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Abstract

Coalescent simulations are widely used to examine the effects of evolution and demo-

graphic history on the genetic makeup of populations. Thanks to recent progress in algo-

rithms and data structures, simulators such as the widely-used msprime now provide

genome-wide simulations for millions of individuals. However, this software relies on clas-

sic coalescent theory and its assumptions that sample sizes are small and that the region

being simulated is short. Here we show that coalescent simulations of long regions of the

genome exhibit large biases in identity-by-descent (IBD), long-range linkage disequilib-

rium (LD), and ancestry patterns, particularly when the sample size is large. We present a

Wright-Fisher extension to msprime, and show that it produces more realistic distribu-

tions of IBD, LD, and ancestry proportions, while also addressing more subtle biases of

the coalescent. Further, these extensions are more computationally efficient than state-

of-the-art coalescent simulations when simulating long regions, including whole-genome

data. For shorter regions, efficiency can be maintained via a hybrid model which simulates

the recent past under the Wright-Fisher model and uses coalescent simulations in the dis-

tant past.

Author summary

Coalescent theory has provided deep theoretical insight into patterns of human diversity.

Implementations of coalescent models in simulation software such as ms have further

provided tools to interpret thousands of genomic studies. Recent technical progress has

allowed for a dramatic increase in the scale at which genomes can be both measured and

simulated, opening up opportunities for a finer understanding of evolutionary biology.

However, we show that coalescent simulations of long regions of the genome exhibit large

biases in sample relatedness, distorting haplotype sharing and ancestry patterns in simu-

lated cohorts. We trace these biases to basic assumptions of the coalescent model, and

show how the assumptions can be relaxed to provide a better description of the observed

patterns of genetic polymorphism at a fraction of the computational cost.
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Introduction

Simulations of genome evolution are widely used in the development of computational tools

for statistical and population genetics research (e.g., [1, 2, 3, 4, 5, 6]). Coalescent theory has

been used extensively for this purpose, with Hudson’s ms simulation program [7] having been

cited over two thousand times since its publication in 2002. The more recent msprime coales-

cent simulation software [8] implements Hudson’s original algorithm [9], but with a perfor-

mance increase of several orders of magnitude. This is achieved largely through the

introduction of a new data structure, the succinct tree sequence [10, 11], which is extremely

efficient at storing genetic variation. For example, simulating a 100 megabase region in a sam-

ple of 100,000 individuals generates an 88MB uncompressed succinct tree sequence, whereas

the Newick tree format used by ms takes approximately 3.5TB of space [8].

Simulated data are useful to the extent that they accurately reflect real genetic variation.

However, the coalescent is known to be biased relative to the Wright-Fisher model when the

sample size is large [12] or for events in the recent past [13]. However, these biases have had

limited practical impact because collecting such large empirical data sets was prohibitively

costly and the simulation of such large samples was computationally overwhelming. Both

limitations have now been lifted: sequencing datasets now regularly include thousands of

sequenced genomes, and msprime can simulate hundreds of thousands of genomes on a lap-

top computer. The assumptions of the underlying coalescent models should be carefully reex-

amined in this context.

We highlight qualitative and quantitative inaccuracies in coalescent simulations of long

regions, due to violated assumptions of the underlying genealogical model. We implement an

extension to msprime which corrects the majority of these biases via a backwards-in-time

Wright-Fisher model within msprime (see overview in Methods section and S1 Appendix),

which generates biologically plausible genealogies regardless of sample size (a separate imple-

mentation of such a model, without using succinct tree sequences, can also be found in [14]).

Our backwards-in-time Wright-Fisher simulations are also much faster than coalescent simula-

tions for large samples and long regions. For shorter regions, the coalescent is slightly faster.

Using a hybrid approach with Wright-Fisher dynamics in the recent past and coalescent dynam-

ics further back in time (as was done in [13]) preserves the computational advantages of the coa-

lescent with the long-range accuracy of the Wright-Fisher model for shorter genomic regions.

Motivation

This work was motivated by our observation that large-scale coalescent simulations resulted in

unrealistic relatedness among samples, where nearly every pair of simulated individuals were

second- or third-degree cousins according to the time to their most recent common ancestor.

This is because individuals had too many simulated ancestors: whereas diploid individuals

carry at most 2t ancestors at generation t in the past, coalescent simulations allow for many

more ancestors.

This excess of ancestors is a side effect of how Hudson’s coalescent algorithm models

recombination. Hudson’s coalescent model assumes a small region being simulated [15], and

so does not account for multiple simultaneous recombinations during meiosis. The per-gener-

ation recombination rate in long genomic regions is maintained by multiple recombinations

occurring at different times, with each recombination introducing a new ancestral lineage.

This can lead to more than two ancestors within one generation (Fig 1).

This property of the coalescent recombination model is often innocuous when regions sim-

ulated are too short for back-and-forth recombinations to occur, or when the number of line-

ages is small enough that long range correlations are practically negligible [13, 16]. In larger
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samples, or under migration models, recent events induce long-range correlations along the

genome [12, 17, 18, 19]. For example, individuals with a recent migrant ancestor are likely to

have migrant ancestry in several chromosomes, and this is not accounted for by Hudson’s

coalescent. Significant differences have further been observed between the simulated genealo-

gies of coalescent and Wright-Fisher models at a single locus [13, 14], such as the more rapid

decay in the number of lineages over time in the Wright-Fisher model when sample size is

large. Model differences become even more pronounced over long regions, where correlations

between distant gene genealogies must be taken into account.

To highlight the magnitude of the genealogical distortions which can occur, we first use

both the coalescent and Wright-Fisher models to simulate haploid sample sizes from 500 to

10,000 in a diploid population with size 10,000 and growth rate 0.001. Each sample contains 22

chromosomes of realistic lengths. Fig 2 shows that for 10,000 samples the number of lineages

in the coalescent simulation increases very rapidly to reach 10 times the haploid population

size 2N (This issue was also raised in [20, 21]). Simulations with smaller sample sizes also show

a rapid growth in number of lineages to beyond the haploid population size, but the growth is

slower and the excess is less pronounced than in larger samples. In the Wright-Fisher simula-

tion, the initial growth in number of lineages is much slower and can never exceed the haploid

population size, regardless of sample size.

While genealogical distortions are most clear in the first few generations, this explosion of

lineages also affects genealogies in the more distant past. Fig 2 also shows that, despite rapid

coalescence lowering the initial spike in the number of lineages, their number remains above

the population size for hundreds of generations into the past. The effect is even more dramatic

within a constant-sized population, with S2 Fig showing a case where the number of lineages

remains above the effective population size for more than 100,000 generations in the past.

The number of lineages cannot be observed directly from genetic data, but these genealogi-

cal distortions have consequences for commonly used measures of genetic diversity.

Fig 1. Comparing coalescent and Wright-Fisher lineages one generation in the past. A schematic of simulated lineages for a haploid sample with a

single long chromosome. In the coalescent, each recombination event creates a new, independent lineage, leading to an unrealistic number of simulated

parents. The Wright-Fisher model allows for back-and-forth recombination, so recombination events alternately assign genetic material between only

two parental lineages. Multiple chromosomes exaggerate the difference, segregating as expected in the Wright-Fisher model but adding extra lineages

under the coalescent.

https://doi.org/10.1371/journal.pgen.1008619.g001
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Results

In this section, we first highlight qualitative differences in multi-locus statistics between the

coalescent and backwards Wright-Fisher models, and we show that the Wright-Fisher models

provide a better description of the data while increasing tractability.

Distribution of IBD

Under the Wright-Fisher model, diploid inheritance constrains the possible gene genealogies

[12] and introduces correlations in IBD sharing along long simulated regions: two samples

with a recent common ancestor may be IBD at several distant positions of their genome (for

example on different chromosomes). In the coalescent, gene genealogies of unlinked loci are

constructed independently, and do not capture this effect [12].

Modelling relatedness patterns is important in large cohorts, where cryptic relatives are

common [22, 23]. To illustrate the significance of explicitly modelling diploid inheritance in a

sample with close relatives, we compared simulated cohorts to genotype data from participants

of the Genizon Biobank containing 8,435 individuals from the province of Quebec, Canada

[24]. A description of this biobank and IBD detection methods is given in S4 Appendix. Pair-

wise IBD patterns observed in this cohort are shown in Fig 3.

We simulated 5,000 human haploid whole genomes (chromosome lengths and recombina-

tion rates are described in S1 Appendix) in a diploid population of constant size 10,000 under

Fig 2. Number of surviving lineages over time in coalescent and backwards-in-time Wright-Fisher dynamics. We simulated a varying

number of haploid whole genomes with 22 chromosomes of realistic lengths in a population of 10,000 diploid individuals. Dotted line shows

effective population size. The implementation for simulations with multiple chromosomes is described in S1 Appendix.

https://doi.org/10.1371/journal.pgen.1008619.g002
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the coalescent and Wright-Fisher models, and used the simulated genealogies to extract IBD

segments inherited from common ancestors up to 5 generations in the past. Closer relatedness

means more IBD segments and longer average length, leading to a relationship between num-

ber of segments and total length of IBD which is typically used in identifying relative status

[22]. Since the detection of very short IBD segments is challenging in practice, we counted

only simulated IBD segments greater than 5 centimorgans, in both simulations and the data.

Fig 3 shows the difference between the two models, with the Wright-Fisher model showing

excellent qualitative agreement with the Genizon data. Quantitative differences are expected

since simulations were performed in a non-monogamous randomly-mating population. By

contrast, the coalescent model exhibits far too few IBD segments for closely related individuals

and poor clustering by TMRCA. An analytical model for the expected number and length of

shared ancestry segments (shown as white dots in Fig 3) is provided in S3 Appendix. The sepa-

rated cluster predicted by the Wright-Fisher model represents simulated half-siblings: neither

Fig 3. Number of IBD segments between pairs of individuals versus total length of shared IBD segments. 22

chromosomes of realistic lengths, simulated under Wright-Fisher model (middle) and coalescent (bottom), compared

to data from 8,435 individuals from the Genizon Biobank (top), as well as the analytical expectation under Eqs (1), (2),

(3), and (4) in S3 Appendix (white circles). Siblings were filtered from the Genizon cohort, as explained in S4

Appendix. Simulations contained 5,000 haploid samples with a diploid population size of 10,000. The isolated cluster

in the Wright-Fisher simulations reflects the discrete nature of possible genealogical relationships (siblings, cousins,

etc.) in the Wright-Fisher model.

https://doi.org/10.1371/journal.pgen.1008619.g003
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full- nor half-siblings are present in the Genizon data. Other relationships also form clusters

that overlap due to variance in amounts of genetic material shared IBD. Residual differences

between Wright-Fisher simulations and theoretical predictions in Fig 3 have to do with the

requirement that IBD segments be at least 5cM to be detected. Better agreement could be

achieved by using a cutoff of 1cM in simulations (see S3 Fig).

The distribution of long IBD segments between related individuals is primarily determined

by their degree of recent relatedness. For example, even though the population history and

sampling process affects the number of sampled first cousins, the recent IBD relatedness

among first cousins in large outbred populations is relatively independent of history and sam-

pling: This is why the simulated and empirical distributions observed on Fig 3 are in good

agreement despite differences in population sizes, and why the theoretical predictions that

describe both are independent of the population demography. Because the number of close

relatives changes with sampling and population size, the discrepancy between coalescent and

Wright-Fisher models is more acute for large sample sizes (see S3 Fig and S4 Fig for simula-

tions under different models). Yet S3 Fig shows clear differences between Wright-Fisher and

coalescent models with Ne = 10, 000 and 500 samples. More generally, Shchur et. al. (2018)

[23] calculated the expected number of p-th cousins in a sample of size K taken from a popula-

tion of effective size N. In a monogamous Wright-Fisher population, when K/N = 0.2, we

expect approximately 55% of samples to have a first cousin, and 95% to have a second cousin

within the cohort.

The long-range correlations induced by genealogical relatedness can also be measured as

linkage disequilibrium between distant loci. This LD is used to estimate sizes of small popula-

tions in conservation genetics [25, 26]. Hudson’s coalescent does not capture such LD patterns

[17], whereas the Wright-Fisher extension to msprime predicts the patterns of LD expected

under diploid mating (see S2 Appendix).

Ancestry variance following admixture

In admixed populations, simulations should capture patterns of ancestry variation among

present-day samples. The distribution of ancestry within recently admixed populations can be

strongly dependent on pedigree structure [18], making coalescent simulations of these scenar-

ios problematic.

We consider the variance of ancestry proportions following a single pulse of migration.

Ancestry variance can be divided into genealogical variance and recombination variance [27].

In the first few generations after admixture, variance is driven by genealogical differences in

the number of migrant ancestors of each individual. As time goes on, each present-day indi-

vidual has more ancestors from the admixed generation, exponentially reducing this source of

variance. After roughly 10 generations, variation in the amount of genetic material received

from each migrant ancestor becomes a stronger source of variance [27].

We performed whole-genome simulations to evaluate how well the Wright-Fisher and coa-

lescent models capture variance in ancestry. Fig 4 shows ancestry variance from simulations of

80 haploid samples in a diploid population of size 80, and a single event of 30% admixture at

varying time in the past. These parameters were chosen to match those in [27], but here again

the qualitative patterns depend weakly on the sample size and older demographic history. The

approximate expected values are derived from an argument similar to the one presented for

IBD sharing in S3 Appendix and outlined in [27].

The Wright-Fisher model captures both short- and long-term variance in ancestry, as

expected. In the coalescent simulations the initial phase of genealogical variance is not present,

leading to a 20-fold underestimate of the variance in ancestry. Lacking a diploid population
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pedigree, whole-genome coalescent simulations of recently admixed populations do not reflect

the distribution of ancestry expected in a large cohort, even under an idealized random-mating

scenario.

Other genealogical effects

Bhaskar et al. [13] showed that simultaneous coalescences in the Wright-Fisher model lead to

more singletons and fewer doubletons than in the coalescent, which was verified in [14]. S1

Fig and S1 Table replicate these single-locus results. King et al. [17] pointed out correlation

patterns among unlinked loci induced by genealogical relatedness—these results correspond

to the infinite-recombination distance in S2 Appendix.

Performance

The main advantage of msprime over alternate simulators is speed and scalability. This is

achieved by efficient algorithms and, especially, new data structures for storing and manipulat-

ing ancestral states throughout a simulation. We therefore need to ensure that the present

modification preserves these advantages.

Hudson’s coalescent algorithm avoids simulating recombination and coalescent events that

do not affect genetic variation in the present sample. Whereas our Wright-Fisher implementa-

tion must iterate over all discrete generations, Hudson’s coalescent can traverse long stretches

of time in a single step if there are no such events. The Hudson model is therefore more effi-

cient than the Wright-Fisher model when the number of lineages is small, as can happen in

small samples and short genomic regions, or in the distant past. However, Fig 2 shows that the

number of lineages in whole-genome coalescent simulations is so high that the time between

events is on average much less than a single generation. Furthermore, these lineages come at

an additional memory and computational cost for the coalescent model. This naturally sug-

gests using a hybrid approach with Wright-Fisher dynamics in the recent past and coalescent

dynamics in the more distant past, following the approach of Bhaskar et. al. [13].

Fig 4. Variance in ancestry after a single admixture event, as a function of time since admixture. Calculated from

80 haploid samples in a diploid population of size 80, with 30% admixture proportions. Error bars show 95%

confidence intervals over 50 simulations.

https://doi.org/10.1371/journal.pgen.1008619.g004
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Our Wright-Fisher extension is integrated with msprime’s core simulation framework,

and can easily be combined with coalescent simulations as part of a hybrid model. Since the

optimal switching time depends on the number of extant lineages and total length of uncoa-

lesced ancestral material, it will vary between different demographic models.

Fig 5 shows computation times for Wright-Fisher, Hudson coalescent, and hybrid simula-

tions of 1,000 haploid samples within a population of constant size 10,000. The pure Wright-

Fisher simulations are fastest at whole-genome scale, whereas pure coalescent simulations and

hybrid approaches are slightly faster for shorter regions. There is a small performance cost to

switching models, which explains the slightly longer runtime for the hybrid model with 100

Wright-Fisher generations versus pure coalescent simulations. The hybrid model with 1,000

Wright-Fisher generations compares favourably in terms of performance and accuracy to the

coalescent for a wide range of simulated lengths.

Methods

Implementation

To understand the modifications needed to turn msprime into a back-in-time Wright-Fisher

simulator, we first outline Hudson’s original algorithm to simulate samples under the coales-

cent model. This brief overview is intended to give context to the modifications which enable

Wright-Fisher simulations to be performed in the same framework. More details of how Hud-

son’s algorithm is implemented in msprime are given in [8].

First, a number of randomly-mating populations are specified, including effective sizes and

migration rates over time. Samples are introduced as haploid lineages within the populations,

and the region of the genome being simulated is specified. The algorithm then constructs the

Fig 5. Computation time of Hudson coalescent, Wright-Fisher, and hybrid models. Hybrid models used 100 and

1000 Wright-Fisher generations before switching to the coalescent. Simulations contain from 1 to 22 chromosomes of

realistic lengths (using the method described in S1 Appendix) in 1,000 haploid samples drawn from a diploid

population of constant size 10,000. Results for other population sizes are shown in S5 Fig.

https://doi.org/10.1371/journal.pgen.1008619.g005
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genealogy of each locus within this region by tracing its lineages backwards in time and track-

ing genomic segments that are ancestral to the sample.

To begin, each lineage contains a single ancestral segment spanning the whole simulated

genomic region of a sample. As time proceeds backwards, lineages can be split by recombina-

tion events (leaving the amount of ancestral material unchanged), or participate in common

ancestor events, where any overlapping regions coalesce (reducing the amount of ancestral

material). The rate of recombination events depends on the sum of the genetic map distance

spanned by ancestral segments carried by all extant lineages, and common ancestor events

occur at a rate determined by the number of uncoalesced lineages and the effective population

size. Migration events move haploid lineages between randomly-mating populations, and

demographic events modify the number of populations or their size and growth rate parame-

ters. Recombination and common ancestor events are generated at rates depending on the

amount of extant ancestral material, and the simulation terminates when every position on the

genome has a most recent common ancestor.

Implementing a back-in-time Wright-Fisher model requires two important changes to

Hudson’s algorithm. First, rather than drawing a time to the next event from an exponential

distribution, we iterate though discrete generations and draw the events which occur at each

time. Second, we modify the way recombination events are carried out, to account for the pos-

sibility of multiple recombinations in a single transmission: we model the number and spatial

distribution of breakpoints as a Poisson process, with rate equal to the per-generation recom-

bination rate (i.e., the distance in Morgans). This model ensures that each gamete has a unique

diploid parent. An overview of this model is illustrated in Fig 1 and the detailed order of events

occurring at each generation is given in S1 Appendix.

Ethics statement

Access to the Genizon cohort genotyping data was granted under study number A07-M42-

15B of the McGill university IRB. Third party data were analysed anonymously so consent was

not obtained.

Discussion

While the Wright-Fisher model may generate a more realistic pedigree than the coalescent

model in the recent past, it was recognized early on as an idealized model [28, 29]. Our imple-

mentation does not track monogamous couples, for example, and therefore will vastly overes-

timate the prevalence of half-sibs and underestimate full sibs compared to a realistic human

cohort. Assortative mating and inbreeding are not accounted for, and the migration model,

while biologically plausible, is a simplification of the real migration process (see implementa-

tion details in S1 Appendix). Care should be taken in applications which are particularly sensi-

tive to fine-scale mating or migration patterns.

Many of these issues can be addressed by allowing simulations to take place within a pre-

specified pedigree, which is a natural extension to our backwards-in-time Wright-Fisher

implementation. Rather than drawing genealogical links at random according to demographic

parameters, lineages can simply follow a known pedigree. When reaching a pedigree founder,

simulations can then continue by reverting to either the Wright-Fisher or the coalescent mod-

els. Real pedigrees of any size could then be used, from extended families up to population-

scale [30], or they could be generated with the desired patterns of monogamy or assortative

mating in a separate step. While conceptually straightforward, maintaining efficiency while

simulating within population-scale pedigrees is non-trivial. We leave such an implementation

for future work.
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Improvements to recombination models is also a natural extension of the present approach.

Assigning sexes to parents would allow simulation of the X-chromosome and sex-biased

migration. Recombination can be extended to model crossover interference and sex-biased

recombination, which have effects on the distribution of IBD [31], as well as non-crossover

events.

Finally, the performance of the hybrid model could also be improved. If the number of

Wright-Fisher generations were chosen optimally, it is likely to be more efficient than pure

Wright-Fisher simulations in nearly all scenarios. Better guidelines for finding this optimal

value could be developed, or possibly built into the simulation framework itself.

The limitations of the coalescent model have been well-studied, but were generally tied to

modest effects except in very large cohorts [13]. We have shown significant qualitative and

quantitative biases in whole-genome simulations of large, complex cohorts. Analysis of such

cohorts is challenging, and simulations are a valuable tool for evaluating disease associations

and the effects of demography in this context. We have presented here an extension to

msprime which corrects major biases and increases performance at whole-genome scale,

allowing simulations to continue supporting modern large-scale sequencing efforts.
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Fisher dynamics. We simulated 10,000 haploid whole genomes with 22 chromosomes of real-

istic lengths in a population of 10,000 diploid individuals. The method for simulating multiple

chromosomes is described in S1 Appendix. Similar results were shown in [21].

(PDF)

S3 Fig. Number of IBD segments between pairs of individuals versus total length of shared

IBD segments. 22 chromosomes of realistic lengths, simulated under Wright-Fisher model

(top) and coalescent (bottom), compared to the analytical expectation under Eqs (1) and (2) in

S3 Appendix. Effective population size 10,000, sample size A) 5000, B) 2500, C) 1000, D) 500.

Minimum IBD segment length of 1 centimorgan.

(PDF)
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S4 Fig. Number of IBD segments between pairs of individuals versus total length of shared

IBD segments, under the Gutenkunst et. al. (2009) [3] out-of-Africa model. 22 chromo-

somes of realistic lengths, simulated under Wright-Fisher model (top) and coalescent (bot-

tom), compared to the analytical expectation under Eqs (1) and (2) in S3 Appendix. The

African, European, and Asian populations had 1000 haploid samples each.

(PDF)

S5 Fig. Computation time of Hudson coalescent, Wright-Fisher, and hybrid models with

100 and 1000 Wright-Fisher generations before switching to the coalescent. Simulations

contain from 1 to 22 chromosomes of realistic lengths, using the method described in S1

Appendix, in 500 haploid samples within a diploid population of size 500.

(PDF)
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