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Abstract The field of synthetic biology is looking forward engineering framework

for safely designing reliable de-novo biological functions. In this undertaking,

Computer-Aided-Design (CAD) environments should play a central role for facil-

itating the design. Although, CAD environment is widely used to engineer artificial

systems the application in synthetic biology is still in its infancy. In this article we

address the problem of the design of a high level language which at the core of CAD

environment. More specifically the Gubs (Genomic Unified Behavioural Specifi-

cation) language is a specification language used to describe the observations of the

expected behaviour. The compiler appropriately selects components such that the

observation of the synthetic biological function resulting to their assembly complies

to the programmed behaviour.

Keywords Domain specific language � Synthetic biology � Compilation

1 Introduction

The design of safe and secure synthetic biological functions is a major challenge in

synthetic biology. In this undertaking, computer-aided-design (CAD) environments

should play a central role by providing the required features to engineer systems:

specification, analysis, and tuning (Bilitchenko et al. 2011; Pedersen 2009; Umesh

et al. 2010; Czar et al. 2009). Thus, increasing the complexity of synthetic

biological devices with the design of de-novo synthetic genome as a long-term goal
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(Gibson et al. 2010) naturally leads to investigate the automatic conversion

processes of the design specification into biological components like compilers for

programming languages. In this context, high level programming language for

synthetic biology is announced as a key milestone for the second wave of synthetic

biology to overcome the complexity of synthetic system design (Purnick and Weiss

2009) by providing the ability for researchers to describe abstractly and concisely

function while compiling it into a low level representation such as DNA sequences.

However, the nature of the medium—a living organism—requires to revisit the

methods used in compilation to account its specificity. Indeed, although living

organism is theoretically viewed as system (Kaneko 2006; Kitano 2002), its design

notably differs from other engineering systems. Usually, the design in system

engineering is mostly based on a reductionist approach consisting of a hierarchical

composition of inter-operable and modular parts. In this methodological context, the

functionalities referring to a given level are defined as an assembly of devices

corresponding to the level immediately below. For example, this methodological

framework architectures the design of computer network.

Although this framework is a standard for system design, the application in

synthetic biology encounters some fundamental difficulties. The origin of these

difficulties could be summarized by the fact that the design essentially consists in re-

engineering a natural system resulting of a Darwinian selection that seemingly does

not follow the afore mentioned principles in its ‘design’. In particular, the following

characteristics must be accounted for the design and the compilation process:

Structures with multiple functionalities The design a biological system aims at

devising functionalities that do not exist in the Nature. However, pointed out by Jacob

(1981) as the consequence of the evolution, the biological components may support

several functions leading to the absence of a one-to-one mapping between structures

and functions. Thereby, a structure may encompass different functions. Thus, the

design of a biological system can be roughly summarized as selecting a part of

functionalities in components to form a device tiling the expected synthetic biological

function (Stocker et al. 2003). Besides, The same functionality can be carried out by

different biological structures. For instance the inhibition of the expression of the

protein can be achieved either by an inhibitor or by RNA silencing mechanism.

Interaction with the environment and incompleteness of the models The

interactions can be envisioned in twofold: by considering the environmental

conditions characterizing a particular context for process triggering and as a

possible source of disturbance possibly preventing the realization of the expected

result. Although the progress made in the field of molecular biology, the complete

understanding of an organism remains out of our knowledge, then limiting the scope

of the control action on the organism.

To circumvent these difficulties, our proposal is to specify a biological function as

‘‘a set of expected observations related to causal interactions’’ and the compiler is then

in charge of delivering the right assembly of biological components to obtain the

expected observations. Informally, a program is here an observation based query

described by the observations of causal relations. Hence, the programmer does not

explicitly describe the process chain supporting a function but rather the expected

observations of the designed function by emphasizing causal relations. The compiler
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then selects a set of components in a database such that their assembly complies to the

program specification. Informally, the compilation process relies on a syntactical

pattern matching such that the description of the selected components tile the

description of the behaviour. Hence, a functional description of the behaviour is

associated to each component and the union of the selected components behaviourally

covers the programmed functionality. By contrast to the standard compilation process

based on the definition of amorphism1 from syntax to objects of calculus underpinning

the hierarchical assembly, the tiling is here global and orderless. Notice also, that only

a piece of the functionality of a component could be used for this covering. Thus, the

design gains in abstraction and in flexibility for component selection while accounting

the multiple functionalities for a components and possible extensions.

In literature, researches on programming languages for synthetic biology are mainly

focused on a structural description (Czar et al. 2009; Pedersen 2009; Bilitchenko et al.

2011) of components used to specify a well-formed genome sequences. By contrast, our

proposal is focused on the function description postponing the biological components

selection at compile phase, motivated by the facts that the size of the structural

description significantly increases when the complexity of programmed systems

increases. Besides as the same function can be carry out by different structures (e.g.,

DNA sequences), the compiler may select a component amongst a set of functionally

equivalent components in accordance to a context.

Beal et al. (2011) has developed a compiler (BioCompiler) translating amor-

phous programs written in Proto into DNA sequence. The biological components

are assimilated to actuators and logical gates. Although the compilation scheme is

function oriented it differs to Gubs on the following orientations: a Gubs program
describes the observation of a biological system instead of an amorphous process,

and the compilation scheme does not assimilate the component functionalities to

logic gate but describe them by causal relations allowing more flexibility for the

description. Hence, the components are not necessary atomic (e.g., promoter) but

correspond to a collection of already tested components with different scales.

In Rodrigo et al. (2012), the authors the design is based on the pathway analysis

to find a way to produce specific biological compounds. In Gubs, the assembly is

based on a tiling of the expected behaviour by the behaviour of the components.

In this article, we study a domain specific language Gubs and a compiler

providing a framework for behavioural description of biological component while

accounting the openness of such system. After introducing the main features of the

language (Sect. 2) we describe the compilation process (Sect. 3) including the

selection of biological components and we study the concrete applications of Gubs.

2 Language Description

2.1 Presentation

The Gubs language allows for the description of the behaviour of a biological

system validated by a set of observations. In some extend, a Gubs program collects

1 E.g., Genðaþ bÞ ¼ GenðaÞ � GenðbÞ where � stands for the calculus of þ.
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the key-observation of an experiment, and ignore those unknown or out of the

programming scope. In the following, we will base our examples on the Gubs
program of Fig. 1 corresponding to lysis/lysogeny genetic regulatory network of

bacteriophage lambda (Thieffry and Thomas 1995). The network represents a

switch based on two genes where each genes inhibits the other leading to two

distinct equilibria.

2.2 Syntax

The elements of a Gubs program are defined as follows:

2.2.1 Agents and Attributes

Agents represent biological elements of the system. They are the atomic elements of

the language. In Fig. 1, agents are biological elements such as Cro or CI

Constants and variables Gubs distinguishes two types of agents: constants and

variables. Constant designates predefined element in a real corpus of knowledge

such as a particular gene (e.g., Cro in the example); and the variables represent an

abstraction of the predefined objects. For example, a variable g1 may qualify a class

of gene. By syntactical convention, a constant starts with an Upper case letter and

variable with a lower case.

State of an agent The different observable states of agents will define their

different possible behaviours. These states are associated to the capabilities of

actions on the states of other agents. By default, an agent has two abstract states:

present or absent, which may correspond to the active or inactive state of a gene for

example. The notion of activity is related to the influence capability of an agent in

the system. In Fig. 1, the rules consider the active and inactive agents. By

convention, the specification of the presence is described with its name (i.e., Cro) ,

and begin absent as a negation (i.e., Cro).

Attributes. However, restricting the state of a biological agent to the presence or

the absence of the agent appears too restrictive to finely describe the intended

Fig. 1 This example introduces the main features of GUBS language applied to a regulatory network of
the k-phage governing the lysis–lytic cycle and involving Cro and Ci genes. The program is structured as
follows: first the relations on attributes are defined, then the regulations are translated to causal relations,
and finally the observers are added. Notice, that the inhibition corresponds here to macro relations i.e.,

CroðlowÞ�!� CIðhighÞ ¼ CroðlowÞ�! �CIðhighÞ; �CroðlowÞ CI(high)
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functionality. Indeed the variation of the concentration of an agent leads to the

modification of its interaction with the other agents. In order to account the variation

of its activity at different levels, we use the attribute characterizing different

relevant states symbolically. In Fig. 1, attributes correspond to the variables in

parenthesis, for example low in Cro(low). Notice that attributes are defined in the

first lines of the program: Cro : flow\highg.
The biological meaning of the attributes is a matter of convention depending of

the target device (e.g., protein reaction, gene network). For example, the activity of

gene regulation may correspond to the observation of different thresholds in the

RNA concentration inducing different regulatory activities (Bernot et al. 2007). If

we identify three regulation activities for a gene G, the state of this gene will

correspond to three different attributes fLow;Mid;Highg. In order to describe the

links between multiple attributes of the same agent, we define two types of relations

between attributes qualifying their relative capacity: the order relation, �, signifies

‘‘has less capacity than’’ meaning that the control capacity at a given state

symbolized by an attribute is strictly included in another state symbolized by an

attribute greater of the former; and the inequality, =�, signifies ‘‘has a different

capacity than’’ meaning that the control activity is totally disjoint for any pair of

unequal attributes.

Numerical attributes. Symbolical attributes are completed by numerical one

providing a quantification of the control activity. For example, they may define a

concentration measure such as LacI(0.3) or a range of values, such as LaCI[0.1, 0.4]

meaning that the agent is active in this concentration range.

2.2.2 Causal Relation and Observation Points

Basically, a causal relation represents the control of an agent over another. In Fig. 1,

causal relations between agents are defined as: �!� in CroðlowÞ�!� CIðhighÞ, or
in Cro(high) Cro(low).

An historical definition of causality proposed by Hume (1739), is formulated in

terms of regularity on events: ‘‘[we must define] a cause as an object, followed by

another, and where all the similar objects to the first are followed by similar objects

to the second’’. Although this definition appropriately characterizes the notion of

control, the openness of the system should account the actions of the environment

that may alter the causal relation chain. For example, an activation G1 �!
þ

G2 may

be contradicted by an existing inhibition G3 �!
�

G2 on the same target gene G2.

Although G1 is active, it is possible that G2 is not active because its action is

preempted by the action of G3 having stronger strength than G1. Thus, following

Hume definition, any planned causal relation could be interrupted unexpectedly by

an external event. To circumvent this problem, we semantically define the causal

relation in a counterfactual form (Lewis 2000) from the effect: ‘‘if the effect is

observed, the causal relation is effective’’.

The definition of a causal relation will be refined to address the scheduling

constraints between cause and effect to be able to more finely select the components
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corresponding expected behaviour. The causal relation primitives are defined as

follows (Basso-Blandin and Delaplace 2013):

– c e: if e occurs then c has occurred in a recent past.

– c�!e: si e occurs then c has occurred in a recent past and is still present in this

moment.

– c�!e: si e occurs then, either e has occurred in a recent past or else e hasn’t

occurred in a recent past and c then necessarily appeared.

In the sequel, we define the strong inhibition denoted g1 �!
�

g2 as an inhibition

expressed by the program g1�!g2; g1 g2.

We also define the strong activation denoted g1 �!
þ

g2 as an activation expressed

by the program g1�!g2; g1 g2
Observation spots. To define the behaviours that we expect to observe in a

program, we define the notion of observation spots. The observation spots

describe the set of expected observations along an experimental trace resulting of

a device assessment. Observation points are used to determine effects that must

necessarily be fulfilled. In Fig. 1, observation spots are defined for Cro(high),

Cro(low) and CI(low) by obs 1 :: CroðhighÞ, obs 2 :: CroðlowÞ and

obs 3 :: CIðlowÞ.

2.2.3 Compartments and Environments

Contexts. In order to describe interactions of the program with the environment, we

introduce here the notion of context. This notion allows us to clearly differentiate

the interactions of the Gubs program from those external to the system described by

the program. Precisely, a context refers to a stimulus acting on the system that can

be either environmental conditions and external signalisation. The application of a

k context to a set of causal relations d is written [k]d where k is an agent (i.e.,

variable or constant) meaning that the causal relations belonging to d are triggered

only if the k context is present.

Compartments. Finally, a Gubs program is a set of attributes definition,

observation spots and causal relations encapsulated into contexts. In order to

describe the spatial organization of the biological system, we introduce a last

element in the language, compartments. A compartment encapsulates a set of causal

relations, making them local. For example, Cfg1 g2g describe a normal

dependence relation in the C compartment.

2.3 Interpretation

The result of the compilation is an assembly of components where the behaviour of

the generated biological system must comply to the behavioural properties

described in the program. In this section, we informally describe the semantics of

Gubs. Technically, the denotational semantics of Gubs is based on multi-modal

hybrid logic(HL) translating a Gubs program into a formula (Adrien 2014).
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Validation of properties is primarily based on a set of experiments measuring the

evolution of physical quantities related to agents that qualifies the states of agents. A

Gubs program describing a symbolic abstraction of these quantities, we assume it is

possible to extract a symbolic trace characterizing this evolution. This leads to

establish a correspondence between physical quantities and attributes. A trace is a

sequence, ðTtÞ1� t�m where each Tt corresponds to an event composed by the state

of the agents symbolised by its attributes at each instant. For example, the changes

in the concentration of Low to High of an agent G defined with three potential

attributes Low, Mid, High can be described by the following trace composed of 6

instants (Eq. 1) where each value is presumably obtained by a periodical

measurement of a quantity related to G and symbolically translated.

ðfGðLowÞg
1

; fGðLowÞg
2

; fGðMidÞg
3

; fGðMidÞg
4

; fGðMidÞg
5

; fGðHighÞg
6

Þ ð1Þ

We now address the principle to extract from a trace an history defining a timeline–

milestone events of the behavior evolution. Actually, all events in a trace are not

necessarily relevant to validate the properties described by the program. For

example, if we focus on the evolution of a concentration Low to High to G, only

three events are relevant to this description: G(Low) and G(Mid), and G(High),

irrespective of the intermediate stages of evolution that occur between the both, nor

the repetition identical events. We will therefore adopt a different representation

called an history from a chronological division of a trace in several periods. An

history is an intentional division of a trace to highlight the relevant events

emphasizing the desired properties of the behaviour of the biological system. Given

a trace ðTtÞ1� t�m, and a chronological division an history is defined as a sequence

of set of events occurring during each period.

In the previous example, the period division leading to an history corresponding

to the expected evolution from Low to High for G is the following discrete time

intervals ([1, 2], [3, 5], [6, 6]). The resulting history is:

ðfGðLowÞg; fGðMidÞg; fGðHighÞgÞ:

The validation of a synthetic biological function from a Gubs program operates on

histories. Formally, An history corresponds to a Kripke (1963) model with the

topological property of linearity(i.e., a graph reduced to a single path). The vari-

ables in each world (node) correspond to events (agent’s state). Hence, An history

‘‘explains’’ a Gubs program if it satisfies the formula resulting from its interpre-

tation. In some cases, an history represents a partial result of the functionalities of

the program only and does not satisfy the formula interpreting the program. Hence,

to validate the program it is required to gather different histories such that they will

form a Kripke model satisfying the formula interpreting the program. Notice that

Tableau method can generate these models (Cerrito and Mayer 2011).

Figure 2 describes the Kripke models satisfying the different causal relations.

Notice that model (1) is a sub-model (limited to white nodes) of model (3).

Similarly, model (2) is a special case of model (1) by requiring the presence of the

cause in the world of effect. It is worthwhile to point out that a model satisfying a
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persistent causal relation also satisfies a normal causal relation in turn satisfying

remnant causal relation.

3 Compilation

The compiler selects and assembles components whose collective behaviour

complies to the program specification. Schematically, the compilation principle is

based on behaviour pattern matching. The behaviour of each component is also

described by a Gubs program such that the compilation algorithm collects different

component-programs whose assembly ‘‘matches’’ with the behaviour of the

programmed function. The generated device Q ¼ fQig then behaviourally ‘‘covers’’

the programmed function P. Formally, by considering that the interpretation of P

and Q (½½P		,½½Q		) are Hybrid logic formulas, the behavioural inclusion denoted by

P Q characterizes the fact that P is a logical consequence of Q (Definition 1).

Definition 1 (Behavioural inclusion) A program Q behaviourally includes another

program P, if and only if the interpretation of the latter is a logical consequence of

the interpretation of the former:

where M is a Kripke model and ½½P		; ½½Q		 are respectively the interpretation of

P and Q.

The behavioural inclusion characterizes the condition of correctness for the

compilation algorithm to insure that the assembly of components will at least

reproduce the behaviour of the designed function. The behavioural inclusion

property is defined from the semantics of the program. However, the compilation

(the matching) is based on a syntactical comparison between the source and the

assembly of component programs. Hence, the compilation process will be defined

by a formal system called the functional synthesis rules (Table 1) denoted, .

Fig. 2 Kripke models corresponding to three types of possible causes. we denote c the cause and e the
effect. In the first case, the model (1) merely imposes c to be in a previous world than e. In the second
case [model (2)], c must also appear in the world where e is displayed. Finally, in the third case [model
(3)], the presence of e requires that either c appears in the previous world or e is displayed in the previous
World (World in gray)
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It formalizes the operations whereby biological components of a library are selected

and assembled to generate a device behaviourally including the programmed

function. All the rules of Table 1 preserve the behaviour inclusion (the proofs can be

found in Basso-Blandin and Delaplace (2013)). Hence, Q r P½r	 means that the

observable assembly of components Q is the functional synthesis of P that

behaviourally includes it under the substitution of r replacing variables by constants

(or other variables). It is also worth noticing that the satisfiability of the formula

interpreting Q is checked to prevent the incompatible assembly revealed here by a

false formula. This property is called the observability of Q (obs ðQ½r	Þ in Table 1)

informally meaning that the assembly does not produce an infeasible behaviour.

Rule (Inst.) describes the fact that an observable instance of a part of a

component in the library is functionally synthesized. Rule (Com.) expresses the

commutativity of the assembly. Rule (Cont.) contracts the redundant formulation of

programs. Finally, Rule (Asm.) details the conditions for an assembly of two

components, each representing a functional synthesis of a part of the designed

function. Another set of rules (Adrien 2014) not presented here defines the alternate

possibilities to express similar behaviours in order to find components if no

components in the database fit to the matching.

The algorithm derived from the formal system can be assimilated to a general

unification algorithm (Knight 1989) called the ACI-unification (Baader and Büttner

1988; Baader and Snyder 2001) (Associative, Commutative, Idempotent). For the

unification, causal rules correspond to normalized terms to unify and a program to a

conjunction of terms.

3.1 Compilation Algorithm

ACI-Unification is an NP-Complete problem and the algorithm explores all the

possibilities until an unification is found or fail (Baader and Büttner 1988; Baader

and Snyder 2001). To improve the algorithm, we account the specificity of GUBS

language. The performance of the algorithms actually depends on the size of the

database where the components are stored. For a small set of components, the ACI-

unification algorithm selects a subset of components behaviourally covering the

Table 1 Functional synthesis rules VA(P) stands for the set of variables of the program and rjV is the

restriction of the substitution on a set of variables V. C is a set of components representing the library.

P 
T Q denotes the textual inclusion of P in Q i.e., Q ¼ ðQ1;P;Q2Þ where Q1 or Q2 may be an empty

program
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initial program P in the whole database. However, for large database, the unification

may be too time-consuming to be effective. In this case, the unification will operate

on a part of it. The issue is to appropriately select of a subset of components

behaviourally covering P. The selection is achieved by a directed evolutionary

algorithm where the individuals represent a possible subset of components. By

directed we mean that we proceed to a pre-selection, checking whether each

individual (subset of components) will not obviously cause the unification failure.

Hence, the functional synthesis algorithm is structured in two stages: the ACI-

unification algorithm and the directed evolutionary algorithm. An individual

represents a subset of components. The best individuals have the minimal number of

unified components and maximize the number of unified rules in the program.

Based on ACI unification, the functional synthesis takes benefit of the specificity

of the language to heuristically improve the selection of subset of components

forming the individuals of a population. The heuristics implies to define a relation

between causal relations of P and the components Qj of a database. The relation

accounts the structure of the causal rule and the nature of the agents. P is assumed to

be a set of causes P ¼ fpigi. The relation qualifies a local causal association of P

where each cause of P can be associated to a cause of a subset of components

Q ¼
S

j Qj without accounting the interplays between the unification of different

causal rules. If the causes pj is not related to some Qjs then the ACI-unification

surely fails.

Constraints on causal relation. A causal rule pi is related to a component Qj if

and only if there exists a causal rule qj of Qj such that:

1. The type of qj is the same as pi.

2. All constants of pi are present in qj in there respective side of the causal

relation(cause or effect).

3. The cardinality of the both set of agents representing the cause and the effect of

qj is greater or equal to the cardinality of the respective set in pi.

4. Each agent of pi has a counterpart in qj, with the same order on their attributes.

5. For each agent of pi, the number of attributes is lower or equal to the agent

counter part in qj.

Once a relation between the causal relations of P and those of the components is

established, the algorithm selects a subset of components such that there exists at

least one causal relation qj fulfilling the previous constraints for each pi of P. Notice

that, different components Qj of Q can cover the same causal rule pi of P. Next,

before performing the ACI-unification algorithm between an individual Q and P, we

validate some necessary conditions on the agents.

Agents constraints. The agents constraints are the following:

1. The number of occurs of a constant in P must be lower or equal to the number

of occurs of the same constant in Q.

2. For each variable v of P, there exists at least one constant of Q that does not

belong to the constants of P whose number of occur is greater or equal to the
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number of occurs of v in P. Besides the order on the attributes is the same and

the number of attributes of the constant is greater the number of attributes of the

analysed variable v.

The constraints on agents are refined by considering the side of the occur of agents

on a causal relation, either as a cause or effect. The main steps of the behavioural

matching algorithm are defined in Fig. 3.

3.2 Example: Compilation of the Repressilator

In this section, we sketch the application of the algorithm to the Repressilator

(Elowitz and Leibler 2000) example (Fig. 4). The Repressilator circuit is one of the

first synthetic system leading to oscillation of fluorescent protein (GFP) monitored

by a circuit of three genes, each one inhibiting another. To simplify the presentation

we apply the algorithm on a piece of the database used for the effective compilation

(Fig. 5). In the sequel,the causal relations are labelled by pH as follows: p1 : g1 �!
!g2, p2 : g2 �!!TetR_lite, p3 : TetR_lite �! !g1.

1. Define the local causal relation;
2. initialize a counter n (for small database n 1);
3. generate a population of individuals where each individual covers of P locally (for small

database, the single individual is the database);
4. select an observable individual Q covering P locally that satisfies the constraints on agents;
5. performs the ACI-unification of P with Q;
6. if the unification succeeds then store the substitution and the list of components involved

in the unification as a solution;
7. performs cross-over, mutations on the population; n n 1;
8. repeat steps from 4 until n 0;
9. select the best stored solution (substitution and list of components).

Fig. 3 Compilation process
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1. By application of the first step of the algorithm, we define the relation that

locally associate each pi; i 2 f1; 2; 3g to Qjs.

• p1 is locally associated to all the components

• p2 is locally associated to Q1 due to the TetR_lite in the effect side

• and finally, p3 is locally associated to Q3 and Q4.

2. Thus, the following population of individuals is generated:

fðQ1;Q1;Q3Þ; ðQ2;Q1;Q3Þ; ðQ3;Q1;Q3Þ; ðQ4;Q1;Q3Þ; ðQ5;Q1;Q3Þ;
ðQ1;Q1;Q4Þ; ðQ2;Q1;Q4Þ; ðQ3;Q1;Q4Þ; ðQ4;Q1;Q4Þ; ðQ5;Q1;Q4Þg

3. By application of the agent constraints we have:

• Due to the second rule applied to g2, we conclude that ðQ1;Q1;Q3Þ and

ðQ1;Q1;Q4Þ cannot cover P because TetR_lite is used in P so it cannot be a

substitution of g2.

• As for g2, ðQ3;Q1;Q3Þ, ðQ4;Q1;Q3Þ, ðQ3;Q1;Q4Þ, ðQ4;Q1;Q4Þ cannot

cover P because TetR_lite is used in P so it cannot be substituted to g1.

• The unification of ðQ5;Q1;Q3Þ fails because no constants other than

TetR_lite appear more than once.

• Similarly the unification of ðQ5;Q1;Q4Þ fails P because no constants other

than TetR_lite appear once in a cause and once in an effect.

4. Hence, ðQ2;Q1;Q3Þ and ðQ2;Q1;Q4Þ constitute the remaining choices.

Fig. 4 GUBS program of the
repressilator

Fig. 5 Component database
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5. The next step of the algorithm consists in the substitution of each variable to

constant:

• With this step, using ðQ2;Q1;Q4Þ, g2 can be substituted to LacI but g1

cannot be unified.

• So the remaining solution is ðQ2;Q1;Q3Þ where g2 is substituted with LacI

and g1 with CI.

6. The final solution ðQ2;Q1;Q3Þ corresponds to the biological description of the

Repressilator.

Here, due to the unification properties, only one solution is possible, but, in most of

the case, several solutions are available. In this case, the potential solutions are

ordered with respect to fitness properties.

3.3 Benchmarks and Numerical Results

In order to empirically validate the functional synthesis algorithm, we executed Ggc
on several data sets. Those data sets are based on databases containing randomly

generated 100 components. In order to insure a solution for the tested program and

the fact that the compiling time-out is due to the lack of time finding a solution, each

program is generated by selecting a subset of components in the database. Execution

time on the following curves correspond to program containing respectively 10 and

25 causal relations. In order to show the impact of the number of agents and

constants on the compiling time, those numbers evolve from 1 to 10 on each

program (Fig. 6).

Those curves confirm the theoretical hypothesis. In fact, we observe that the time

evolve exponentially function of the number of variables and not of the agents

because constants restrict the possibility of choices. In conclusion, the efficiency of

the compilation directly depends on the number of constants corresponding to the

known agents.

Fig. 6 The first curve represent the compilation time evolution (in s) for a 10 causal relations sized
program and the second for a 25 causal relations sized program
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4 Conclusion

In this article, we have described the main features of Gubs, a language for

synthetic biology based on a behavioural description of the designed biological

function. The compilation principle relies on the covering of the behaviour of a

programmed function by the behaviour of a collection of components. The

behavioural covering corresponds to a matching between component specification

and the programmed function specification. The compiler combines the ACI-

unification algorithm with a directed evolutionary algorithm enabling to analyse

large biological database. We have demonstrated the proof-of-concept of the

compilation with a prototype applied on some realistic examples. GGC is

implemented in Ocaml, using XML files for the database (the platform is freely

available in open source on Basso-Blandin et al. (2015)). GGC has been tested on

multiple randomly generated examples and databases (Adrien 2014).

In the future, we could imagine that the design in synthetic biology will require

different programming layouts based on different language paradigms structured in

a tower of languages and addressing different levels of integration in biology. From

a language describing collective operations on cell colonies (Giavitto et al. 2005;

Beal et al. 2011) the program will be translated into different intermediate

representations to end by a structural low level description programmed in a

grammar based language (Cai et al. 2010) of genome sequences. In this tower, the

GUBS language occupies the intermediary level dedicated to cell entity behavioural

programming. The tower could be completed by methods ensuring the safety of the

generated system by a verification of the non-toxicity and simulation for accurately

assessing its performance. The integration of these methods could rely on the

realization of a connection with existing tools based on a translation of a Gubs
program into formalism dedicated to toxicity checking as in Giusto et al. (2014) and

languages for simulation such as Kappa (Danos et al. 2010) or Biocham (Calzone

et al. 2006).

Acknowledgments The funding for most this work is granted by the ANR SYNBIOTIC (030701).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

References

Adrien BB (11 2014) Gubs, a behavioural description language for synthetic biology. Ph.D. thesis,
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