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Background: The functions of most glioma risk alleles are unknown. Very few studies
had evaluated expression quantitative trait loci (eQTL), and insights of susceptibility
genes were limited due to scarcity of available brain tissues. Moreover, no prior study
had examined the effect of glioma risk alleles on alternative RNA splicing.

Objective: This study explored splicing quantitative trait loci (sQTL) as molecular
QTL and improved the power of QTL mapping through meta-analyses of both
cis eQTL and sQTL.

Methods: We first evaluated eQTLs and sQTLs of the CommonMind Consortium (CMC)
and Genotype-Tissue Expression Project (GTEx) using genotyping, or whole-genome
sequencing and RNA-seq data. Alternative splicing events were characterized using
an annotation-free method that detected intron excision events. Then, we conducted
meta-analyses by pooling the eQTL and sQTL results of CMC and GTEx using the
inverse variance-weighted model. Afterward, we integrated QTL meta-analysis results
(Q < 0.05) with the Glioma International Case Control Study (GICC) GWAS meta-
analysis (case:12,496, control:18,190), using a summary statistics-based mendelian
randomization (SMR) method.

Results: Between CMC and GTEx, we combined the QTL data of 354 unique
individuals of European ancestry. SMR analyses revealed 15 eQTLs in 11 loci and
32 sQTLs in 9 loci relevant to glioma risk. Two loci only harbored sQTLs (1q44 and
16p13.3). In seven loci, both eQTL and sQTL coexisted (2q33.3, 7p11.2, 11q23.3
15q24.2, 16p12.1, 20q13.33, and 22q13.1), but the target genes were different for
five of these seven loci. Three eQTL loci (9p21.3, 20q13.33, and 22q13.1) and 4
sQTL loci (11q23.3, 16p13.3, 16q12.1, and 20q13.33) harbored multiple target genes.
Eight target genes of sQTLs (C2orf80, SEC61G, TMEM25, PHLDB1, RP11-161M6.2,
HEATR3, RTEL1-TNFRSF6B, and LIME1) had multiple alternatively spliced transcripts.
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Conclusion: Our study revealed that the regulation of transcriptome by glioma risk
alleles is complex, with the potential for eQTL and sQTL jointly affecting gliomagenesis
in risk loci. QTLs of many loci involved multiple target genes, some of which were
specific to alternative splicing. Therefore, quantitative trait loci that evaluate only total
gene expression will miss many important target genes.

Keywords: glioma, quantitative trait loci, eQTL, SQTL, summary data based mendelian randomization analyses,
GWAS, meta-analysis

BACKGROUND

Gliomas are among one of the most devastating of rare
cancers and are ranked first among all cancers in terms
of average years of life lost (Rouse et al., 2016). The only
environmental risk factor consistently identified is ionizing
radiation (Ostrom et al., 2015). In the past decade, a number of
genome-wide association studies (GWAS) and a meta-analysis
of GWAS validated 25 risk alleles for glioma (Shete et al.,
2009; Wrensch et al., 2009; Sanson et al., 2011; Stacey et al.,
2011; Jenkins et al., 2012; Rajaraman et al., 2012; Enciso-
Mora et al., 2013; Walsh et al., 2014; Kinnersley et al., 2015;
Melin et al., 2017). The molecular mechanism of glioma risks
conferred by most of these variants is unknown. A method
to discover target genes of risk SNPs is molecular quantitative
trait loci (molQTL) mapping, using molecular and single-
nucleotide polymorphism (SNP) data from relevant cells and
tissues for that trait. Although the ascertainment of relevant
tissues for some traits had yielded surprising results, heritability
enrichment analyses confirmed non-diseased brain tissues as the
most relevant for diseases of the brain (Finucane et al., 2018;
Hormozdiari et al., 2018).

Previous analyses integrating expression quantitative trait
loci QTL (eQTL) data with glioma GWAS have provided
limited insights to date. One study used glioma datasets
from The Cancer Genome Atlas (TCGA) and lymphoblastoid
cell line data from Genetic EUropean VAriation in DISease
(GEUVADIS) (Lappalainen et al., 2013; Kinnersley et al.,
2015); two others utilized brain tissue data of Genotype-
Tissue Expression Project (GTEx), and one also used a blood
eQTL dataset (Westra et al., 2013; Melin et al., 2017; Wu
et al., 2019). Among the three studies, significant target genes
were identified in three loci using GTEx brain tissues but
none using glioma tissues from TCGA (Kinnersley et al.,
2015; Melin et al., 2017). Two more loci harbored significant
eQTL using genotyping and expression data from whole
blood, but significance of the results was unclear because
lymphocytes may not share heritability with central nervous
system (CNS) cells. Therefore, there is a need of a larger
QTL study or meta-analysis of QTLs based upon non-
diseased brain tissues.

Moreover, the scope of eQTL analyses published to date
was limited, because analyses often involved a limited number
of correlated regulatory SNPs in each locus and cis gene.
Recent functional assays suggested that few of the top GWAS
risk alleles are themselves functional or causal, and many are
in fact in linkage disequilibrium (LD) with one or several

functional SNPs in a given locus (Biancolella et al., 2014;
Fortini et al., 2014; Lawrenson et al., 2016; Buckley et al.,
2019). Moreover, studies have found that target genes may
not be the nearest gene to a risk SNP (Buxton et al., 2019;
Farashi et al., 2019). Thus, there is a need for a more
comprehensive QTL evaluation.

Approximately 48% of GWAS loci harbored eQTLs (Joehanes
et al., 2017). For those without eQTLs, the effect of risk
alleles may be mediated through alternative transcript splicing
rather than total gene expression. In fact, RNA splicing
is the most abundant within the brain (Yeo et al., 2004;
Vuong et al., 2016). It plays an important role in normal
function and development of the central nervous system (Vuong
et al., 2016). Numerous studies have demonstrated that de
novo germline mutations and germline variants contribute
to the risk of neurological diseases by affecting alternative
splicing (Xiong et al., 2015; Reble et al., 2018). Recently,
two independent genome-wide splicing QTL (sQTL) mappings
identified 8,966 and 9,028 sQTLs in the non-diseased human
brain involving > 3,000 genes, respectively, supporting the idea
that genetic variants commonly regulate gene transcription in
the brain via the formation of alternatively spliced transcripts
(Takata et al., 2017; Raj et al., 2018). Moreover, recent
sQTL evaluations have contributed additional target genes of
cancer risk variants (Gusev et al., 2019; Guo et al., 2020).
Therefore, adding sQTL to eQTL analysis may lead to the
discovery of alternative functional mechanisms not explained by
eQTL study alone.

Here, we sought to evaluate sQTLs in validated glioma
risk loci and to perform comprehensive eQTL and sQTL
meta-analyses. To our knowledge, no prior study evaluated
alternative spliced genes in glioma susceptibility. For this
purpose, we used a validated, annotation-free quantification
of the RNA splicing method to identify variable splicing
events from short-read RNA-seq data. Moreover, to conduct
both eQTL and sQTL meta-analyses, we pooled genotyping
or whole-genome sequencing and RNA-seq data from the
CommonMind Consortium (CMC), which is the largest resource
of postmortem brain tissues in the United States (US), and
GTEx (multiple brain tissues) for a combined sample size of
354 unique non-diseased individuals’ brain tissues (European
ancestry) (Fromer et al., 2016; GTEx Consortium et al.,
2017). In order to ensure that the same variants are likely
responsible for the signals in both GWAS and QTLs, significant
results from QTL meta-analyses were integrated with the
Glioma International Case-Control Study (GICC) GWAS meta-
analysis (Melin et al., 2017), using a summary data-based
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mendelian randomization method (SMR). Furthermore, we
evaluated functional enrichment of significant SNPs identified
through meta-analyses and SMR and further annotated SMR-
associated SNPs with publicly available ChIP-seq and RNA-
binding protein datasets.

MATERIALS AND METHODS

Study Datasets
We used SNP genotyping and RNA-seq data from the
CommonMind Consortium (CMC release 1.0) and Genotype-
Tissue Expression Program (GTEx version 7.p2) for this
meta-analysis (Fromer et al., 2016; GTEx Consortium et al.,
2017). Data generated for CMC came from postmortem
human brain specimens originating from the tissue collections
at three brain banks: Mount Sinai NIH Brain Bank and
Tissue Repository, The University of Pittsburgh Brain Tissue
Donation Program, and the University of Pennsylvania Brain
Bank of Psychiatric Illness and Alzheimer’s Disease Core
Center (Fromer et al., 2016). We used only RNA-seq and
genotyping data from 279 unique individuals (dorsal lateral
prefrontal cortex), who did not have neuropsychiatric diseases
or neurological insults immediately before death. Approval
was obtained from the National Institute of Mental Health
(NIMH) repository and genomic resources. The GTEx project
was established to characterize human transcriptomes within
and across individuals for a wide variety of primary tissues
and cell types (GTEx Consortium et al., 2017). Since > 90%
of glioma arise from the supratentorial compartment of the
brain (Larjavaara et al., 2007), we chose the RNA-seq and
SNP data of eight supratentorial non-diseased brain tissues
(anterior cingulate cortex, caudate nucleus, cortex, frontal cortex,
hippocampus, hypothalamus, nucleus accumbens, and putamen)
from 190 unique individuals for our analyses. Approval was
obtained from dbGAP.

Genotyping and Whole-Genome
Sequencing Data
CommonMind Consortium used the Infinium
HumanOmniExpressExome v1.1 DNA Analysis Kit (Illumina,
958,178 SNPs) for genotyping. Following exclusion of those
SNPs with genotyping call rate < 0.95, Hardy–Weinberg
P-value < 5 × 10−5, and those without alternate alleles, we
used Admixture v1.3.0 to ascertain ancestry and retained
the samples of 216 unique individuals of European ancestry
(Supplementary Table 1). We then performed imputation
using the Sanger Imputation Server, with the UK10K
and 1000 Genomes Phase 3 dataset as reference panels
(1000 Genomes Project Consortium et al., 2015; UK10K
Consortium et al., 2015). Those imputed SNPs with info
score ≥ 0.5 were kept.

For the GTEx Consortium data (v7 release), we extracted SNPs
from the genotype cell VCF file of whole-genome sequencing
data. There were 10,526,813 SNPs at MAF ≥ 0.01. Quality
control (QC) processes and admixture ascertainment were
the same as those of the CMC datasets. Following QC and

admixture analysis, we retained the genotyping data of 138
unique individuals of European ancestry for all subsequent QTL
analyses (Supplementary Table 1).

To compile a complete list of candidate regulatory SNPs (or
candidate functional SNPs) within the 25 glioma loci for eQTL
and sQTL mapping, we empirically defined the SNP regions
of interest as those localized ± 1.1 Mb from the top GWAS
meta-analysis SNPs; candidate SNPs must have an r2

≥ 0.2 with
those top SNPs. The distance of 1.1 Mb was chosen because
prior study had identified the 99th percentile of distance between
SNP and target gene to be approximately 1.1 Mb (Thibodeau
et al., 2015). Altogether, we extracted 4074 SNPs among the
25 loci. Moreover, we retrieved an additional 394 SNPs with
P-values ≤ 1 × 10−8 in the fine mapping analysis of the GICC
GWAS meta-analysis that have not yet been included among the
4074 SNPs (Melin et al., 2017). Some of these GWAS SNPs had
r2 < 0.2 with the top GWAS SNPs. Therefore, the final number
of candidate SNPs for both QTL mapping was a total of 4468
(Supplementary Figure 1).

RNA-Seq Data
CommonMind Consortium (release 1) RNA-seq data (N = 216)
were available as BAM files, which contained 100-bp paired-
end reads and ≥50 million total reads per sample (Fromer
et al., 2016). Sequencing was performed by using HiSeq2500
(Illumina). Sequencing libraries were prepared using rRNA
depletion procedures. Downloaded BAM files for mapped and
unmapped reads were merged by using SAMtools. Merged BAM
files were converted into the FASTQ format using bam2fastq
function within SAMtools.

We downloaded GTEx (v7) RNA-seq data from dbGAP as
SRA files and converted them to FASTQ files using the SRA
toolkit. Sequencing was performed using HiSeq 2500, which
generated 76-bp paired-end reads and ≥50 million reads. We
used a total of 670 FASTQ files from 138 unique individuals.

We processed FASTQ files from both CMC and GTEx using
the same pipeline. We mapped reads from FASTQ files to hg19
using STAR v2.6 (two pass mode), with GENCODE V19 as
the reference annotation (Dobin et al., 2013). FeatureCounts
was used to generate the gene-level counts from the aligned
reads (Liao et al., 2014). Quality control measures consisted
of the criteria that all genes had >5 reads across all samples
and <10 samples per gene had zero reads. Among the 25 loci
(located ± 1.1 Mb from top GWAS SNPs), a total of 1559
met the criteria and were retained in both datasets for eQTL
mapping. After quality control measures, we normalized and
variance stabilized gene counts using DESeq2 (Love et al., 2014).

Alternative RNA Splicing Quantification
To prepare for sQTL mapping, alternative transcripts were
first evaluated using LeafCutter, which is an established
method that used short-read RNA-seq data to detect intron
excision events at base-pair precision by analyzing mapped
split reads (Li et al., 2018). LeafCutter’s intron-centric view
of splicing is based on the observation that mRNA splicing
occurs predominantly through the step-wise removal of introns
from nascent pre-mRNA. The advantage of this method
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is that it does not require read assembly or inference of
isoforms supported by ambiguous reads, both of which are
computationally and statistically difficult. The detailed method
has been discussed elsewhere (Raj et al., 2018). Briefly, LeafCutter
pools all mapped reads, finds overlapping introns demarcated
by split reads, and then constructs a graph that connects all
overlapping introns sharing a donor or acceptor splice site.
The connected components of the graph form intron clusters,
which represented alternative intron excision events. LeafCutter
iteratively applies a filtering step to remove rarely used introns,
which are defined on the basis of the proportion of reads
supporting a given intron compared with other introns in
the same cluster, and re-clusters leftover introns. Across the
25 validated loci, there were a total of 518 target genes with
6326 alternatively spliced intron clusters that formed the basis
of sQTL mapping.

eQTL Mapping
We performed eQTL analyses with covariates including age, sex,
RIN scores, top three genotyping principal components, and 20
Probabilistic Estimation of Expression Residuals (PEER) factors,
which were calculated from the normalized RNA expression
matrices (Stegle et al., 2012). We used Matrix eQTL (v2.1.0)
and multilevel linear regression with random intercept (lme4
package in R v3.5) for eQTL analysis of the CMC and GTEx
datasets, respectively (Shabalin, 2012). Matrix eQTL does not
accommodate multiple correlated brain tissue expression data
from the same individuals; therefore, multilevel linear regression
was used for the analysis of GTEx eQTL data. We adjusted for
false discovery rate using the Benjamin–Hochberg method (FDR
Q < 0.05).

sQTL Mapping
We focused on the SNP–intron cluster that was within the
±100-kb window, as prior studies had reported that sQTL
are mostly concentrated within this genomic distance (Takata
et al., 2017; Raj et al., 2018). For sQTL identification, LeafCutter
found alternatively excised intron clusters and quantified intron
excision levels in all samples (Li et al., 2018). It then outputted
intron excision proportions, which was the number of reads
supporting a specific intron excision event to the total number
of reads from that intron cluster. The ratios were then
quantile normalized and used as input for Matrix eQTL and
multilevel linear regression in sQTL analyses of CMC and GTEx,
respectively. Covariates used were the same as eQTL mapping.
To adjust for false discovery rates, the number of intron excision
events in a cluster was first adjusted by Bonferroni correction,
and subsequently FDR correction (FDR Q < 0.05) was applied
for the number of sQTL per intron cluster. This 2-step multiple-
comparison adjustment method was recommended for sQTL
mapping with Leafcutter (Li et al., 2018).

eQTL and sQTL Shared Between CMC
and GTEx
To evaluate the sharing of eQTL and sQTLs between the two
datasets, we used Storey’s QVALUE software implemented in

R package (Storey and Tibshirani, 2003). The program takes a
list of p-values and computes their estimated π0, which is the
proportion of features that are truly null. Then, the quantity
π1 = 1 - π0 estimates the proportion of true positives (TP).
Sharing between two samples was reported as the proportion
of TP estimated from the p-value distribution of independent
QTLs discovered in the CMC dataset that is also present in
the GTEx dataset.

Meta-Analyses of eQTL and sQTL
For both eQTL and sQTL meta-analyses, we used the fixed-effect
inverse variance weighted model to combine summary statistics
(β and standard errors) of the CMC and GTEx. We used the I2
statistics to quantify the percentage of variation across studies
that is due to heterogeneity rather than chance and is inherently
not dependent upon the number of studies considered. We took
the I2 value ≥ 75 to indicate significant heterogeneity. The mean
overall I2 for all eQTL sand sQTLs were 0%, indicating overall
low level of heterogeneity. We conducted all meta-analyses using
METAFOR (v2.4) in R.

eQTL meta-analysis was considered significant at FDR
Q < 0.05. For sQTL meta-analysis, the same two-level multiple-
testing adjustment (described above) was applied.

Integration of QTL Mapping and GWAS
Data Using SMR Analyses
We integrated significant eQTL and sQTL meta-analysis
results with the GICC GWAS meta-analysis (case:12,496,
control:18,190) using summary-data-based mendelian
randomization (SMR) analysis (Zhu et al., 2016; Melin
et al., 2017). Approval for the GICC GWAS meta-analysis
was obtained from the European Genome–phenome Archive
(EGA). This SMR method assumed only one causal variant
(affecting both probes and a trait) in any given locus; therefore,
it tested the association between a trait and probes using the
effect size of the top associated cis-QTLs from eQTL and
sQTL mappings. A probe for eQTL was each significant target
gene and for sQTL the individual intron cluster region. The
input for the SMR analyses were significant QTL meta-analysis
probes at FDR < 0.05 and GWAS SNPs with associated
P-value < 5.0E-05. The 1000 Genome Project phase 3 data
was used as the reference sample for LD estimation and allele
frequency calculation (1000 Genomes Project Consortium
et al., 2015). According to the SMR methodology, significantly
colocalized QTLs must pass a pSMR threshold that is based
upon Bonferroni correction of the total number of probes tested,
which equated to the total number of target genes (eQTL)
and total number of intron cluster regions (sQTL), as well
as a pHEIDI > 0.05 without multiple-testing correction
(Zhu et al., 2016). For eQTL, the pSMR threshold was
8.20E-04 for 61 probes, and for sQTL, the threshold was
4.81E-04 for 104 probes.

Conditional Analyses
To find secondary QTL mapping signals, we performed
conditional analyses using Genome-wide Complex Trait Analysis
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(GCTA) in the cis-QTL regions, condition on the top cis-eQTL or
sQTL for significant probes found by SMR analyses (Yang et al.,
2012). We used our QTL meta-analysis summary statistics data of
GICC GWAS meta-analysis SNPs (P < 5.0E−05) for this purpose.

Enrichment Analyses of eQTL and sQTL
SNPs Within Epigenomic Marks and RNA
Protein (RBP)-Binding Sites
We evaluated the enrichment within epigenomic marks and RBP-
binding sites of our significant eQTL and sQTL meta-analysis
SNPs and SMR-associated SNPs. We carried out the enrichment
analyses using GREGOR (Genomic Regulatory Elements and
GWAS Overlap Algorithm) v1.3.1 (Schmidt et al., 2015). For
epigenomic marks, we retrieved the following publicly available
ChIP-seq data: H3K4me1, H3Kme3, H3K27ac, H3K9me3,
H3K27me3, H3K36me3, and DHS from Roadmap Epigenome
Consortium and NCBI GEO. ChIP-seq datasets of the following
cell types were considered: normal astrocytes, GBM stem cells,
neural stem cells, H9 cells, H9-derived neuronal progenitor cells,
and GBM cell lines (Supplementary Table 2). For RBP sites,
we downloaded all sites from cross-linking immunoprecipitation
(CLIP)-seq data of 171 human RBP collected within the CLIPdb
database and 371 from MotifMapRNA (Yang et al., 2015;
Liu et al., 2017). Files were converted to BED format and
concatenated together as a single annotation file before analyses.

GREGOR evaluates the significance of the observed overlap
by estimating the probability of the observed overlap of our
input SNPs relative to expectation using a set of matched control
variants. The control variants are random control SNPs selected
across the genome that match the input SNPs based upon the
number of variants in LD, minor allele frequency, and distance
to nearest genes or intron clusters. The P-value calculated by
GREGOR assumed a sum of binomial distributions to represent
the number of index SNPs that overlap a dataset compared to the
expectation observed in the matched control sets. In addition, we
adjusted the P-value using FDR (significance is Q < 0.05) due to
multiple testing.

Functional Annotation and Visualization
of SMR-Associated SNPs
We used SnpEff v4.3 to classify genomic positions of all SMR-
associated SNPs (Cingolani et al., 2012). We further annotated
these SNPs using the same set of publicly available ChIP-seq data
as mentioned above for enrichment analyses. ChIP-seq data in
BigWig files were aligned with LocusZoom plots in the UCSC
genome browser to illustrate overlaps of SMR-associated SNPs
within ChIP-seq peaks.

To evaluate the overlap of RNA-binding proteins (RBP)
at genomic locations of SMR-associated SNPs for sQTL, we
searched RBP-binding sites presented within CLIPdb and
MotifMapRNA, as mentioned above (Yang et al., 2015; Liu
et al., 2017). Furthermore, we used sQTLviztools (implemented
in R) for visualization of sQTL (Tapial et al., 2017). Since
LeafCutter does not provide a companion program for alternative
transcript annotations, we overlapped the genomic coordinates
of intron cluster regions with known alternatively spliced regions

downloaded from VASTdb using the tool intersectBed within the
BEDtools suite. Then, we identified known annotations using
VAST tools (Tapial et al., 2017).

RESULTS

eQTLs and sQTL Results of CMC and
GTEx Datasets
To characterize the effect of glioma risk variants on gene
regulatory processes in the brain, we performed a large-scale
eQTL and sQTL scan in CMC and GTEx (Supplementary
Figure 1). We tested a total of 4342 unique SNPs and 1559
target genes across 25 loci in eQTL, and 4342 unique SNPs,
518 spliced genes, and 6326 spliced intron cluster regions in
sQTL analyses (Supplementary Figure 1). CMC and GTEx
shared 1,859 significant eQTLs and 4,141 significant sQTLs
(both at FDR Q < 0.05; Supplementary Tables 3, 4). We
then estimated the degree of sharing of eQTLs and sQTLs
between CMC and GTEx, using Storey’s π1 statistic (see
section “Materials and Methods”). We found π1 = 0.74 for
eQTLs and π1 = 0.84 for sQTLs, which suggested substantial
sharing of eQTLs and sQTLs between these two independent
datasets. The effect size was also highly correlated between the
two datasets for shared eQTLs (Pearson r = 0.62, P = 3.24
E−195) and sQTLs (Pearson r = 0.91, P < 2.2 E−16). Taken
together, these findings demonstrated that there was substantial
concordance between significant sQTLs and eQTLs identified
in CMC and GTEx.

Meta-Analyses of eQTLs and sQTLs
We next performed a fixed-effect meta-analysis to maximize
statistical power for eQTL/sQTL discovery. Our meta-analysis
identified 5,943 significant eQTLs (FDR Q < 0.05) involving 66
target genes across 22 loci; there were 10,585 significant sQTLs
(FDR Q< 0.05), involving 120 alternatively spliced intron cluster
regions (i.e., alternatively spliced transcripts) within 28 target
genes across 13 loci (Supplementary Tables 5, 6).

Summary Data-Based Mendelian
Randomization Analysis (SMR)
Following meta-analyses, we used SMR analysis which integrated
summary-level data from GICC GWAS meta-analysis with
significant eQTL and sQTL meta-analyses (FDR Q < 0.05; see
section “Materials and Methods”). SMR revealed 15 eQTLs in 11
loci and 32 sQTLs in 9 loci that exceeded the predefined p-value
threshold of the SMR test and passed the pHEIDI test (Tables 1,
2 and Supplementary Tables 7, 8). Therefore, the target genes
and spliced genes in Tables 1, 2 are associated with glioma due to
pleiotropy and are the most functionally relevant.

We then performed conditional association analyses to
evaluate the possibility of secondary QTL signals. Using Genome-
wide Complex Trait Analysis (GCTA), condition on the top
cis-eQTL or sQTL for significant probes identified through
SMR analyses (those in Tables 1, 2), we did not find any
secondary QTL signals.
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Among loci with SMR-associated or colocalized eQTLs and
sQTLs (Tables 1, 2), 1p31.3, 5p15.33, 9p21.3, and 10q24.33 only
harbored eQTLs without sQTLs, whereas 1p44 and 16p13.3 had
only sQTLs without eQTLs. In 7 loci (2q33.3, 7p11.2, 11q23.3,
15q24.2, 16p12.1, 20q13.33, and 22q13.1), eQTLs and sQTLs
coexisted (Tables 1, 2), but the target genes were different
for 5 of the 7 loci (7p11.2, 11q23.3, 15q24.2, 20q13.33, and
22q13.1). In the remaining two loci, 2q33.3 and 16q12.1, the
target genes were the same.

Among the 11 loci with SMR-associated eQTLs, 9p21.3,
20q13.33, and 22q13.1 harbored multiple target genes (Table 1).
The other 8 loci showed associations between single regulatory
SNP and single target gene (Table 1). Similarly, among the
nine loci with SMR-associated sQTLs, we found that four (1q44,
7p11.2, 15q24.2, and 22p13.1) harbored a single regulatory SNP
associated with alternative splicing in a single gene (Table 2).
In the remaining five loci (2q33.3, 16q12.1, 11q23.3, 16q13.3,
and 20q13.33), there were evidence of multiple target genes with
alternative splicing.

For sQTL target genes SEC61G (7p11.2), PHLDB1 (11q23.3),
and LIME1 (20q13.33), a single regulatory SNP was associated
with several intron cluster regions (or alternatively spliced
transcripts) (Table 2), whereas multiple SNPs were associated
with multiple alternatively spliced intron cluster regions
for C2orf80 (2q33.3), RP11-161M6.2 (16p13.3), HEATR3
(16q12.1), TMEM25 (11q23.3), and RTEL1-TNFRSF6B
(20q13.33) (Table 2).

Enrichment Analyses of Meta-Analyses
SNPs and SMR-Associated SNPs
We then evaluated whether significant QTL meta-analysis
SNPs and SMR-associated SNPs were enriched with regulatory
elements. Among meta-analysis SNPs, enrichment tests were
significant (FDR Q values < 0.05) for DNase 1 hypersensitivity
site (DHS), H3K36me3, H3K4me1, H3K4me3, H3K27ac, and
H3K9me3 but not H3K27me3 for eQTL, whereas enrichment
analyses were only positive for DHS and H3K36me3 for sQTL
(Supplementary Table 9). In SMR-associated SNPs, only DHS
enrichment was significant for eQTL and borderline significant
for sQTL (Supplementary Table 9).

We also tested enrichment in RNA-binding protein
(RBP) sites for SNPs associated with splicing QTLs. Similar
to histone marks, meta-analysis SNPs were significantly
enriched for RBP sites, but SMR-associated SNPs were not
(Supplementary Table 9).

The lack of significance for histone marks and RBP site
enrichments in SMR-associated SNPs may reflect low statistical
power, because the total input SNPs were far fewer for those
associated with SMR compared to the numbers in meta-analyses
(Supplementary Table 9).

Annotation of SMR-Associated SNPs
SMR-Associated SNPs in eQTL
Following enrichment analyses, we further annotated SMR-
associated regulatory SNPs to four genomic locations:
downstream (5 kb downstream of the most distal polyA

addition site, N = 2), upstream (5 kb upstream of the most
distal TSS, N = 4), intronic (N = 8), and intergenic (N = 1).
Therefore, over half of eQTL SNPs were located within introns.
Of the 11 SMR-associated eQTL loci, target genes within 9p21.3,
10q24.33, 20q13.33, and 22q13.1 were not the nearest genes to
the colocalized SNPs. In 9p21.3, rs2518723 is located within an
intron of CDKN2B-AS1, whereas the target gene is CDKN2B
(Figure 1A); rs10883948 (10q24.33) is an intronic SNP within
STN-1, but the target gene is the nearby lncRNA RP11-541N10.3
(Supplementary Figure 2E). Likewise, rs6000991 (22q13.1) is
located within an intron of PICK1, even though the target gene
SLC16A8 is located further telomeric (Figure 1C). In 20q13.33,
eQTL SNP rs4809318 is located immediately telomeric to CTD-
3184A7.4, but the target gene GMEB2 is further centromeric
from CTD-3184A7.4 (Figure 1B). Therefore, similar to other
reports from the literature, target genes of glioma risk variants
may not be the closest one in genomic distance.

Functional annotations of SMR-associated SNPs using
epigenomic marks showed that five eQTL SNPs resided within
an enhancer (H3K4me1) and another five overlapped with a
repressor (H3K27me3) (Table 3). Of the five that resided within
an enhancer, four displayed a concomitant activation mark
(H3K27ac) and two overlapped with open chromatins (DNase
1 hypersensitivity site) (Table 3). rs8052492 (16q12.1) was the
only regulatory SNP located within an active promotor mark
H3K4me3/H3K27ac and open chromatin. Other regulatory
SNPs such as rs2106120 (9p21.3, CDKN2B-AS1) and rs6062497
(20q13.33, ARFRP1) overlapped with H3K36me3, whereas
rs11883992 of 2q33.3 (C2orf80) overlapped with H3K9me3.
The regulatory SNP rs10883948 of 10q24.33 is the only one
that did not have any functional annotation using existing
ChIP-seq datasets. Figures 1A–C illustrates the eQTL SNPs
and their overlap with epigenomic marks for 9p21.3, 20q13.33,
and 22q13.1. Supplementary Figures 2A–H showed the
remaining eQTL loci.

SMR-Associated SNPs in sQTL
Likewise, a majority (17/23) of sQTL SNPs were also localized to
introns, but unlike those of eQTLs, colocalized sQTL SNPs were
also found within 3′UTR (2/23), 5′UTR (1/23), upstream (1/23),
and exons (synonymous, 2/23). Moreover, we found that over
half of them (12/23, 52.2%) overlapped with known RNA-binding
proteins (Table 4).

Similar to target genes of eQTLs, the target spliced genes
were not always the closest in physical distance to the candidate
functional SNPs, even though alternative splicing mediated by
risk alleles is usually within 100 kb of the candidate functional
SNPs (Takata et al., 2017; Raj et al., 2018). In six of nine
sQTL loci, namely, 7p11.2, 11q23.3, 16p13.3, 16q12.1, 20q13.33,
and 22q13.1, the target genes were not the nearest genes to
the SMR-associated SNPs (Figures 2A–D and Supplementary
Figures 3C,E). In 20q13.33, four SNPs regulated the alternative
splicing of RTEL-TNFSF6B, but only one (rs3208007, exon-
synonymous) was located within the target gene (Table 4).
rs1295810 was situated within the 3′UTR of ARFRP1 and
rs4809328 within an intron of ZGPAT, which were telomeric
to RTEL1-TNFRSF6B. The 4th SNP rs2150910 was within
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TABLE 1 | Significant eQTLs using the SMR method: 15 SMR-associated eQTLs from 11 loci and their summary statistics.

Loci GWAS SNP SMR-
associated SNP

A1/A2 (Co.
Reg SNP)

A1 Freq (Co.
Reg SNP)

r2 (Co. Reg SNP
and GWAS SNP)

Target gene β (SE) (GWAS) P-value
(GWAS)

β (SE) (eQTL) P-value
(eQTL)

Q-value
(eQTL)

1p31.3 rs12752552 rs2780816 A/C 0.24 0.45 JAK1 –0.15 (0.03) 2.70E-08 –0.05 (0.01) 1.79E-07 4.34E-06

2q33.3 rs7572263 rs11883992 A/T 0.18 0.66 C2orf80 –0.19 (0.03) 5.73E-09 0.11 (0.02) 9.62E-07 6.89E-06

5p15.33 rs10069690 rs7712562 G/A 0.84 0.23 TERT –0.40 (0.03) 2.09E-38 –0.15 (0.04) 1.68E-04 6.62E-03

7p11.2 rs723527
rs75061358

rs80013346 A/G 0.11 0.05
0.87

EGFR 0.45 (0.04) 6.48E-30 –0.26 (0.05) 2.55E-07 6.19E-05

9p21.3 rs634537 rs2106120 T/G 0.47 0.62 CDKN2B-AS1 –0.28 (0.02) 5.69E-36 0.11 (0.02) 2.23E-08 8.59E-07

rs2518723 T/C 0.48 0.53 CDKN2B 0.24 (0.02) 7.02E-27 –0.12 (0.02) 2.36E-07 5.93E-06

10q24.33 rs11598018 rs10883948 T/G 0.54 1 RP11-541N10.3 –0.13 (0.02) 2.71E-08 0.09 (0.02) 3.57E-07 1.97E-06

11q23.3 rs12803321 rs573905 G/A 0.54 0.52 BCL9L 0.23 (0.02) 4.72E-21 –0.06 (0.02) 2.02E-04 1.52E-02

15q24.2 rs77633900 rs1875884 T/C 0.51 0.06 SCAPER –0.13 (0.02) 2.63E-08 –0.06 (0.01) 8.91E-13 2.00E-10

16q12.1 rs10852606 rs8052492 G/A 0.29 0.99 HEATR3 –0.17 (0.02) 4.56E-12 –0.17 (0.01) 2.19E-34 3.89E-32

20q13.33 rs2297440 rs4809318 A/G 0.21 0.29 GMEB2 –0.25 (0.03) 1.56E-19 0.06 (0.01) 3.17E-05 1.06E-03

rs6062497 T/C 0.71 0.49 ARFRP1 0.21 (0.02) 9.46E-18 0.05 (0.01) 4.21E-06 5.71E-04

rs909334 A/C 0.21 0.62 STMN3 –0.28 (0.03) 1.77E-25 0.07 (0.02) 1.64E-06 4.35E-04

22q13.1 rs2235573 rs5756894 A/C 0.60 0.59 PICK1 –0.14 (0.02) 1.92E-09 –0.09 (0.01) 2.92E-09 5.36E-07

rs6000991 C/T 0.61 0.57 SLC16A8 –0.13 (0.02) 1.05E-08 –0.15 (0.02) 1.76E-10 1.17E-08
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TABLE 2 | Significant sQTLs using the SMR method: 32 SMR-associated sQTLs from nine loci and their summary statistics.

Loci GWAS SNP SMR-
associated

SNP

A1/A2 (Co.
Reg SNP)

A1 Freq (Co.
Reg SNP)

r2 (Co. Reg SNP
and GWAS SNP)

Target
gene

Genomic location (hg19) of
alternatively spliced intron cluster
region from Leafcutter

β (SE)
(GWAS)

P-value
(GWAS)

β (SE)
(sQTL)

P-value
(sQTL)

Q-value
(sQTL)

1q44 rs12076373 rs10927051 C/G 0.2 0.71 AKT3 clu_56564-243727150-243736228 –0.19 (0.03) 8.50E-10 0.3 (0.06) 1.26E-06 2.86E-04

2q33.3 rs7572263 rs7572263 G/A 0.24 1 C2orf80 clu_49792-209047771-209054677 –0.18 (0.03) 6.87E-10 –0.24 (0.04) 6.63E-10 1.62E-08

rs7583625 G/A 0.25 0.96 clu_49792-209047771-209048618 –0.17 (0.03) 2.04E-09 –0.33 (0.03) 2.30E-22 7.05E-20

7p11.2 rs723527
rs75061358

rs2699247 A/G 0.36 0.03 0.07 SEC61G clu_32096-54825287-54826851 0.14 (0.02) 6.62E-09 0.44 (0.06) 8.51E-13 1.70E-10

A/G 0.36 0.03 0.07 clu_32096-54825287-54826855 0.14 (0.02) 6.62E-09 –0.39 (0.06) 7.23E-11 3.62E-09

11q23.3 rs12803321 rs11216924 G/C 0.14 0.22 TMEM25 clu_9404-118412790-118416834 –0.21 (0.04) 1.33E-08 0.33 (0.05) 8.51E-12 1.30E-09

rs73023341 G/A 0.14 0.23 clu_9404-118405070-118419942 –0.21 (0.04) 1.35E-08 0.2 (0.04) 7.13E-08 1.17E-06

rs61900957 T/C 0.09 0.16 clu_9432-118402586-118402865 –0.32 (0.04) 2.04E-14 –0.58 (0.1) 1.24E-09 2.84E-07

rs11217021 C/T 0.25 0.43 DDX6 clu_9452-118627996-118630631 –0.21 (0.03) 1.25E-13 –0.17 (0.04) 6.12E-05 8.55E-03

rs7125115 A/G 0.38 0.9 PHLDB1 clu_9440-118478414-118484531 –0.34 (0.03) 2.83E-23 –0.64 (0.05) 2.72E-35 1.06E-32

A/G 0.38 0.9 clu_9440-118481241-118484009 –0.34 (0.03) 2.83E-23 0.43 (0.04) 4.63E-23 1.85E-21

A/G 0.38 0.9 clu_9440-118481241-118484531 –0.34 (0.03) 2.83E-23 0.45 (0.05) 4.50E-22 1.30E-20

15q24.2 rs77633900 rs34213321 G/A 0.53 0.08 ETFA clu_20348-76588078-76603691 –0.15 (0.02) 9.42E-10 0.36 (0.06) 1.36E-10 1.31E-09

16p13.3 rs3751667 rs34316274 G/A 0.23 0.75 LMF1 clu_16201-918097-918944 0.15 (0.03) 7.26E-08 –0.17 (0.04) 3.67E-06 1.31E-04

rs34316274 G/A 0.23 0.75 RP11-
161M6.2

clu_16093-1030705-1031145 0.15 (0.03) 7.26E-08 –0.3 (0.06) 4.21E-07 2.43E-06

rs34316274 G/A 0.23 0.75 clu_16094-1026071-1026778 0.15 (0.03) 7.26E-08 0.31 (0.06) 1.87E-06 6.67E-06

rs4984741 A/G 0.24 0.8 clu_16094-1026559-1026778 0.16 (0.03) 5.93E-09 0.24 (0.06) 1.26E-05 4.10E-05

16q12.1 rs10852606 rs12932038 C/T 0.71 1 HEATR3 clu_17583-50100180-50100278 0.17 (0.02) 5.47E-12 –0.34 (0.06) 8.69E-09 4.57E-06

rs2058815 G/T 0.7 0.92 clu_17585-50109622-50109966 0.16 (0.02) 1.52E-10 –0.19 (0.04) 1.23E-06 1.64E-04

rs2058815 G/T 0.7 0.92 clu_17585-50110000-50112652 0.16 (0.02) 1.52E-10 –0.17 (0.04) 1.96E-05 2.64E-04

rs2287197 C/T 0.71 0.99 clu_17584-50102778-50103156 0.17 (0.02) 6.74E-12 –0.3 (0.04) 1.35E-15 5.16E-14

rs2287197 C/T 0.71 0.99 clu_17584-50102778-50109482 0.17 (0.02) 6.74E-12 –0.33 (0.04) 1.09E-20 1.92E-18

rs2287197 C/T 0.71 0.99 clu_17584-50103200-50104089 0.17 (0.02) 6.74E-12 –0.28 (0.04) 1.15E-13 2.23E-12

rs8046344 G/C 0.71 1 clu_17584-50102778-50104055 0.17 (0.02) 1.42E-11 –0.21 (0.04) 1.17E-07 8.63E-07

20q13.33 rs2297440 rs1295810 A/G 0.2 0.78 RTEL1-
TNFRSF6B

clu_30381-62321563-62321639 –0.35 (0.03) 4.86E-38 0.22 (0.04) 6.60E-10 3.32E-07

rs2150910 C/T 0.91 0.25 clu_30376-62294908-62297357 0.37 (0.04) 1.33E-20 –0.35 (0.07) 1.18E-06 7.94E-04

rs3208007 C/T 0.8 0.99 clu_30380-62320485-62320855 0.39 (0.03) 7.79E-46 0.66 (0.06) 7.90E-26 1.01E-24

rs4809328 T/C 0.71 0.47 clu_30385-62325841-62326419 0.21 (0.02) 1.35E-17 0.21 (0.05) 4.88E-05 2.75E-02

rs6062487 T/A 0.11 0.03 TNFRSF6B clu_30388-62328544-62329633 0.35 (0.05) 6.97E-14 0.33 (0.08) 6.10E-05 1.96E-02

rs6122154 T/C 0.19 0.75 LIME1 clu_30312-62367538-62368886 –0.34 (0.03) 2.62E-36 –0.23 (0.06) 1.41E-04 9.40E-04

T/C 0.19 0.75 clu_30312-62368064-62368886 –0.34 (0.03) 2.62E-36 0.32 (0.07) 2.04E-06 1.52E-04

22q13.1 rs2235573 rs6000943 C/T 0.37 0.39 C22orf23 clu_28314-38341132-38343288 0.11 (0.02) 2.06E-06 0.24 (0.04) 1.10E-07 4.50E-05
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FIGURE 1 | Visualization of SMR-associated eQTL SNPs and overlaps with
ChIP-seq data. (A) 9p21.3, (B) 20q13.33, and (C) 22q13.1. The top panel
shows the LocusZoom plot where the SNPs (triangles) are colored based on
LD (r2) with the GWAS SNP (purple squares). The SNPs are labeled with the
associated target genes in parentheses. The bottom panel shows the
ChIP-seq peaks of epigenomic marks in various glioma or normal astrocytic
cell lines; the individual ChIP-seq track was colored separately. The other
significant SNPs (FDR Q < 0.05) that did not pass SMR tests are shown as
gray dots in the background of the LocusZoom plot. SNPs that overlapped
with ChIP-seq peaks are connected by a black dotted line.

the 3′UTR of STMN3, which was centromeric to RTEL1-
TNFRSF6B (Figure 2D). In LIME1, another target gene that was
alternatively spliced in 20q13,33, the associated SNP rs6122154

resided within an intron of ZGPAT, which was centromeric to
LIME1 (Figure 2D).

In 11q23.3, rs11216924, rs73023341, and rs61900957 were
the three SNPs associated with alternative splicing of TMEM25
(Table 2). However, rs11216924 and rs73023341 were both
intronic SNPs within ARCN1, whereas rs61900957 was an
intronic SNP within PHLDB1 (Figure 2A and Table 4). Both
ARCN1 and PHLDB1 are genes telomeric to the target gene
TMEM25. In 16p13.3, rs34316274 was localized within an
intron of LMF1 but mediated alternative splicing of the nearby
lncRNA RP11-161M6.2 as well as LMF1 itself (Figure 2B and
Table 4). Similarly, within 16q12.1, the closest gene to rs2058815
was CNEP1R1; nevertheless, it affected alternative splicing of
HEATR3, which was further telomeric to CNEP1R1 (Figure 2C
and Table 4). In 22q13.1, rs6000943 is an intronic SNP within
MICALL1; however, its effect was on the splicing of C22orf23,
which was the target gene telomeric to it (Supplementary
Figure 3E and Table 4). Lastly, rs2699247 in 7p11.2 affected the
alternative transcription of SEC61G despite its location within an
intron of the lncRNA RP11-745C15.2 (Supplementary Figure 3C
and Table 4).

Similar to SMR-associated eQTL SNPs, sQTL SNPs were
commonly enriched with H3K4me1 (34.8%, 8/23), and five of
the eight also overlapped with H3K27ac (Table 4). The second
most common epigenomic mark for sQTL SNPs was H3K36me3
(26.1%, 6/23). Only rs7125115 (target gene PHLDB1) localized to
both H3K4me3 and H3K27ac. Three sQTL SNPs did not show
any histone mark occupancy: rs73023341 (TMEM25), rs2287197
(HEATR3), and rs3208007 (RTEL1-TNFRSF6B) (Table 4).

Among the 32 SMR-associated sQTLs, 14 had known
alternative splicing annotations (43.8%), and 11 of these 14
(78.6%) were exon skipping. The other three had alternative
5′ splicing (target genes SEC61G and HEATR3). Figure 3A–C
illustrates differential splicing analyses by genotypes of the
three highly significant sQTL: rs7583625 (C2orf80), rs7125115
(PHLDB1 intron cluster 9440), and rs3208007 (RTEL1-
TNFRSF6B intron cluster 30380). In each sQTL illustrated in
Figure 3, the minor alleles were associated with decreased intron
usage (PSI values). The differential splicing analyses of the rest of
sQTL SNPs were illustrated in Supplementary Figures 4A–Z.

DISCUSSION

The finding of this study is the first to show that glioma
GWAS risk alleles may mediate their effect through alternatively
spliced transcripts. Two loci, 1p44 and 16q13.3, only harbored
sQTLs, and an additional seven loci had coexisting eQTL and
sQTLs. Furthermore, there were more SMR-associated sQTLs
than eQTLs (32 sQTLs versus 15 eQTLs), which suggested that
alternative splicing may be an important molecular mechanism
in gliomagenesis mediated by GWAS risk alleles. Target genes
were different between eQTL and sQTL for many of the loci with
both types of QTL, which further illustrated the complexity of
functional regulation of these risk loci (Gusev et al., 2019).

The most common type of alternative RNA splicing in the
brain is skipped exon (Vuong et al., 2016; Reble et al., 2018),
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TABLE 3 | Functional annotations of significant SMR-associated eQTL SNPs.

Loci SMR-
associated SNP

Target
gene

Genomic
annotation
(SnpEff)

Epigenomic annotation

H3K4me1 H3K4me3 H3K27ac H3K9me3 H3K27me3 H3K36me3 DNase

1p31.3 rs2780816 JAK1 Intron • •

2q33.3 rs11883992 C2orf80 Intron •

5p15.33 rs7712562 TERT Upstream •

7p11.2 rs80013346 EGFR Intergenic • •

9p21.3 rs2106120 CDKN2B-AS1 Intron •

rs2518723 CDKN2B Intron • • •

10q24.33 rs10883948 RP11-
541N10.3

Intron

11q23.3 rs573905 BCL9L Intron •

15q24.2 rs1875884 SCAPER Downstream • • •

16q12.1 rs8052492 HEATR3 Upstream • • •

20q13.33 rs4809318 GMEB2 Upstream •

rs6062497 ARFRP1 Intron •

rs909334 STMN3 Downstream •

22q13.1 rs5756894 PICK1 Upstream •

rs6000991 SLC16A8 Intron •

Frontiers
in

G
enetics

|w
w

w
.frontiersin.org

10
A

pril2021
|Volum

e
12

|A
rticle

609657

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-609657
A

pril9,2021
Tim

e:19:30
#

11

P
atro

etal.
M

eta-A
nalyses

ofQ
TLs

in
G

liom
a

TABLE 4 | Functional annotations of significant SMR-associated sQTL SNPs.

Loci SMR-associated
SNP

Target
gene

Genomic location (hg19) of
alternatively spliced intron cluster

region from Leafcutter

Alternative
splicing
event$

Genomic
annotation
(SnpEff)

RNA-
binding
proteins*

Epigenomic annotation

H3K4me1 H3K4me3 H3K27ac H3K9me3 H3K27me3 H3K36me3 DNase

1q44 rs10927051 AKT3 clu_56564-243727150-243736228 ES Intron – •

2q33.3 rs7572263 C2orf80 clu_49792-209047771-209054677 ES Intron – • •

rs7583625 clu_49792-209047771-209048618 Intron PTBP1,
EIF4B

• •

7p11.2 rs2699247 SEC61G clu_32096-54825287-54826851 Alt 5 SS Intron – • •

clu_32096-54825287-54826855 Alt 5 SS

11q23.3 rs11216924 TMEM25 clu_9404-118412790-118416834 ES Intron RBM4B,
HNRNPC

•

rs73023341 clu_9404-118405070-118419942 ES Intron –

rs61900957 clu_9432-118402586-118402865 Intron RBM34 •

rs11217021 DDX6 clu_9452-118627996-118630631 ES Intron – •

rs7125115 PHLDB1 clu_9440-118478414-118484531 ES 5’UTR SRSF3, FUS • • •

clu_9440-118481241-118484009

clu_9440-118481241-118484531 ES

15q24.2 rs34213321 ETFA clu_20348-76588078-76603691 ES Intron – •

16p13.3 rs34316274 LMF1 clu_16201-918097-918944 Intron A1CF, PUM1 •

rs34316274 RP11-
161M6.2

clu_16093-1030705-1031145 Intron A1CF, PUM1 •

clu_16094-1026071-1026778

rs4984741 clu_16094-1026559-1026778 Intron ZNF368 •

16q12.1 rs12932038 HEATR3 clu_17583-50100180-50100278 Intron SNRPA,
SRSF1

rs2058815 clu_17585-50109622-50109966 Upstream – • •

clu_17585-50110000-50112652 Alt 5SS

rs2287197 clu_17584-50102778-50103156 Synonymous –

clu_17584-50102778-50109482 ES

clu_17584-50103200-50104089

rs8046344 clu_17584-50102778-50104055 ES Intron –

20q13.33 rs1295810 RTEL1-
TNFRSF6B

clu_30381-62321563-62321639 3′UTR SRSF4, B52 • • •

rs2150910 clu_30376-62294908-62297357 3′UTR CNOT4,
ZNF638

• •

rs3208007 clu_30380-62320485-62320855 Synonymous PPIG, DDX24

rs4809328 clu_30385-62325841-62326419 ES Intron - •

rs6062487 TNFRSF6B clu_30388-62328544-62329633 Intron EFTUD2,
RBM22

•

(Continued)
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and the brain ranked the highest among 16 human tissues in
terms of the proportion of genes with skipped exons (Yeo et al.,
2004). This study found that 11 of the 14 known annotated
sQTL involved skipped exons, which is concordant with what
is known about the alternative splicing mechanism of the brain
to date. Our finding also suggested that many of the sQTL
SNPs associated with spliced RNA were within binding sites for
RNA-binding proteins (RBPs), thus raising the possibility that
these variants may alter the ability of RBPs to bind and interact
with pre-mRNA and other RBPs within a spliceosome (Fu and
Ares, 2014). Moreover, glioma risk variants may affect splicing
through the process of trimethylation of H3K36 (Leung et al.,
2019), and H3K36me3 is the second most common epigenomic
mark overlapping with sQTL but not eQTL SNPs in this study.
Methylation of H3K36 in the gene body (introns) has recently
been revealed to be an important facilitator of spliceosome
assembly, through its ability to recruit various adaptor proteins
to support RNA splicing (Teissandier and Bourc’his, 2017;
Leung et al., 2019). Furthermore, H3K36me3 has been associated
with exon skipping (Shindo et al., 2013). Thus, glioma risk
alleles may promote exon skipping through interference of
the H3K36 trimethylation process and spliceosome assembly
(Monteuuis et al., 2019).

There was no overlap between SMR-associated SNPs of eQTLs
and sQTLs; moreover, with the exception of 2p33.3 (C2orf80) and
16q12.1 (HEATR3), the target genes were otherwise different for
the remaining five loci with coexisting eQTLs and sQTLs. This
suggests that sQTLs may act independent of eQTLs in mediating
gliomagenesis. If quantitative trait loci mapping did not include
splicing evaluation, a total of 12 of 26 (46.2%) target genes would
have been missed, including two loci (1q44 and 16p13.3) which
exclusively harbored sQTLs and no eQTLs.

Of all the target genes involved in sQTLs, none had previously
known molecular mechanism mediated by alternative RNA
splicing in glioma, although a number of the genes had been
shown to be involved in glioma pathogenesis, progression,
or prognosis. For example, AKT3 (1q44) promotes glioma
progression and represents a key resistance factor (Turner et al.,
2015). SEC61G is a proto-oncogene required for glioblastoma
cell survival (Lu et al., 2009). DDX6 is involved in radio-
and chemoresistance in glioblastoma (Cho et al., 2016), and
TNFRSF6B suppresses CD95 ligand-induced apoptosis and
chemotaxis in malignant glioma (Roth et al., 2001). The
functional roles of the rest of spliced target genes have yet to be
discovered. Of interest, RTEL1 and the read-through transcript
RTEL1-TNFRSF6B had been postulated to be target genes in
20q13.33 due to its role in telomere maintenance and also the
fact that the top glioma GWAS risk allele resides within an intron
of RTEL1 (rs2297440) (Melin et al., 2017). However, no prior
evaluation provided evidence that it is a significant eQTL target
gene, and its biological role in the promotion and progression
of glioblastoma has yet to be elucidated. This study found that
RTEL1-TNFRSF6B is an sQTL but not an eQTL target gene,
and three of the four SMR-associated sQTL SNPs were mapped
outside of RTEL1-TNFRSF6B. Similarly, PHLDB1 has long been
speculated as the target gene in 11q23.3 due to the location
of the top GWAS SNP which is within an intron of the gene
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FIGURE 2 | Visualization of SMR-associated sQTL SNPs and overlaps with ChIP-seq data. (A) 11q23.3, (B) 16p13.3, (C) 16q12.1, and (D) 20q13.33. The top
panel shows the LocusZoom plot where the SNPs (triangles) are colored based on LD (r2) with the GWAS SNP (purple squares). The SNPs are labeled with the
associated target genes in parenthesis. The bottom panel shows the ChIP-seq peaks of epigenomic marks in various glioma or normal astrocytic cell lines; the
individual ChIP-seq track was colored separately. The other significant SNPs (FDR Q < 0.05) that did not pass SMR tests are shown as gray dots in the background
of the LocusZoom plot. SNPs that overlapped with ChIP-seq peaks are connected by a black dotted line.

(rs12803321) and its role in modulating AKT phosphorylation
(Zhou et al., 2010), but this study found alternative splicing
of the PHLDB1 transcript to be the mechanism mediated
by germline SNPs.

Among SMR-associated eQTL loci, 7p11.2, 11q23.3, 20q13.33,
and 22q13.1 have coexisting sQTLs, but their target genes
were different, suggesting that the regulation on gliomagenesis
by these loci is more complex than previously realized.
Among eQTL target genes, BCL9L (11q23.3), SCAPER (15q24.2),
RP11-541N10.3 (10q24.33) CDKN2B-AS1 (9p21.3), and C2orf80
(2q33.3) were newly discovered, replicated, and integrated with
GWAS findings, and they have not been previously reported
in eQTL analyses using non-diseased brain tissues. In 11q23.3,
which is a locus associated with IDH1-mutated glioma, the
hypothesized target gene had been PHLDB1. However, our
finding showed that the gene is BCL9L, which is a transcription
regulator associated with WNT signaling in glioma (Lee et al.,
2016; Gay et al., 2019). In 15q24.2, the target gene SCAPER

transcribes into a cyclin A-interacting protein which regulates
cell cycle progression, but its role in gliomagenesis had not
been previously evaluated (Tsang et al., 2007). RP11-541N10.3
in 10q24.33 is a long non-coding RNA (lncRNA) with unknown
function in glioma development. Within 2q33.3, which is also a
locus associated with IDH1-mutated glioma (Kinnersley et al.,
2018), the target gene C2orf80 is 50 kb telomeric to IDH1, but
whether or how C2orf80 interacts with IDH1 remains to be
elucidated. In 9p21.3, a recent transcriptome-wide association
study (TWAS) in glioma only found CDKN2B but not its anti-
sense transcript as candidate causal genes (Atkins et al., 2019).
To our knowledge, this study is the first to report CDKN2B-
AS1 (ANRIL), as well as CDKN2B as significant potential target
genes in 9p21.3.

For the remaining eQTL target genes, this meta-analysis
further validated the finding of two eQTL analyses (published as
part of two previous GWAS studies) and one TWAS in glioma
(Melin et al., 2017; Kinnersley et al., 2018; Atkins et al., 2019).
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FIGURE 3 | Splicing analyses of the three most significant sQTL. (A) 2q33.3 (C2orf80), (B) 11q23.3 (PHLDB1), and (C) 20q13.33 (RTEL1-TNFRSF6B). Top panel
shows the high-level view of the gene: the black boxes represent exons; the smaller black boxes represent 5′ and 3′ UTRs and the connecting black lines represent
introns. The gene structure is based on the primary transcript for each gene, and the size of the exons and introns is not according to the actual genomic region
scale. The lower right panel shows the zoom-in view of the region of interest containing the alternatively spliced intron regions (red curve) and intron usage
[percentage spliced in (PSI)] associated with each genotype; exons are labeled numerically and sequentially from 5′ to 3′. The lower left are box plots which showed
PSI values against each of the sQTL SNP genotype.

They included TERT (5p15.33), JAK1 (1p31.3), EGFR (7p11.2),
HEATR3 (16q12.1), GMEB2, ARFRP1, and STMN3 (20q13.33),
and PICK1 and SLC16A8 (22q13.1).

Common to other QTL mapping studies, a limitation of this
study is the context of gene expression, which is limited to that
of adult normal brain. If the manifestation of sQTL or eQTL
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is dynamic and only occurred during a certain developmental
stage or early in gliomagenesis, this study is not set up to
discover them. However, the advantage of using adult normal
brain tissues is the ability to procure them through autopsy,
and the relative confidence of isolating the influence of SNPs
on gene expressions without the confounding effects of somatic
alterations. We also acknowledged that bulk RNA-seq data
consisted of a mixture of neurons and glial cells, but the single-
cell eQTL dataset is uncommon and has less discovery power
(6.9-fold differences) than similar-sized bulk RNA-seq QTL
datasets (van der Wijst et al., 2018). Therefore, we aimed to
leverage QTL meta-analyses using bulk RNA-seq for maximum
power. Last, a limitation of using cell lines in ChIP-seq analysis
is that it requires a large number of cells (>105 cells), and the
analysis focuses on average peak calling without accounting for
heterogeneity between cells. However, the single-cell ChIP-seq
dataset is rarely available, and the abundance of bulk ChIP-
seq data from related cell types may allow for comparisons of
functional elements.

In summary, this study identified alternative RNA splicing as
a potential mechanism that may provide additional explanations
for the functional basis of nine glioma risk loci. This study
also showed that functional variants may influence total
transcript abundance as well as spliced isoforms, and the
target genes for eQTL and sQTL may differ in loci with
both types of QTL. Finally, this meta-analysis identified
comprehensively target genes that may serve as a reference for
future functional assays.
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genes and functional elements in loci with single target gene and single regulatory
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Supplementary Figure 3 | Mapping of SMR associated sQTL SNPs, target
genes and functional elements in the five remaining loci: (A) 1q44, (B) 2q33.3, (C)
7p11.2, (D) 15q24.2, and (E) 22q13.1.

Supplementary Figure 4 | Alternative splicing analyses for the remaining 18
sQTLs (S4A-S4R). For the regulatory SNPs which reside in the neighboring target
genes; the neighboring genes are shown in blue.
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