, in order to apply the Snake algorithm in
the dynamic context, the present study introduces a new
approach, called Neural Snakes (NS).

The algorithm is based on the design of a specific ANN
(ANN1 in the following) which works in a two-steps
basis: firstly, it predicts the deformation of the contour
shape on a frame by frame basis, then this coarse estima-
tion of the silhouette position is refined by means of the
Snake algorithm described in [32]. In this way, the NS
algorithm is able to track the changes in the silhouette far
better than the simple Snake algorithm.

Block diagram of the proposed systemFigure 1
Block diagram of the proposed system.
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In the following, the different phases composing the
markerless motion estimator are described, with reference
to Figure 2.

The video sequences, used in the training phase, have
been captured in a controlled environment where upper
limb movements are executed under constant and bright
lights. The image contrast has been increased by using spe-
cific libraries from a video capture/processing utility [38]
and successively a sharpening filter has been applied (Fig-
ure 3). Then, after filtering through a 5-by-5 median filter,
the arm silhouette is extracted as reported in Canny [39]
and uniformly sub-sampled (for frames shown in Figure
2, the number of points is 22).

The edge points are then used as contour points (CP) for
the Snake algorithm where their matching to the image
contour is achieved by minimizing a cost function,
defined "energy". As explained in [32], the contour is a
controlled discrete spline function that can be parametri-
cally represented by a sequence of samples v(s):

v(s) = (x(s), y(s)) (1)

The energy expression, in case of N contour points CP(i)
(i = 1,..., N), where the samples v(s) are evaluated at s = si,
is the following:

where the internal energy Eint can be written as a function
that includes the inter-points distance and the contour
curvature

and where α and β are respectively the measure of elastic-
ity and stiffness of the Snake. The first derivative term
makes the Snake act like a membrane, where the constant
α controls the tension along the contour. On the other
hand, the constant β and the second order term drives the
rigidity of the curve (if β is zero, the contour is discontin-
uous in its tangent, i.e. it may develop a corner at that
point).

The external energy of the Snake, Eext, is derived from the
image data to make the Snake be attracted to lines, edges
and terminations:

Eext = Eline + Eedge + Eterm (4)

where

and f(x, y) is the image intensity, θ(x, y) is the gradient
direction along the contour and nr is an unit vector per-
pendicular to the gradient direction.

The application of the described energy minimizing pro-
cedure on the N contour points extracted from the con-
trolled video sequences generates the training set of the
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Graphical representation of the proposed algorithm to obtain the training set of the Neural Snake systemFigure 2
Graphical representation of the proposed algorithm to obtain the training set of the Neural Snake system.
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ANN1. The resulting horizontal and vertical positions of
the contour points, together with their velocities and
accelerations, are used to estimate the dynamics of shape.

ANN1 is a Multi-Layer Perceptron composed of 2 hidden
layers that are composed of 15 neurons each. This config-
uration has been chosen after a trial-and-error optimisa-
tion with respect to complexity, accuracy and real-time
implementation. The network is fed by the horizontal and

vertical components of position , velocity

 and acceleration  of all the

contour points n (n = 1,..., N) in the current frame (i-1)
(which means that the number of the input neurons is N
× 6). The (N × 2) outputs are given by the horizontal and
vertical components of the position of the contour points
in the subsequent frame i. For the training phase, a Resil-
ient Back Propagation algorithm has been chosen. At the
end of the training of ANN1 (2000 epochs were necessary
for convergence), the network is used as a shape contour
predictor for the arm motion estimation in an uncon-
trolled environment. Both the ANN1 training procedure
and its application in the NS method are shown in Figure
4.

Therefore, in an uncontrolled video sequence, the arm
movement is firstly predicted by the trained ANN1 and
then corrected with a fine estimation by using the Snake
algorithm. For each frame i, the output of the predictor
(the N predicted contour points) and the i-th frame of the
video sequence are processed by the Snake algorithm in
order to minimise eq. (2). The result is the silhouette pose

estimation over time. Moreover, the CP positions
obtained with the NS approach allow the estimation of
elements characterizing the kinematics of the gesture,
such as the position of the wrist as the end point, or the
shoulder joint behaviour.

The NS had been previously tested on synthetic video
sequences with different values of signal-to-noise ratio
(SNR) [33] in order to evaluate its accuracy: the results
showed a RMSE lower than 1 cm and almost independent
on the SNR. Moreover, comparative tests on real video
sequences had shown the improvement of NS in tracking
deformable shapes as compared to the Snake algorithm.

Therefore, the proposed markerless silhouette tracking
algorithm can be confidently used for the estimation of
the arm position, which drives, together with a HMI, the
neural motor controller.

The neural controller of the upper limb model
The trajectory parameters extracted by the NS algorithm
are used to drive a neural controller which activates a bio-
mechanical model of a simulated human arm and con-
trols the FES. To this purpose, and according to [36], a
second ANN (ANN2 in the following) implements the
neural controller which solves the inverse dynamic prob-
lem. Once the movement intended by the subject is
known (it can be simply specified in terms of starting and
ending coordinates of the movement and provided by the
HMI), the controller generates the neural activations that
will make the artificial muscles produce the forces neces-
sary to drive the arm model. The outputs of ANN2 are
used by the so-called Pulse Generator block, which builds
the waveforms needed to generate the muscular activa-
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66th frame of one of the video sequences used for training ANN1Figure 3
66th frame of one of the video sequences used for training ANN1. a) Original frame. b) Frame after the application of the 
image enhancer. c) Points obtained after the sub-sampled edge detector.
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tions. The scheme of the whole controller is shown in Fig-
ure 5.

The arm model is composed of two joints (two degrees of
freedom) and four muscle-like actuators (agonist and

antagonist pair for both shoulder and elbow joint), which
execute the planar movement on the basis of the muscular
activations. The skeletal structure of the simulated biome-
chanical arm consists of two segments, with lengths L1
and L2, which represent the forearm and the upper arm

Graphical representation of the proposed algorithm for the upper arm silhouette trackingFigure 4
Graphical representation of the proposed algorithm for the upper arm silhouette tracking.
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respectively, connected through two rotoidal joints. The
planar joints that connect the two segments can assume
angular values in the range [0, π]. These values are in cor-
respondence with the Cartesian coordinates of the free
end in the working plane by means of well known direct
kinematic transformation. The muscular structure is sim-
ulated by means of four Hill's type muscle-like actuators,
and establishes the dynamic relationship between the
position of the arm and the torques acting on each joint
[40]. Body segment anthropometrics and inertias of both
upper arm and forearm are obtained from the scientific
literature, taking into account the specific body height and
weight [41].

ANN2 has been designed by using a Multi-Layer Percep-
tron with two hidden layers, fed by four inputs, represent-
ing the coordinates of the starting and the ending points
of the movement to be generated. The hidden layers are
composed by 20 neurons each, while the output layer
gives three values representing respectively: the time of co-
contraction of the muscular pairs of both the shoulder
(Tcoact shoulder) and the elbow joint (Tcoact elbow), together with
the duration of the overall neural activations (Tall). These
parameters are provided to the Pulse Generator block,
which transforms them in a train of efferent nervous
spikes necessary to drive the movement. Figure 6 depicts
the profile of these neural activations having rectangular
shapes, and shows the duration of the entire voluntary
task ranging in the interval 300 ms – 1 s.

The network has been trained by a Resilient Back Propaga-
tion algorithm. Around 200000 epochs are necessary to
train ANN2. Details on the implementation of the neural
controller can be found in [36].

Two steps of the non-invasive FES-assisted rehabilitation
system for the upper limb have been presented. In synthe-
sis, once acquired a video sequence of an healthy arm
movement, the neural controller makes it possible to
extract the muscular activations that are necessary to make
the synthetic arm execute the presented task.

Experimental tests
The experimental tests have been done by recruiting 2
healthy subjects. During tests, the subject sits on a chair in
front of a desk whose height is the same of the subject's
armpit. By reaching different points on the desk surface, it
is thus possible to approximate the overall upper limb
kinematics through its projection on to the desk plane.
Three target points are set on the table surface and a digital
video camera (Silicon Imaging MegaCameras SI-
3300RGB) records the movements from an upper view
with spatial resolution 1024 × 1020 pixels. The experi-
mental protocol consists of a series of 3 fast reaching
movements (a triangle) executed with the "healthy teach-
ing arm" towards three different targets, considering the
centre of the closed hand as the end-effector. In the exper-
imental tests, the left upper limb has been considered as

Neural activations of both the shoulder and the elbow mus-cle pairFigure 6
Neural activations of both the shoulder and the elbow mus-
cle pair. Tall is the total time of neural activations, the same 
for the two joints; the two Tcoact values represent the inter-
val of co-activation of flexor and extensor muscle. The value 
of 1.5 s is the total observation time.

Graphical representation of the proposed method for the neural controller of the upper limb modelFigure 5
Graphical representation of the proposed method for the neural controller of the upper limb model.
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the "healthy teaching arm". Figure 7 shows the experi-
mental setup.

The video sequence used for training the Snake predictor
ANN1 has been acquired at 60 fps and the arm move-
ments have been executed slowly.

After the ANN1 training phase, two video sequences of
natural arm movements have been acquired at 30 fps
(frame rate commonly used in commercial low costs dig-
ital cameras), the proposed NS method has been applied
and the close hand and shoulder positions have been esti-
mated over time.

Experimental trials have been performed for assessing the
capability of the neural controller to make the synthetic
arm execute movements corresponding to those deter-
mined by the markerless algorithm. In order to evaluate
the performance of the two system blocks, a number of
parameters have been extracted from the trajectories of the
different movements.

The Cartesian coordinates of the three targets reached by
the subject's arm have been expressed in a reference sys-
tem centred in the shoulder, and the obtained values have
been fed to the neural controller. Both the starting and the
ending points of the three trajectories have been estimated
via the NS algorithm. For each pair of points, ANN2 has
been run to generate the neural excitations that enable the
biomechanical arm model to execute a movement similar
to the video-acquired one.

Indicating with Pj = (pxj, pyj) the horizontal and vertical
coordinates of the target point j (j = 1, 2, 3) and with Tj =

(txj, tyj) the trajectory executed leading to the target point
j, two measures have been considered as indexes of accu-
racy of the NS algorithm and the neural controller.

Firstly, the mean absolute value of the position errors
(PEj) between the true and the estimated (by the NS) j-th
target position has been considered:

where the estimated target position is indicated with the
superscript e and the true one with the superscript t.

Subsequently, the difference between the estimated (by
the NS) and the reconstructed (by the neural controller)
trajectory have been evaluated by extracting the error
trend, calculated in the following way for each trajectory
Tj:

where the estimated trajectory is indicated with the super-
script e and the reconstructed one with the superscript r.

Furthermore, the curvature of the reconstructed move-
ments has been chosen as a measure for evaluating the
system performance. In literature, it is reported that ballis-
tic natural movements are typically smooth and with a
limited curvature [42-44]. According to the definition of
curvature reported by [42], we used the ratio between the
trajectory length and the Euclidean distance between the
starting point and the arrival point:

where the numerator is the length of the j-th trajectory
(composed of H points)

and the denominator is the distance between the starting
and arrival points of the j-th trajectory.

Results
Figure 8 shows the results of the proposed silhouette
detector and the obtained trajectories on selected frames
of the video sequence: the NS algorithm successfully
extracts the arm movement.
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Experimental setup for the markerless estimation algorithmFigure 7
Experimental setup for the markerless estimation algorithm.
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The end-effector positions, estimated by NS, are then pro-
vided to the neural controller, see Figure 9, where the two
triangular trajectories are compared. From these results it
emerges that any image containing the arm movement
can reliably feed the neural controller to drive the biome-
chanical model.

The PEi, as defined in (6), is presented in table 1: the
obtained figures, with a mean value of 1.5 cm, have the
same order of magnitude of the ones obtained with syn-
thetic video sequences in [33]. Therefore, the results
obtained with the proposed markerless arm motion esti-
mation method are encouraging.

The error Ej between the estimated and the reconstructed
j-th trajectories is shown in Figure 10. The error is lower
than 1.5 cm for the 1st and the 3rd movement. The

increased value obtained for the middle movement could
be linked with the inherent increased variability due to
the non zero velocity in correspondence to that point.

Finally table 2 shows the comparison between the esti-
mated values and the reconstructed ones in terms of cur-
vature, following the (8).

The mean curvature is 1.03 for the movements estimated
by NS and 1.06 for the ones reconstructed by the neural
controller. These values are in accordance to the results
reported in [42]. Therefore, the obtained movements
show a good agreement, not only for the final points but
also for the trajectory.

Conclusion
The proof of concept of a new non-invasive FES-assisted
rehabilitation system for the upper limb has been pre-
sented. In the system, called smart FES (sFES), the electri-

Close hand estimated trajectory (up) and output of the Neu-ral Controller (down) that provides the reconstructed arm trajectoryFigure 9
Close hand estimated trajectory (up) and output of the Neu-
ral Controller (down) that provides the reconstructed arm 
trajectory.

Upper limb silhouette estimation by means of the Neural Snake (solid line) and close hand estimated trajectory (dot line) on some relevant frames of the video sequenceFigure 8
Upper limb silhouette estimation by means of the Neural 
Snake (solid line) and close hand estimated trajectory (dot 
line) on some relevant frames of the video sequence.
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cal stimulation, necessary to assist a goal-oriented planar
movement of one upper limb, is controlled by a biologi-
cally inspired neural controller, a HMI and a healthy arm
motion detector. Four main blocks compose the overall
system. The first one is dedicated to the markerless analy-
sis of the healthy arm during planar movements from
which information regarding the trajectory and the cur-
rent position of the "healthy teaching arm" is obtained. In
the second block a HMI based on gaze tracking and inter-
pretation (not described here) will give information

regarding the intention of the subject (which position the
arm is going to). Then, the neural controller uses the out-
puts of the first and the second blocks for generating the
specific outputs, which are the stimulations necessary to
make the FES-assisted arm execute the movement.

In this paper, the markerless motion estimation method
and the neural controller have been presented. The
approach has been tested on real data and comparative
results between the real, the estimated and the recon-
structed target positions have been reported. Experimen-
tal results shows mean errors lower that 2 cm and are
particularly encouraging for the future development of the
system. Moreover, from the comparison of the arm trajec-
tories estimated by the markerless algorithm and the ones
reconstructed by the neural controller it emerged that cur-
vature indexes are comparable and in accordance with the
values found in literature.

Error trends for each movement of the triangular trajectoryFigure 10
Error trends for each movement of the triangular trajectory.

Table 1: 

Via-points of the overall trajectory PEi (cm)

P1 1.12
P2 1.96
P3 1.34
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In the future, the other two blocks of sFES will be
designed. In particular, a HMI system, based on gaze iden-
tification, will process the subject motion intention in
order to define the arm trajectory. Moreover, the neural
controller outputs will be used to generate the electrical
stimuli of the FES system that will make an assisted arm
perform rehabilitation exercises.
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