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Abstract The question of how biodiversity influences the emergence of infectious
diseases is the subject of ongoing research. A set of nonlinear differential equations is
been used to explore the interactions between ecology and epidemiology. The model
allows for frequency-dependent transmission of infection within host species, and
density-dependent transmission between species, via the environment or a vector.
Three examples are discussed. It is shown that removing a pathogen may increase a
consumer population, decreasing its resource. It is then shown that the presence of a
pathogen could enable a predator and a prey species to coexist. Finally the dilution
effect, by which increasing biodiversity reduces the transmission of an infectious
disease, is investigated.
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1 Introduction

Emerging infection diseases present a major threat to world health. On average,
two new species of human virus are reported each year [1], most having an ani-
mal origin [2–5]. Recent examples are SARS [6], swine flu [7] and avian influenza
[8, 9]. In 2014, Ebola virus re-emerged from a bat reservoir [10, 11], causing a major
epidemic [12–15]. Climate change could lead to Aedes mosquitoes establishing in
New Zealand [16, 17], and with them dengue and Zika viruses [18].
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Large complex ecosystems interacting at random are almost certain to be unstable
[19]. Adding structure to the community matrix produces a different picture [20–23],
competitive interactions are stabilising, whereas mutualism is destabilising [20]. A
major component of an ecosystem is the food web: the network of feeding inter-
actions among species. Adding pathogens increases the web’s complexity [24–28],
and parasites have been described as the dominant or missing links [29, 30]. An
infection may make prey easier to catch, or unpalatable to a predator, or reduce a
predator’s hunting ability, but the overall influence of pathogens on an ecosystem
may be unexpected [31]. The influence of ecosystem dynamics on epidemiology can
also be unexpected [32] and may lead to a pathogen jumping host species causing a
pandemic.

We present a model that describes how an infectious disease can modify the
dynamics of host and non-host species, and how changes in ecosystem dynamics
can modify the epidemiology of a pathogen. We illustrate our model with three
examples. In the first, eliminating a pathogen led to an increase in biodiversity,
whereas in the second the presence of a pathogen is necessary to maintain a prey–
predator relationship. The third example directly addresses the dilution effect—how
a change in biodiversity may result in a change in the dynamics of an infectious
disease.

2 The Model

To model an infectious disease on a food web infected with a single pathogen of
interest, we define Ni to be the abundance of species i ∈ Ω , Ii/Ni to be the proportion
of species i infected, and Si = Ni − Ii the abundance of susceptible hosts of species i .
The equations for the population dynamics of the food web are

dNi

dt
= νi (Ni )Ni − μi (Ni )Ni − αi Ii −

∑

j∈N i

φi j
(
Si + ni j Ii

) (
S j + oi j I j

)

−
∑

k∈P i

ψik (Si + qik Ii ) (Sk + pik Ik) +
∑

�∈Q i

π�iψ�i (Si + p�i Ii ) (S� + q�i I�) ,

where species i is born at the rate νi and dies at the rate μi , both functions of Ni ,
with increased death rate due to infection αi . Species i competes for resources with
species j when j ∈ Ni , is eaten by species k when k ∈ Pi and eats species � when
� ∈ Qi . The variables φi j ,ψik and π�i account for competition for resources between
species i and j , consumption of species i by species k and the benefit to species � of
consuming species i , respectively. All of these interactions may be modified if one
or other of the species is infected with the pathogen.

The dynamics of the pathogen are expressed by
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dIi
dt

= βi
Si Ii
Ni

− μi (Ni )Ii − αi Ii − Ii
∑

j∈N i

φi j ni j
(
Sj + oi j I j

)

−Ii
∑

k∈P i

ψikqik (Sk + pik Ik) + Si
∑

�∈Q i

γ�i q�iψ�i I� + κi SiW

The model allows for three modes of transmission: frequency-dependent intra-
species transmission at rate βi , density-dependent transmission via the environment
or an infected vector

(
W = ∑

m∈Ω rm Im
)
and transmission from prey to predator

while feeding.
There are usually multiple steady states. The structure of the Jacobian matrix

at the infection-free steady state decouples criteria for ecological stability and
epidemiological stability [33].

J =
(
C D
0 H

)

The steady state is ecologically stable if the maximum real part of the eigenvalues of
the community matrix is negative, s(C) < 0. The steady state is epidemiologically
stable if s(H) < 0. ThematrixH determines the stability of an ecological equilibrium
to invasion by an infectious disease in chronological time. It can be decomposedH =
T + Σ where T is the transmission matrix for the pathogen and Σ is the transition
matrix. The next-generation matrix is K = −TΣ−1, and the basic reproduction
number R0 is the spectral radius of K [34, 35]. If R0 > 1, the pathogen can invade
the food web, and henceK determines epidemiological stability of the ecosystem in
generation time.

Example 1 A resource–consumer–pathogen system. For this simple example, we
assume that the pathogen only infects the consumer. The equations are

dN1

dt
= ν1(N1)N1 − μ1N1 − ψN1 (S2 + pI2)

dN2

dt
= ν2(N2)N2 + πψN1 (S2 + pI2) − μ2N2 − α I2

dI2
dt

= β
S2 I2
N2

− (μ2 + α) I2

The Jacobian matrix at any infection-free state (N1, N2, 0) simplifies to

J =
⎛

⎝
N1ν

′
1 (N1) −φN1 ψ(1 − p)N1

πψN2 N2ν
′
2 (N2) −πψ (1 − p) N1 − α

0 0 β − μ2 − α

⎞

⎠

The community matrix C is the leading 2 × 2 sub-matrix of J. It has negative trace
and positive determinant, and hence it is stable. The infection-free equilibrium is
unstable ifR0 = β

μ2+α
> 1. The steady states of the system are plotted as functions
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Fig. 1 Bifurcation diagram for the model presented in Example 1. Top: steady states for the
resource plotted against the basic reproduction number R0. K is the steady state in the absence of
the consumer, N̄1 in the presence of the consumer and N∗

1 in the presence of consumer and pathogen.

Bottom: steady states for the consumer plotted against R0. N̂2 is the steady state in the absence of
the primary resource, N̄2 in the presence of the resource and N∗

2 in the presence of resource and
pathogen. I ∗

2 is the abundance of the pathogen. The effect of removing the pathogen is indicated by
the arrows
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ofR0 in Fig. 1. Eliminating the pathogen from the consumer increases its abundance
from N ∗

2 to N̄2. As a consequence, the resource biomass decreases from N ∗
1 to N̄1.

This is consistent with observations in the Serengeti. Following the eradication of
rinderpest, wildebeest numbers increased and the grass biomass decreased. As a
consequence there were fewer fires, more trees, more giraffes and more predators
[36]. These are further interactions that could have been included in a larger model.

Example 2 A prey–predator–pathogen system. For this example, the pathogen
infects both prey (species 1) and predator (species 2),with transmission frompredator
to prey via environmental contamination. The model is

dN1

dt
= ν1(N1)N1 − μ1N1 − α1 I1 − ψ (S1 + q I1) (S2 + pI2)

dN2

dt
= ν2(N2)N2 + πψ (S1 + q I1) (S2 + pI2) − μ2N2 − α2 I2

dI1
dt

= β1
S1 I1
N1

− (μ1 + α1) I1 − ψq I1 (S2 + pI2) + κS1 (I1 + r I2)

dI2
dt

= γ qψ I1S2 + β2
S2 I2
N2

− (μ2 + α2) I2

The basic reproduction number is the spectral radius of the next-generation matrix,
R0 = ρ (K), where

K =
(

β1

μ1+α1+ψqN 2
+ κN 1

μ1+α1

κN 1
μ2+α2

γ qψN 2

μ1+α1+ψqN 2

β2

μ2+α2

)

In the absence of prey–predator interaction, ψ = 0. The basic reproduction number
in the prey is thenR0 = β1+κ N̂1

μ1+α1
, and in the predatorR0 = β2

μ2+α2
. The possible steady

states of the prey species are N̂1 without predators; N 1 with predators; N ∗
1 without

predators with pathogen; and N ∗∗
1 with predators and pathogen. These are plotted

as functions of the feeding rate ψ in Fig. 2. When the feeding rate of the predator
is greater than a critical value (ψ > ψcrit), the prey species is driven to extinction
unless the pathogen is present. Hence, the presence of the pathogen is necessary to
keep the prey population viable.

Example 3 The dilution effect. Resolving the situations under which the dilution
effect applies is an outstanding challenge in epidemiology [37]. The idea is that
reducing biodiversity removes species that are hosts of a particular pathogen, hence
increasing the risk of transmitting that pathogen to a new host, notably a human.
The alternative is that removing hosts from an ecosystem reduces the viability of the
pathogen, possibly driving it to extinction. A simple model with two prey species (1
and 2), two predator species (3 and 4) and one pathogen has been used to explore
the dilution effect. The host population dynamics are described by
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no predators 

with predators 

pathogen 

Fig. 2 Steady states of the prey population (species 1) in Example 2 plotted against the feeding rate
of the predator ψ . The states are N̂1 without predators; N 1 with predators; N∗

1 without predators
with pathogen; and N∗∗

1 with predators and pathogen. The abundance of infected prey is I ∗
1 or I ∗∗

1
with predators. The effect of introducing the pathogen is indicated by the arrows

dNi

dt

∣∣∣∣
i=1,2

= νi Ni − μi Ni − Ni

∑

j=1,2

φi j N j − Ni

∑

k=3,4

ψik Nk

dNi

dt

∣∣∣∣
i=3,4

= νi Ni − μi Ni − Ni

∑

j=3,4

φi j N j + Ni

∑

�=1,2

π�iψ�i N�

and the abundance of infected hosts by

dIi
dt

∣∣∣∣
i=1,2

= βi
Si Ii
Ni

− μi Ii − Ii
∑

j=1,2

φi j N j − Ii
∑

k=3,4

ψik Nk + κi SiW

dIi
dt

∣∣∣∣
i=3,4

= βi
Si Ii
Ni

− μi Ii − Ii
∑

j=3,4

φi j N j + Si
∑

�=1,2

γ�iψ�i I� + κi SiW

Preliminary results based on frequency-dependent transmission only show no
dilution effect in prey species and an effect in predator species if increasing the prey
population leads to an increased predator population. Adding transmission from prey
to predator while feeding means the effects of population increase must exceed the
effects of transmission to susceptibles through consuming prey. The results are more
complicated with density-dependent transmission. We found a dilution effect in prey
species in response to environmental dilution and a dilution effect in predator species
under some restricted conditions. Exploring these effects is the subject of ongoing
research.
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3 Conclusion

A model described by a set of nonlinear differential equations has been used to
explore the interactions between ecology and epidemiology. Three examples have
been discussed. In the first, it was shown that removing a pathogen increased a
consumer population and decreased the resource. The second example showed that
the presence of a pathogen could enable a predator and prey species to coexist.
Finally, the complex issue of the dilution effect was addressed. The question of how
biodiversity influences the emergence of infectious diseases is the subject of ongoing
research.
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