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A plant‑based meal reduces postprandial 
oxidative and dicarbonyl stress in men 
with diabetes or obesity compared 
with an energy‑ and macronutrient‑matched 
conventional meal in a randomized crossover 
study
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Abstract 

Background:  Increased oxidative/dicarbonyl stress and chronic inflammation are considered key pathophysiological 
mediators in the progression of complications in obesity and type 2 diabetes (T2D). Lifestyle and diet composition 
have a major impact. In this study, we tested the effects of a vegan (V) and a conventional meat containg (M) meal, 
matched for energy and macronutrients, on postprandial oxidative and dicarbonyl stress, inflammatory markers and 
appetite hormones.

Methods:  A randomised crossover design was used to evaluate T2D, obese with normal glucose tolerance and 
control participants (n = 20 in each group), with serum concentrations of analytes determined at 0, 120 and 180 min. 
Repeated-measures ANOVA was used for statistical analysis.

Results:  In T2D subjects, we observed decreased postprandial concentrations of oxidised glutathione (p ˂ 0.001) and 
increased glutathione peroxidase activity (p = 0.045) after the V-meal consumption, compared with the M-meal. In 
obese participants, V-meal consumption increased postprandial concentrations of reduced glutathione (p = 0.041) 
and decreased methylglyoxal concentrations (p = 0.023). There were no differences in postprandial secretion of TNFα, 
MCP-1 or ghrelin in T2D or obese men, but we did observe higher postprandial secretion of leptin after the V-meal in 
T2D men (p = 0.002) compared with the M-meal.

Conclusions:  The results show that a plant-based meal is efficient in ameliorating the postprandial oxidative and 
dicarbonyl stress compared to a conventional energy- and macronutrient-matched meal, indicating the therapeutic 
potential of plant-based nutrition in improving the progression of complications in T2D and obese patients.
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Introduction
Type 2 diabetes (T2D) and obesity are associated with 
postprandial dysmetabolism, a state that significantly 
contributes to the development of associated complica-
tions [1]. It has been recently suggested that non-fasting 
glucose and, particularly, postprandial concentrations of 
blood glucose and lipids are reliable predictors of cardio-
vascular disease [2, 3]. A prolonged postprandial period 
may induce pro-oxidant conditions and pro-inflamma-
tory activity, both of which are implicated in micro- and 
macrovascular damage [1].

Abnormal postprandial elevations of plasma glucose 
and lipids in T2D are associated with oxidative stress, 
increased inflammation, hypercoagulation and impaired 
secretion of gastrointestinal hormones [4, 5]. Our previ-
ous findings from a study involving T2D patients showed 
that postprandial oxidative stress occurred indepen-
dently of alterations in gastrointestinal peptides [6]. It has 
been recently suggested that postprandial formation of 
dicarbonyl compounds, toxic reactive metabolites from 
glucose and lipids, may be involved in the development 
of vascular complications of diabetes [7]. Dicarbonyls 
interact with proteins to form advanced glycation end 
products, which can damage the endothelium and impair 
vasorelaxation [8].

The management of postprandial dysmetabolism rep-
resents an important strategy in the treatment of T2D 
and its complications. One important element of this 
approach is diet composition. The preventative and ther-
apeutic effects of vegetarian diets on diabetes have been 
examined over recent decades and have been shown at 
least as beneficial as pharmacotherapy in diabetes man-
agement [9]. Vegetarian diets are inversely associated 
with the risk of developing diabetes and are associated 
with two-fold lower the prevalence of T2D [10]. In a pre-
vious clinical interventional study, a vegetarian diet led 
to greater weight loss and improved glycemic control, 
insulin resistance and oxidative stress markers compared 
to a conventional hypocaloric diet [11]. Furthermore, 
our previous randomised crossover study reported that 
a plant-based meal increased postprandial secretion of 
gastrointestinal hormones more effectively than a pro-
ceseed meat meal in obese and T2D men [12]. Another 
study found improvements in postprandial incretin 
and insulin secretion after a plant-based meal in T2D 
patients, highlighting the therapeutic potential of this 
type of diet in improving β-cell function [13]. In this 
secondary analysis of previously published data [14], we 

have tested postprandial response to a plant-based meal 
compared with an energy- and macronutrient-matched 
conventional meal on oxidative and dicarbonyl stress, 
inflammation and appetite hormones in T2D and obese 
patients. Our hypothesis was that a plant-based meal 
would stimulate postprandial appetite hormones secre-
tion and produce lower postprandial response of oxida-
tive and dicarbonyl stress compared with a conventional 
meal, particularly by decreasing the serum concentra-
tions of oxidized glutathione (primary outcome), and by 
decreasing glutathione peroxidase activity and reduced 
glutathione (secondary outcomes). The results of the 
study may help build the evidence base for dietary guide-
lines for T2D and obese patients.

Materials and methods
Study subjects and design
The methods have beedn described in detail previously 
[14]. Breinfly: This randomised crossover study group 
included 20 men with T2D, 20 obese men with normal 
glucose tolerance, and 20 healthy men. All individu-
als consumed two energy- and macronutrient-matched 
test meals in random order. The general metabolic char-
acteristics of each group are given in Table  1. Written 
informed consent was obtained from all participants 
prior to enrolment in the study. The study was approved 
by the ethics committees of Thomayer Hospital and the 
Institute for Clinical and Experimental Medicine, Prague, 
Czech Republic (protocol identification number G14-08-
42). The study was prospectively registed at ClinicalTri-
als.gov (Identifier: NCT02474147).

All participants were male and of Czech nationality. 
Men with T2D and at least three hallmarks of meta-
bolic syndrome (30–65  years of age; BMI, 25–45  kg/
m2; HbA1c, 42–105 mmol/mol) were treated by lifestyle 
alone or with oral hypoglycemic agents (metformin and/
or sulfonylureas) for at least 1 year. The obese men were 
BMI- and age-matched to men with T2D; the healthy 
men comprised age-matched controls with normal BMI 
(between 19 and 25 kg/m2) and normal glucose tolerance. 
Exclusion criteria were thyroid, liver or kidney disease, 
drug or alcohol abuse, unstable drug therapy, or signifi-
cant weight loss of more than 5% body weight in the pre-
ceding three months.

Randomization and interventions
The participants were randomly assigned in a 1:1 ratio 
a vegan meal or an energy- and marconutrient-matched 
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conventional meat containing meal based on a computer-
generated randomisation protocol. The randomization 
protocol was designed so as not to be accessed before-
hand, with the interventions unmasked. Outcome asses-
sors were blinded to the interventions.

All participants fasted for 10–12 h overnight. Diabetic 
patients avoided diabetes medication the evening before, 
and on the morning of, the assessment. The meal con-
sisted of either a conventional meat burger (M-meal) or a 
vegan burger (V-meal). Both meals were consumed with 
a hot caffeinated beverage. The composition of the test 
meals is given in Table 2. Each time, the participants were 
asked to eat the whole test meal. Tap water was allowed 

ad  libitum. Unaware of the sequence of interventions, 
participants arrived at the laboratory in the morning to 
be assigned one of the randomized test meals. The par-
ticipants were checking in for their meal assessments 
between 7–8:30 am. They usually finished their meal in 
15–20 min. The whole meal test took 3 h from finishing 
their meal. After a washout period of one week of stay-
ing on their usual meal plan, the participants returned to 
complete the opposite test meal. The participants were 
instructed not to change their usual dietary habits or 
physical activity during the study. All participants found 
both meals acceptable and nobody complained about any 
particular meal.

Analytical methods
Anthropometric measurements and blood pressure: 
Height and weight were measured using a stadiom-
eter with a calibrated scale accurate to 0.1  kg. Ensuring 
participants had been in a seated position be forehand, 
blood pressure was measured using the M6 Comfort 
digital monitor on three occasions at 2-min intervals. A 
mean value was calculated from the last two measure-
ments. Blood samples were drawn in the fasting state 
and then 30, 60, 120 and 180 min after the standard meal. 
After that, the samples were centrifuged and aliquots of 
plasma/serum were stored at − 80 °C for analysis. Plasma 
glucose was analysed using the Beckman Analyzer 
glucose-oxidase method (Beckman Instruments, Inc., 
Fullerton, CA, USA) and glycated haemoglobin using 
the VARIANT II Hemoglobin Testing System (Bio-Rad 
Laboratories GmbH, Munich, Germany). Plasma lipids 

Table 1  General characteristics of the study population

Adapted and published in our previous part of the study [13]

Significant difference between the groups of participants: * is used for difference between T2D and obese participants (* denotes p˂0.05, *** denotes p˂0.001), ¶ is 
used for difference between obese and control men (¶¶ denotes p˂0.01, ¶¶¶ denotes p˂0.001), # is used for difference between T2D and control men (## denotes 
p˂0.01, ### denotes p˂0.001)

T2D Obese Controls
n = 20 n = 20 n = 20

Age (years) 47.8 ± 8.2 43.0 ± 7.0 42.7 ± 7.1#

Weight (kg) 108.2 ± 11.9 103.4 ± 13.3¶¶¶ 77.4 ± 8.1###

Body mass index (kg/m2) 34.5 ± 11.9 32.7 ± 3.9¶¶¶ 23.8 ± 1.5###

Waist circumference (cm) 106.9 ± 23.6 109.0 ± 8.5¶¶¶ 85.0 ± 5.3###

HbA1c (mmol/mol) 48.5 ± 8.1*** 36.4 ± 3.0 36.1 ± 3.2###

Fasting plasma glucose (mmol/l) 7.2 ± 1.5*** 5.1 ± 0.3 5.1 ± 0.4###

Triglycerides (mmol/l) 2.1 ± 1.1 2.2 ± 1.1¶¶¶ 1.1 ± 0.6##

LDL-cholesterol (mmol/l) 2.6 ± 0.1* 3.3 ± 0.7 2.8 ± 0.7

HDL-cholesterol (mmol/l) 1.0 ± 0.2 1.0 ± 0.3¶¶¶ 1.5 ± 0.2###

Systolic blood pressure (mm Hg) 144.4 ± 13.4* 134.8 ± 7.6¶¶ 124.0 ± 11.4###

Diastolic blood pressure (mm Hg) 96.2 ± 8.8* 90.0 ± 6.8¶¶¶ 80.7 ± 5.6###

Duration of diabetes (years) 4.3 ± 3.3 – –

Table 2  Composition of the test meals

The postprandial state was measured after intake of a standard breakfast—one 
of two energy- and macronutrient-matched meals in a random order: either a 
plant-based meal (V-meal; tofu burger with spices, ketchup, mustard, tomato, 
lettuce and cucumber in a wheat bun) together with 300 mL of green tea, or a 
conventional meat meal (M-meal; cooked-pork seasoned meat in a wheat bun, 
tomato, cheddar-type cheese, lettuce, spicy sauce) together with 300 mL Café 
Latte [14]

V-meal M-meal

Total weight (g) 200 200

Energy content (kJ/kcal) 2154 (514.9) 2149 (513.6)

Carbohydrates (g) (%) 54.2 (44%) 55 (44.8%)

Proteins (g) (%) 19.9 (16.2%) 20.5 (16.7%)

Total fat (g) (%) 22.8 (39.8) 22 (38.6%)

Saturated fatty acids (g) 2.2 8.6

Fibre (g) 7.8 2.2
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were measured using enzymatic methods (Roche, Basel, 
Switzerland).

Inflammatory markers and appetite hormones: Con-
centrations of TNFα, MCP-1, leptin and ghrelin were 
determined by multiplex immunoanalysis based on 
xMAP technology using the MILLIPLEX MAP Human 
Metabolic Hormone Magnetic Bead Panel (HMHE-
MAG-34  K) (Millipore, Billerica, MA, USA) and the 
Luminex 100 IS instrument (Luminex Corporation, Aus-
tin, USA).

Oxidative stress markers: The whole blood level of 
reduced and oxidised forms of glutathione (oxidized 
from is the primary outcome and reduced form a second-
ary outcome) were determined using the Glutathione in 
Whole Blood—HPLC diagnostic kit (Chromsystems, 
Munich, Germany). The activity of glutathione peroxi-
dase (GPx, secondary outcome) was analysed using a 
glutathione peroxidase assay kit (Cayman Chemical, 
MI, USA). The serum level of ascorbic acid was meas-
ured using a spectrophotometric method as previously 
described [6].

Dicarbonyl stress markers: The concentration of 
methylglyoxal was determined after derivatisation with 
1,2-diaminobenzene using HPLC and fluorescence 
detection according to Fleming and Bierhaus as previ-
ously described [15]. A registered dietitian analyzed both 
meals, using a country-speficif food database and soft-
ware [16].

Statistical analysis
Sample size was estimated based on a power analy-
sis with an alpha of 0.05 and a power of 0.80 to detect 
between intervention differences in serum concentra-
tions of oxidized glutathione (primary outcome), using 
the PASS 16.0 Power analysis and sample size software, 
2018 (NCSS, Kaysville, UT, USA). Based on our prelimi-
nary data, after data transformation to achieve normal 
distribution, to have 80% power to detect a difference 
between the two meals would require 10 subjects in each 
group for the primary outcome and 14 subjects in each 
group were required for the secondary outcomes (glu-
tathione peroxidase activity and reduced glutathione). 

Assuming an attrition of 25%, the expected sample size 
is 18 in each group. Having 20 participants in each group 
would give us 93% power.

Intention to treat analysis was performed, using 
repeated-measures ANOVA. Group, subject and time 
factors were all included in the model as follows: inter-
individual (T2D vs. obese vs. controls); intra-individual 
(time taken to complete the meal test); and interaction 
between factors (divergence degree between the time 
profiles of each group). Sequence of meals was tested in 
a separate model and was not significant in any of the 
tested outcomes.

To eliminate skewed data distribution and heterosce-
dasticity, the original data was transformed to a Gaussian 
distribution to attain symmetric distribution in both pre-
dictors and dependent variables and, at the same time, 
to stabilize the variance (attaining homoscedasticity), 
by a power transformation using the statistical software 
Statgraphics Centurion, version XV from Statpoint Inc. 
(Herndon, Virginia, USA), as descibed in detail previ-
ously [17]. After performing the statistical tests, the data 
were then retransformed into the original scale, using a 
recurrent formula. For posthoc analysis, Duncan test for 
multiple comparisons with the correction for multiplicity 
was used. Analysis was carried out using PASS 2005 sta-
tistical software (Number Cruncher Statistical Systems, 
USA); the statistician was blinded to the meal assigne-
ment. Data are presented as the mean with 95% confi-
dence intervals (CI).

Results
The flow-chart showing the recruitment and follow-up 
of the participants is in Additional file 1: Figure S1. The 
general characteristics for the individual groups of partic-
ipants are shown in Table 1, with the macronutrient con-
tent of the test meals shown in Table 2. The meals were 
eaten in full by all study participants.

As shown in Fig. 1, there were no differences in plasma 
concentrations of glucose, triglycerides or free fatty acids 
between the M-meal and V-meal across all groups during 
the postprandial state, except for plasma glucose being 
slightly higher at 60 min after the V-meal compared with 

(See figure on next page.)
Fig. 1  Postprandial changes in plasma concentrations of glucose and lipids in T2D, obese and control subjects after a standard meal test consisting 
of either a conventional meat burger (M-meal) or a plant-based tofu burger (V-meal). Data are expressed as the mean with a 95% CI. * indicates the 
difference between T2D and obese men, ¶ difference between obese and control men, and # difference between T2D and control men at α = 0.05. 
(A) Plasma glucose (*, ¶, #). T2D: Meal: F = 1, p = 0.309; Time: F = 118.1, p < 0.001; Meal × Time: F = 0.3, p = 0.889. Obese: Meal: F = 3.6, p = 0.06; Time: 
F = 151.8, p < 0.001; Meal × Time: F = 1.5, p = 0.192. Controls: Meal: F = 6.2, p = 0.014; Time: F = 59.7, p < 0.001; Meal × Time: F = 1.7, p = 0.143. (B) 
Plasma triglycerides (*, ¶, #). T2D: Meal: F = 1.3, p = 0.259; Time: F = 20.9, p < 0.001; Meal × Time: F = 0.3, p = 0.887. Obese: Meal: F = 8.4, p = 0.004; 
Time: F = 34, p < 0.001; Meal × Time: F = 0.1, p = 0.987. Controls: Meal: F = 0.6, p = 0.432; Time: F = 16.4, p < 0.001; Meal × Time: F = 0.2, p = 0.921. (C) 
Non-esterified fatty acids (NEFA) (*, ¶, #). T2D: Meal: F = 0.6, p = 0.432; Time: F = 126.3, p < 0.001; Meal × Time: F = 0.9, p = 0.469. Obese: Meal: F = 0.2, 
p = 0.632; Time: F = 40.9, p < 0.001; Meal × Time: F = 1.4, p = 0.239. Controls: Meal: F = 1.5, p = 0.223; Time: F = 31.1, p < 0.001; Meal × Time: F = 0.3, 
p = 0.848
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the M-meal in healthy controls (but the values still being 
much lower compared with T2D and obese men), and 
triglycerides being higher at 120  min after the V-meal 
in obese men. In T2D men, we observed increased basal 
fasting levels in conjunction with higher changes and 
dynamics in the postprandial state for these parameters 
irrespective of the test meal. Plasma concentrations of 
triglycerides were inversely related to concentrations of 
free fatty acids.

Oxidative and dicarbonyl stress parameters
In general, after the plant-based V-meal, we observed 
improvements in oxidative and dicarbonyl stress parame-
ters in the postprandial state, particularly in T2D patients 
(Fig.  2). We observed significantly decreased levels of 
the oxidised form of glutathione (GSSG; (p ˂ 0.001) and 
increased GPx activity (p = 0.045) in T2D men after the 
V-meal compared with the M-meal. In obese men, we 
observed an increase in postrandial levels of reduced 
glutathione (p = 0.041) and lower postprandial concen-
trations of methylglyoxal (p = 0.023) after the V-meal 
compared to M-meal. In T2D patients, there were no sig-
nificant differences in methylglyoxal levels between the 
test meals, but postprandial methylglyoxal levels were 
markedly higher in men with T2D compared with obese 
and control subjects. In controls, postprandial levels of 
ascorbic acid tended to be more elevated after the V-meal 
compared to the M-meal (p = 0.053). The post-meal lev-
els of ascorbic acid in T2D and obese participants were 
lower than in healthy controls irrespective of the test 
meal.

Inflammatory parameters and appetite hormones
Inflammatory parameters and appetite hormones are 
presented in Fig. 3. Postprandial secretion of pro-inflam-
matory TNFα and MCP-1 in T2D and obese participants 
was not affected by the test meal consumed. However, 
compared to healthy controls, we observed markedly 
increased levels of both pro-inflammatory markers in 

T2D and obese men. In control subjects, V-meal com-
pared to M-meal significantly increased postprandial lev-
els of TNFα (p = 0.005), but, compared to T2D and obese 
men, the levels of TNFα in controls were markedly lower.

The concentrations of leptin were siginificantly higher 
after the V-meal in T2D (p = 0.002), as well as in con-
trol subjects (p ˂ 0.001). Plasma concentrations of leptin 
were markedly elevated in T2D compared with obese and 
control subjects, and were the lowest in healthy controls. 
Plasma concentrations of ghrelin were not significantly 
different after the test meals in either group and were 
reduced in T2D and obese men compared to healthy con-
trols. The postprandial dynamics of ghrelin in controls 
were far more pronounced than in T2D and obese men.

Discussion
This randomized cross-over study demonstrated that 
the plant-based V-meal improved postprandial oxida-
tive and dicarbonyl stress markers compared with a con-
ventional energy- and macronutrient-matched M-meal, 
particularly in men with T2D. We observed significantly 
decreased levels of GSSG and increased GPx activity in 
T2D men after the V-meal compared with the M-meal. 
In obese men, there was an increase in postrandial levels 
of reduced glutathione and lower postprandial concen-
trations of methylglyoxal after the V-meal compared with 
the M-meal. There were no differences in postprandial 
secretion of TNFα, MCP-1 or ghrelin in T2D or obese 
men, but we observed a higher postprandial secretion of 
leptin after the V-meal in T2D men and in healthy con-
trols, compared with the M-meal.

Oxidative and dicarbonyl stress
The increase in postprandial oxidative and dicarbonyl 
stress was less pronounced after the V-meal compared 
with the M-meal. The most prominent differences 
between both meals occurred in postprandial responses 
of glutathione and methylglyoxal. The V-meal reduced 

Fig. 2  Postprandial changes in plasma parameters of oxidative and dicarbonyl stress in T2D, obese and control subjects after a standard meal 
test consisting of either a conventional meat burger (M-meal) or a plant-based tofu burger (V-meal). Data are expressed as the mean with a 95% 
CI. *Indicates the difference between T2D and obese men, ¶ difference between obese and control men, and # difference between T2D and 
control men at α = 0.05. (A) Plasma GSH (*, #) T2D: Meal: F = 1.2, p = 0.274; Time: F = 0.8, p = 0.445; Meal × Time: F = 0.3, p = 0.757. Obese: Meal: 
F = 4.3, p = 0.041; Time: F = 1.6, p = 0.203; Meal × Time: F = 1.3, p = 0.293. Controls: Meal: F = 2, p = 0.161; Time: F = 0.9, p = 0.415; Meal × Time: 
F = 0, p = 0.961. (B) GSSG (*, #) T2D: Meal: F = 12, p < 0.001; Time: F = 2.4, p = 0.095; Meal × Time: F = 0.2, p = 0.835. Obese: Meal: F = 0.3, p = 0.62; 
Time: F = 0.7, p = 0.526; Meal × Time: F = 2.9, p = 0.062. Controls: Meal: F = 2, p = 0.166; Time: F = 0.4, p = 0.654; Meal × Time: F = 0, p = 0.984. (C) 
GPx activity (#). T2D: Meal: F = 4.1, p = 0.045; Time: F = 11, p < 0.001; Meal × Time: F = 0.9, p = 0.423. Obese: Meal: F = 2.1, p = 0.156; Time: F = 6.5, 
p = 0.002; Meal × Time: F = 0.4, p = 0.681. Controls: Meal: F = 0, p = 0.901; Time: F = 37, p < 0.001; Meal × Time: F = 0.2, p = 0.844. (D) Methylglyoxal 
(*, ¶, #). T2D: Meal: F = 3.7, p = 0.058; Time: F = 23, p < 0.001; Meal × Time: F = 0.4, p = 0.668. Obese: Meal: F = 5.4, p = 0.023; Time: F = 10.9, p < 0.001; 
Meal × Time: F = 0.3, p = 0.769. Controls: Meal: F = 0.1, p = 0.716; Time: F = 20, p < 0.001; Meal × Time: F = 1.1, p = 0.352. (E) Ascorbic acid (*, ¶, #). T2D: 
Meal: F = 0.2, p = 0.693; Time: F = 2.2, p = 0.122; Meal × Time: F = 0.4, p = 0.705. Obese: Meal: F = 2.1, p = 0.155; Time: F = 0.1, p = 0.869; Meal × Time: 
F = 0.3, p = 0.776. Controls: Meal: F = 3.9, p = 0.053; Time: F = 0.7, p = 0.502; Meal × Time: F = 0.1, p = 0.952
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Fig. 2  (See legend on previous page.)
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Fig. 2  continued

Fig. 3  Postprandial changes in plasma inflammatory markers and appetite hormones in T2D, obese and control subjects after a standard meal test 
consisting of either a conventional meat burger (M-meal) or a plant-based tofu burger (V-meal). Data are expressed as the mean with a 95% CI. 
*Indicates the difference between T2D and obese men, ¶ difference between obese and control men, and # difference between T2D and control 
men at α = 0.05. (A) TNFα (*, ¶, #). T2D: Meal: F = 0.6, p = 0.44; Time: F = 3.7, p = 0.007; Meal × Time: F = 0.6, p = 0.664. Obese: Meal: F = 0.6, p = 0.434; 
Time: F = 3.6, p = 0.008; Meal × Time: F = 0.3, p = 0.91. Controls: Meal: F = 8.1, p = 0.005; Time: F = 0.8, p = 0.544; Meal × Time: F = 0.3, p = 0.864. 
(B) MCP-1 (¶, #). T2D: Meal: F = 0.2, p = 0.671; Time: F = 7.8, p < 0.001; Meal × Time: F = 1.5, p = 0.211. Obese: Meal: F = 1.5, p = 0.228; Time: F = 3.6, 
p = 0.008; Meal × Time: F = 0.5, p = 0.775. Controls: Meal: F = 1.5, p = 0.23; Time: F = 3.9, p = 0.005; Meal × Time: F = 0.8, p = 0.517. (C) Leptin (*, ¶, 
#). T2D: Meal: F = 10.2, p = 0.002; Time: F = 7.4, p < 0.001; Meal × Time: F = 0.2, p = 0.951. Obese: Meal: F = 0.2, p = 0.633; Time: F = 4.6, p = 0.002; 
Meal × Time: F = 0.2, p = 0.945. Controls: Meal: F = 103.7, p < 0.001; Time: F = 4.4, p = 0.002; Meal × Time: F = 0, p = 1. (D) Ghrelin (¶, #). T2D: Meal: 
F = 1.4, p = 0.246; Time: F = 11.2, p < 0.001; Meal × Time: F = 1, p = 0.417. Obese: Meal: F = 2.4, p = 0.124; Time: F = 23.5, p < 0.001; Meal × Time: F = 1.9, 
p = 0.11. Controls: Meal: F = 1.7, p = 0.201; Time: F = 54.3, p < 0.001; Meal × Time: F = 0.4, p = 0.832

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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postprandial amplitudes of oxidative and dicarbonyl 
stress more than the M-meal. This suggests that a vegan 
nutrition may offer better protection against the gener-
ation of toxic metabolites involved in the development 
of complications caused by postprandial hyperglycemia 
and hyperlipidemia. One such toxic metabolite is meth-
ylglyoxal. This highly reactive dicarbonyl compound 
has emerged as a biomarker of diabetes and is closely 
associated with protein glycation and insulin resistance 
[18]. The generation of toxic metabolites during hyper-
glycemia and hyperlipidemia is implicated in the early 
development of diabetic complications whereby metab-
olites persist even after glucose and lipid normalization 
[19]. In our study, we have observed a lower postpran-
dial increase in methylglyoxal after the V-meal in obese 
individuals, compared with the M-meal. No significant 
difference between the test meals in terms of methyl-
glyoxal levels was observed in T2D men. However, in 
T2D patients, postprandial levels of methylglyoxal were 
markedly elevated compared to obese and control sub-
jects, thus increasing cardiovascular risk. Furthermore, 
decreased levels of reduced glutathione in T2D patients 
can induce both oxidative and dicarbonyl stress, while 
glutathione is involved in methylglyoxal degrada-
tion as a co-factor of glyoxalase-1 [7, 8], a glutathione 
dependent detoxifying enzyme. There is an interplay 
between the methylglyoxal pathway (its formation and 
metabolism) and oxidative stress, and glutathione plays 
an important role in both processes [20]. An increase 
in methylglyoxal levels seen in T2D men can occur 
under oxidative stress, probably due to several events 
including the lower glutathione concentrations. It has 
been demonstrated that higher plasma concentrations 
of methylglyoxal are associated with its accumulation 
in adipose tissue, which may affect the expression and 
secretion of pro-inflammatory cytokines [21]. These 
findings are consistent with the observed higher con-
centrations of methylglyoxal in T2D men in our study.

Bioactive compounds such as polyphenols and other 
antioxidants might be an important element in the ben-
eficial effects of a plant-based diet on oxidative stress. 
Dietary polyphenols, a large and heterogeneous group 
of bioactive compounds, exhibit protective antioxi-
dant properties and also activate transcriptional factor 
Nrf2. The Nrf2/ARE signalling pathway is an important 
defence system against exogenous and endogenous oxi-
dative stress injury [22]. In addition to their beneficial 
dietary effects, polyphenols are understood to possess 
immunomodulatory, anti-inflammatory [23], and even 
anti-diabetic properties [24]. Research in this emerg-
ing area is ongoing. To the best of our knowledge, a 
study comparing the post-meal response of methylg-
lyoxal to oxidative stress parameters in T2D patients 

has not yet been published. Our results in postprandial 
changes in methylglyoxal and glutathione in obese indi-
viduals suggest appropriate targets for an early dietary 
intervention.

V-meal consumed in our study increased postpran-
dial response in GPx activity in T2D patients, which may 
help alleviate postprandial oxidative stress. This response 
was different in T2D men from obese and healthy men. 
GPx activity can affect glutathione levels and this glu-
tathione-dependent antioxidant enzyme is also involved 
in the removal of lipoperoxidation products. Although 
we observed decreased levels of postprandial ascor-
bic acid in T2D and obese individuals compared with 
healthy controls, the meal type consumed did not affect 
the postprandial response in either group (although the 
ascorbic acid levels tended to be higher after the V-meal 
compared with the M-meal in healthy controls). Our 
results are in accordance with previous studies that have 
shown lower ascorbic acid levels in invividuals who were 
obese [25], had prediabetes or diabetes [26], suggesting a 
potential role of adiposity and insulin resistance in lower 
ascorbic acid levels. Another mechanism that may have 
affected the lower levels of ascorbic acid in T2D men, is 
that glucose and ascorbic acid have been shown to com-
pete for entry into the cells; therefore, a postprandial 
decrease in ascorbic acid would be more associated with 
hyperglycemia than hyperlipidemia, where glucose inhib-
its the input of ascorbic acid into the cells [27]. It is also 
interesting that postprandial levels of ascorbic acid and 
glutathione had an opposite relationship to each other in 
dynamics in our study, independent of the test meal.

Inflammation and appetite hormones
The postprandial state is a condition characterized by 
low-grade inflammation, whereby cells respond to acute 
elevations of carbohydrates, triglycerides, and fatty acids 
[28]. Previous studies have shown that postprandial 
hyperlipidemia and hyperglycemia increase TNFα lev-
els in healthy and T2D individuals [29], as well as in IGT 
subjects [30]. In our study, T2D and obese men exhibited 
increased postprandial levels of both TNF and MCP-1, 
compared with healthy controls. Therefore, both markers 
may be sensitive indicators of low-grade inflammation in 
obese and T2D individuals. However, no differences were 
observed in MCP-1 following the ingestion of different 
meals across groups. The slightly increased postprandial 
secretion of TNFα in the control group following the 
V-meal may have been due to the higher glucose levels 
at 60  min after the V-meal compared with the M-meal. 
However, both glucose and TNFα levels and their post-
prandial amplitudes in healthy controls were much lower 
than those in T2D and obese subjects. Due to high fast-
ing and postprandial levels of TNFα in T2D individuals, a 
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ceiling effect could have confounded potential differences 
between the test meals.

Obese and T2D men in our study exhibited diminished 
post-meal suppresion of ghrelin secretion and markedly 
increased postprandial levels of leptin compared with 
healthy controls. This finding corresponds with previous 
results reporting postprandial changes in ghrelin to be 
negatively associated with plasma triglycerides [6]. Plant-
based meal stimulated postprandial secretion of leptin 
more than the conventional meal in T2D and in healthy 
men. While the action of leptin is essential for energy 
metabolism, it is also involved in the lipid mobilisation of 
different fat depots and is understood to protect tissues 
during lipotoxicity [31]. Lipid oxidation can increase via 
leptin signalling and has been reported to reduce excess 
fatty acids [32]. In our study, the increased postprandial 
response of leptin after the V-meal may have led to such 
effects in T2D and healthy men, and the lack thereof may 
have contributed to higher triglyceride levels in obese 
men after the V-meal. As previously described [18], a 
plant-based diet increases satiety in T2D patients, and 
the current findings suggest that postprandial response 
of the appetite hormones leptin and ghrelin may play an 
important physiologic role.

Strengths, limitations, and interpretation
In comparison with the standard oral glucose toler-
ance test, the two different sandwich meal tests given 
to the participants in our study contained all the main 
nutrients, thus increasing physiological stimulation 
during the post-meal response. This enabled us to iden-
tify the mechanism that reflects more than just glucose 
metabolism. In addition, both meals were served in 
amounts usually ingested during a typical meal, render-
ing our results highly applicable. Representing one of 
the limitations of our study, we did not account for the 
habitual diets and dietary patterns of the participants 
when investigating their acute post-meal responses. 
Also, a longer-term study would be more accurate in 
determining the merits of a plant-based diet in slowing 
down and preventing the progression of complications 
in T2D and obese patients. Nevertheless, we were able 
to reveal differences in postprandial metabolic mecha-
nisms by comparing single-meal responses, which may 
assist futher research in preventing the development 
of associated complications. Also, dietary habits and 
nutritional status of participants may influence basal 
levels of some parameters observed during the meal 
tests.

Oxidative and dicarbonyl stress is a key mechanism 
in the development of vascular complications during 
the post-meal phase and should be considered a sepa-
rate therapeutic target for pharmacological as well as 

dietary interventions aimed at preventing such compli-
cations. A plant-based nutrition may be therefore rec-
ommended for T2D and obese individuals.

Conclusions
In conclusion, our results indicate that the plant-based 
meal ameliorated the exacerbation of postprandial oxi-
dative and dicarbonyl stress in T2D and obese men 
compared with a conventional energy- and macro-
nutrient-matched meal, and thus can provide better 
protection against the development of complications 
associated with diabetes and obesity. Further studies 
are needed to verify these effects, in particular after a 
long-term adherence to a plant-based diet.
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