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Abstract

Background: B lymphocytes are subject to elimination following strong BCR ligation in the absence of appropriate second
signals, and this mechanism mediates substantial cell losses during late differentiation steps in the bone marrow and
periphery. Mature B cells may also be eliminated through this mechanism as well as through normal turnover, but the
population containing mature cells destined for elimination has not been identified. Herein, we asked whether the
transitional 3 (T3) subset, which contains most newly formed cells undergoing anergic death, could also include mature B
cells destined for elimination.

Methodology/Principal Findings: To interrogate this hypothesis and its implications, we applied mathematical models to
previously generated in vivo labeling data. Our analyses reveal that the death rate of T3 B cells is far higher than the death
rates of all other splenic B cell subpopulations. Further, the model, in which the T3 pool includes both newly formed and
mature primary B cells destined for apoptotic death, shows that this cell loss may account for nearly all mature B cell
turnover.

Conclusions/Significance: This finding has implications for the mechanism of normal mature B cell turnover.
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Introduction

Following immunoglobulin (Ig) gene rearrangement and the

expression of a functional B cell receptor (BCR) (reviewed in [1–4])

in the bone marrow (BM), immature (IMM) B cells exit to the

periphery as transitional (TR) B cells, where they complete

maturation and then enter the follicular (FO) or marginal zone

(MZ) pools [5–8]. While the elimination of autoreactive B cells can

occur at any differentiative stage after functional BCR expression

[9–16], most tolerogenic death is believed to occur at the IMM

and TR stages, inasmuch as these are the first expressing a

functional BCR, and cells within these subsets seem predisposed to

BCR-induced death [11–12,15,17–18]. Consistent with this view,

in vivo labeling studies have revealed that under steady state

conditions, only about half a million of the roughly fifteen million

IMM BM B cells produced daily survive to join the mature

peripheral pools [19–20]. About 90% of these losses occur via

deletion at the IMM BM stage. The remaining losses occur

through anergic cell death, whereby cells engaged in low-avidity

interactions survive to enter the TR stages but die before

completing maturation [21–22].

The notion that anergic cells reside briefly in the TR

compartment before dying, as well as the belief that mature cells

are also subject to tolerogenic elimination if their BCR is engaged

without costimulation, prompts several questions. First, whether

particular TR phenotypes correspond to cells undergoing

apoptotic death versus those that will complete maturation is

unclear. Second, if particular phenotypes correspond to dying

cells, the proportional contributions of newly formed versus

mature cells to these pools require definition. Since mature B cells

are non-dividing, the relatively rapid turnover of TR pools

suggests that most losses in these subsets reflect the death of recent

marrow émigrés. Nonetheless, recent studies in transgenic systems

have suggested that FO cells dying from lack of costimulation re-

acquire the T3 phenotype [23], suggesting that this is character-

istic of cells undergoing anergic death, and implying that at least

some of the T3 pool is derived from mature B cells.

We have previously shown that mathematical modeling of

population kinetics established from in vivo bromodeoxyuridine

(BrdU) labeling studies is a powerful tool with which to assess

alternative models of B cell differentiation and fate [24–27]. Our

previous study of the population transitional B cells [26] has

compared all possible models which include the linear differen-

tiation pathway: bone marrow immature R T1 R T2 R T3 R
Follicular mature B cells. When set out to perform that study, the

exact progenitor–successor relationships of these transitional
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subsets, as well as whether a proliferative step is requisite for

follicular B cell maturation, were controversial. Moreover,

whether late B cell differentiation might involve branched or

asynchronous maturation pathways, thus allowing some cells to

‘skip’ one or more of these stages, was also unknown. Hence, in

that study, we have used mathematical modeling to interrogate

these possibilities. Using mathematical models that numerically

simulate each model of splenic B cell population dynamics and fit

them to the experimental data, we have determined which models

best fit the in vivo labeling data. The results indicate that follicular

differentiation does not involve a proliferating splenic intermedi-

ate. Those same results further suggested that some developing

cells move directly from the immature marrow pool to more

advanced semi-mature peripheral subsets without passing through

the least mature subset in the spleen.

In the present study, we ask whether T3 B cell compartment

contains most peripheral B cell slated for elimination, and whether

a model based on this hypothesis (The inset in Figure 1) can

explain the quantitative relationship between T3 and mature B

cells. We addressed these questions by fitting our mathematical

models of B cell population kinetics in the BM and in the spleen

[25–27], implementing this new hypothesis of T3 behavior, to the

BrdU labeling data of Allman et al [28]. The results suggest that

the T3 B cell subset is a major staging point for B cells undergoing

apoptotic death, since this model can account for nearly all TR B

cell losses. Further, our analyses show that including input from

mature pools in the model yields a high fit for these data, with

,40% of T3 throughput derived from the mature B cell

population. Interestingly, this proportion could account for nearly

all mature B cell turnover under the normal steady state,

suggesting a common route and mechanism of loss from most

primary B cell subsets.

Methods

Data for Model Fitting
In order to understand the behavior of the transitional B cell

subpopulations that will become mature naive B cells in the

spleen, we used published experimental data on these subpop-

ulations in mice [28]. The data include measurements on four

subpopulations that are the three transitional B cell subsets and

the mature B cell subset in the spleen. Detailed methodological

descriptions are available in [19,28]. Briefly, mice were treated

with i.p. injections of 0.5 mg bromodeoxyuridine (BrdU)

(Sigma) twice daily. Splenocytes were analyzed at successive

intervals by immunofluorescent staining for surface markers and

incorporated BrdU. For each mouse, the percentage of BrdU-

labeled cells in each subset was measured using flow cytometry

and multiplied by the total cell number in the subset to give the

total number of labeled cells. The values were plotted as a

function of time.

Mathematical Models
Our model starts with three bone marrow populations: pro-B

[B220+CD43+IgM2], pre-B [B220+CD432IgM2] and imma-

ture B cells [B220+HSA+IgMhiIgDlo], with cell numbers in these

subsets represented by the variables Bo, Be and Bi, respectively.

However, previous experimental observations distinguish between

small, non-cycling cells and large, cycling cells in both the pro-B

and pre-B compartments, where the transition from pro-B to pre-

B occurs while the cells are cycling. Hence, we break the pro-B

and pre-B subsets into two subsets each: Bor for small resting pro-

B cells (Hardy’s fractions A through C) and Boc for large cycling

pro-B cells (part of Hardy’s fraction C); similarly, Bec for large

cycling pre-B cells (the remainder of fraction C) and Ber for small

resting pre-B cells (fraction D). Immature B (Bi) cells migrate from

the bone marrow to the periphery as transitional B cell. The four

subpopulations in the periphery are the three transitional B cell

subsets and the mature B cell subset in the spleen as defined by

Allman et al, [28], Table 1.

The numbers of cells in the T1 and T2 combined subsets, T3

and mature B cells were represented in our mathematical models

by the variables T1/2, T3 and Bm. Bone-marrow cell populations

were described, as in our previous study [25], by the following

equations.

dBor

dt
~s{ dorzmoð ÞBor ð1Þ

dBoc

dt
~dorBorzcoBoc 1{

Bo

Ko

� �
{docBoc ð2Þ

Figure 1. The alternative models of developing B cell populations in the spleen. The main figure shows the one found as the best model in
our previous study [28]. The new hypothesis differs from our previous model only in the direction of flow between T3 and mature B cells, as shown in
the inset. Cell subsets and parameters represented in our model are shown (see ‘‘Methods’’ for details).
doi:10.1371/journal.pone.0009497.g001
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dBec

dt
~docBoczceBec 1{

Be

Ke

� �
{decBec ð3Þ

dBer

dt
~decBec{ mezderð ÞBerzdrBi ð4Þ

dBi

dt
~derBer{ mizdrzdið ÞBi ð5Þ

In these equations, the input of stem cells into pro-B

compartment is denoted by s (for ‘source’), the parameters d
denote differentiation rates and the parameters c denote

proliferation rates. Proliferation of developing B cells is known to

be limited by the finite space and resources (e.g. contact with the

stroma, growth factors, nutrients) in the bone marrow [29–30].

Hence Ko and Ke denote the carrying capacities of the pro- and

pre-B compartments, respectively, i.e. the population sizes for

which the corresponding population growth rates become zero.

Cell death is assumed in our model to occur only in the non-

proliferating cell subsets, because proliferation, gene rearrange-

ment and selection occur in distinct stages and cell death usually

occurs only as a result of failure in the latter two processes. The

corresponding population mortality rates are denoted by mo, me, mi

for Bor, Ber, Bi respectively. More information about this part of

the model is found in [25].

Immature B (Bi) cells migrate from the BM to the periphery with

a constant rate of di. Out of the diBi cells that exit the BM daily, f1
represents the fraction of these cells that differentiate to the T1/2

combined subset. There may also be a fraction, f3, of cells that

differentiate to T3, and a fraction, fm, of cells that differentiate to

Bm. T1/2 cells differentiate to T3 or to mature B cells (Bm). We

denote by d23 the differentiation rate of T1/2 to T3, and by d2m the

differentiation rate of T1/2 to Bm. Based on previous studies we

assumed that none of the transitional subpopulations are cycling

[28,26]. The exit/death rates from each compartment are denoted

by m1/2, m3, and mm for T1/2, T3 and Bm, respectively.

Finally, in the new model, no differentiation from T3 into Bm

is allowed. Instead, a differentiation from Bm into T3, denoted

by dm3, represents the new hypothesis that, when a mature

naive B cell does not get a second activation signal from T cell,

the cell then differentiates to the transitional 3 subset and

dies.

The above-described hypothesis is described by the following

equations.

dT1=2

dt
~dif1Bi{ d23zd2mzm2ð ÞT1=2 ð6Þ

dT3

dt
~dif3Bizd23T1=2zdm3Bm{m3T3 ð7Þ

dBm

dt
~difmBizd1=2mT2{ dm3zmmð ÞBm ð8Þ

The numerical simulations of the mathematical models were

performed in a program written in the C programming language,

which runs on the entire parameter space in small intervals,

searching for the best-fit parameter set for each model.

Simulations
The mathematical models were simulated and fitted to data

using a C language program. The program receives as input the

experimental data, and the ranges of parameter values within

which the model should be run. The program divides each

range to very small intervals, thus providing a thorough

coverage of the parameter space. This creates a set of

1.56106 parameter combinations to be checked by the

program. For each parameter value set, the program integrates

the model equations as follows. The initial conditions are zero

cells in all populations; labeling starts after the populations have

reached a steady state. After integration, the program first

checks whether the total cell number and the fractions of cells in

each population are within the experimentally measured ranges.

Runs in which this is not the case are discarded. For all other

runs, the program records the value of the fit of the model to the

data (defined below), and outputs the parameter set(s) that have

yielded the best fit. This process was performed for each of the

models, and the fit values were compared using the AIC method

(see below).

Table 1. Post BCR-expression developmental subsets.

Anatomic Site Status Subset Cycling? Surface Phenotype

Bone marrow* Immature E no IgMhiIgDloCD23+/2B220+AA4.1+

Periphery Transitional [28] T1 no IgMhiCD232B220+AA4.1+

T2 no IgMhiCD23+B220+AA4.1+

T3 no IgMloCD23+B220+AA4.1+

Transitional [33] T1 no IgMhiCD23-B220+IgD2CD212HSAhi

T2 yes IgMhiCD23+B220+CD21hiIgDloHSAhi

Mature FO/(B2) no IgMloCD23+B220hiAA4.12

Marginal Zone(MZ) CD9+IgMhiIgDloCD232CD21+

B1 IgMhiCD43+IgDlo/2CD23lo/2

* This is the current accepted phenotype for immature B cells. Because we used historic data for these analyses, we felt it appropriate to indicate in the text the criteria
used in the actual labeling studies, that is, B220+HSA+IgMhiIgDlo. It should be noted that this is unlikely to influence our conclusions, since the pro B subsets are not an
immediate progenitor pool to any subsets that might enter the T3 pool, regardless of which model is used.
doi:10.1371/journal.pone.0009497.t001
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Choosing the Best Model Parameters
In choosing alternative models and parameter values for the

simulations of our model, we adhered to the following guidelines.

(i) The parameters should be in the experimentally observed

orders of magnitude, if published information is available.

While these estimates (where available) are usually not given

in units of population rates, so that interpretation of most of

these data depends on the model used, these estimates were

useful in suggesting the appropriate value ranges for some of

the parameters. For example, cell proliferation rates can not

be higher than the equivalent of 3–4 divisions per day.

(ii) The steady state values obtained using these parameters

should be in agreement with our experimental observations

on both the total numbers and the composition of BM and

transitional B cells. Any parameter set which did not

conform to these criteria was automatically rejected.

(iii) The time of arrival to the steady state should be biologically

reasonable. That is, since a mouse completes its growth

within less than 2 months, parameter sets that resulted in

longer times of arrival to the steady state in each

subpopulation were also rejected.

These conditions significantly constrain the choice of parameter

ranges used in our simulations, such that the parameter subspace

which gives results obeying all constraints is rather narrow.

Model Fitting to the Experimental Data
Our goal here was to check whether the new hypothesis of T3

behavior accounts for B cell dynamics in the spleen), and estimate

the parameter ranges characterizing B cell dynamics in the spleen,

by fitting simulations to the published data described above.

Among all simulations that obeyed the above criteria, we looked

for the best fit to the experimental data, defined as the minimum

value of the sum of squared deviations of simulated points from

experimental data points (a least-squares fit), described by:

X2

k~1

XT

t~1

Y kt{fkt

� �2 ð9Þ

Ykt refers to the set of experimental measurements, fkt refers to

the set of simulation results, and these were compared for the two

populations (T3 and mature B cells), indexed by k, at each time

point t for which there was an experimental result.

Thus, we searched for parameter values that minimize the

deviation of results from experimental data, based on the least-

squares criterion defined above. Each automated search involved

varying all the relevant parameters simultaneously in very small

steps (0.01, or smaller if higher resolution was found to be

necessary), recording the fit of each run, and the parameter ranges

which gave results within the experimental errors. In order to find

whether the model fits the data, we conducted similar searches

over all biologically reasonable parameter ranges [24–27] for each

subpopulation, T1/2, T3 and the mature B cells, and calculated the

fit of those three subpopulations together.

We used ‘‘Akaike’s Information Criterion’’ (AIC) to find if our

model is more likely to give a good explanation of B cell

development in the spleen. We used an adaptation of the AIC

method. In this method, we associate an AIC score to the

parameter set that minimize the deviation of results from

experimental data. We denote M to be the number of parameters

fit by the regression, and N to be the number of data points. The

AIC score (corrected for small numbers of data points) is thus

defined by equation 10.

AICc~N ln
SS

N

� �
z2Mz

2M Mz1ð Þ
N{M{1

ð10Þ

Suppose AICc(A) is the score of one with the minimal the

deviation of results from experimental data (SSA), and AICc(B) is

the score of another set of parameters with a minimal sum SSB. In

this case, the difference between the AICc scores is given by

equation 11, and is has a negative value, since
SSA

SSB

v1.

DAIC~N ln
SSA

SSB

� �
ð11Þ

The probability that we have chosen the correct model (out of

those that were considered) is then computed from equation 12.

Since we have used the sum of squared deviations as an

approximation for the MLE assumed by the AIC criterion, this

probability is an approximation.

P~
e{o:5DAIC

1ze{o:5DAIC
ð12Þ

Results

The T3 Pool Represents Both Newly Formed and Mature
B Cells Undergoing Anergic Death

Our previously described mathematical models of B cell

development in the BM [25,27] and spleen [26] were used here,

but the T1 and T2 B cells were combined into a single subset,

because the differences between these two subsets are not

important for this study. We later verified that repeating the

model fitting to data without combining these 2 subsets gives the

same results (not shown).

Our model starts with three bone marrow populations: pro-B

[B220+CD43+IgM2], pre-B [B220+CD432IgM2] and immature

B cells [B220+HSA+IgMhiIgDlo], with cell numbers in these

subsets represented by the variables Bo, Be and Bi, respectively.

However, previous experimental observations distinguish between

small, non-cycling cells and large, cycling cells in both the pro-B

and pre-B compartments, where the transition from pro-B to pre-

B occurs while the cells are cycling. Hence, we break the pro-B

and pre-B subsets into two subsets each: Bor for small resting pro-B

cells (Hardy’s fractions A through C) and Boc for large cycling pro-

B cells (part of Hardy’s fraction C); similarly, Bec for large cycling

pre-B cells (the remainder of fraction C) and Ber for small resting

pre-B cells (fraction D). Immature B (Bi) cells migrate from the

bone marrow to the periphery as transitional B cell. The four

subpopulations in the periphery are the three transitional B cell

subsets and the mature B cell subset in the spleen as defined by

Allman et al, [28], Table 1.

In our previous study, we showed that out of 630 possible

alternative models, only 8 can explain the population dynamics of

transitional B cell differentiation in the spleen [26]. All those

modes included the assumption that cells within the T3 subset

differentiate into mature B cells; the opposite possibility was not

tested in that study. In the present study, we used our previous

models of BM (equations 1–8) and spleen populations, but

T3: A B Cell Death Niche
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changed the transitional B cell model to include the hypotheses

that T3 subset is characteristic of cells undergoing anergic death,

and that at least some of the T3 pool is derived from mature B

cells. In order to lower the number of degrees of freedom of the

parameter space, we combined T1 and T2 B cells into a single

subset, T1/2, which later differentiates to T3 and to mature B cells.

To examine the hypothesis that the T3 B cell compartment is the

phenotypic niche for cells undergoing negative selection, we ran

the equations of the model, in which the differentiation from the

mature to the T3 subset (with rate dm3) is added (The inset in

Figure 1).

We conducted simulations of this model, using the best set of

parameter values previously obtained for the BM equations, and

varying the parameters of the spleen populations, in order to

obtain the best fit to published experimental data on these

subpopulations in mice (section on data for model fitting and ref.

[28]).

The parameter value ranges for the new hypothesis are

presented in Table 2. These are the ranges of parameter values

that give results within the experimental range (i.e. the total cell

numbers in each population and the fractions of labeled cells

within each population are all within the experimental ranges)

(Figures 2 and 3). Note that the ranges given here are for each

parameter separately. Hence, not all values in the range given for

one parameter can necessarily be combined with all values in the

range given for other parameters to give acceptable results.

Using Akaike’s Information Criterion as described in the

methods shows that the probability that we have chosen the

correct model is 86%, hence the new hypothesis is more likely to

be correct.

We also obtained the same results with separate T1 and T2 B

cell subsets as with the combined subsets (data not shown). Thus,

we propose that mature naı̈ve B cells undergoing death acquire T3

phenotypic characteristics.

An implication of this proposition is that most of the loss in

peripheral B cell maturation may be due to a high rate of loss in

the T3 B cell compartment. Indeed, in the parameter value sets

that gave the best fit, the death rate of T3 B cells was higher than

the death rate in all other splenic subpopulations. The value of the

death rate was at least one order of magnitude higher in T3 than of

mature B cells, and twice that of the T1/2 subpopulation (Table 2).

Therefore we can assume that the throughput of the T3 pool

Figure 2. Cell numbers versus time in a simulation of the
spleen population model. These numbers were obtained by a
simulation with the parameters set that gave the best fit to the data.
Parameter values are given in Table 2. The steady-state numbers are:
T1/2: 1.176106 cells, T3: 1.436106 cells, and Mature FO: 2.516106 cells.
doi:10.1371/journal.pone.0009497.g002

Figure 3. BrdU labeling kinetics. These kinetics were obtained by a
simulation of the spleen population model [25–26] with the parameter
set that gave the best fit to the data [28]. Parameter values are given in
Table 2. Simulation results (dashed lines) are presented along with the
experimental results (symbols with error bars).
doi:10.1371/journal.pone.0009497.g003

Table 2. Parameter ranges that result from the simulation.

Parameter symbol and description a Value range in acceptable models b Value in the best-fit model

f1- Fraction of differentiation from BM to T1/2 0.15–0.19 0.15

m2- Death rate of the T1/2 subset 0–0.1 0.05

f3- Fraction of differentiation from BM to T3 0–0.005 0

d23- Differentiation rate from T1/2 to T3 0.07–0.11 0.1

m3- Death rate of the T3 subset 0.13–0.19 0.17

fm- Fraction of differentiation from BM to mature B 0–0.009 0.004

d2m- Differentiation rate from T1/2 to mature B 0.035–0.06 0.05

dm3- Differentiation rate from mature B to T3 0.004 0.004

mm- Death rate of mature B cells 0–0.001 0

aRates are per 6 hours.
bModels that obey our parameter choice criteria and fit the experimental data.
doi:10.1371/journal.pone.0009497.t002
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accounts for most of the losses between transitional and mature B

cells.

Moreover, in the best-fit simulations, mature B cells differentiate

mostly from T1 and T2, both when we combined them (Table 2)

and when we modeled them separately (data not shown). This

suggests that T3 is rarely a developmental step in FO B cell

maturation. Rather, T3 is only a negatively selected subpopulation.

The Maximum Fraction of Mature B Cells That
Differentiate to the T3 Pool

We next proceeded to estimate the fraction of mature B cells

that differentiate to the T3 pool. The range of values of the

differentiation rate from mature B cells to T3 B cells (dm3) was

0.001–0.004 per 6 hours (Table 2). Multiplying the upper value of

this rate by the total number of mature B cells in steady state

(2.56107) in the spleen, we see that the maximum cell number in

the T3 pool that could represent recursion from mature B cells at

the steady state is around 105 T3 cells per 6 hours (Figure 4). The

best-fit value for the mature B cell death rate was zero, so the T3

pool likely contains the vast majority of peripheral B cells–

regardless of origin - destined for elimination.

The Best-Fit Model
In the previous study, several alternative models were found to

have a good fit to the data; all of them were models that included a

differentiation from T3 to mature B cells and not vice versa, but

they differed in the presence or absence of other transitions. For

example, we found that the T1 or the T2 stage, or both, may be

skipped by a small fraction of the differentiating cells. To find

whether all these possibilities are also valid in the new model, we

simulated all the alternative models of splenic B cell subsets that

include the new hypothesis. Whenever the existence or absence of

a certain transition was examined, the range of its rate parameter

included the possibility that this rate equals zero. This was applied

to f1, f3, fm, d23, d23, and d2m. Our requirement that a model fit not

only the labeling kinetics of all splenic B cell subsets, but also the

total cell numbers, was used to reduce the number of acceptable

models.

As shown in Table 2, the value ranges for several of these

parameters that obey our above-described criteria and fit the

experimental data (section 2.4) included zero as a possible value.

Our new model fit of the experimental data better than all the

alternative models we found in our previous results [26]. The

parameter values for the best-fit model are shown in Table 2.

Again, the ranges given here are for each parameter separately,

and hence not all values in the range given for one parameter can

necessarily be combined with all values in the range given for other

parameters to give acceptable results. The equations of the best-fit

model are the following.

dT1=2

dt
~dif1Bi{ d23zd2mzm2ð ÞT1=2 ð13Þ

dT3

dt
~d23T1=2zdm3Bm{m3T3 ð14Þ

dBm

dt
~difmBizd1=2mT2{dm3Bm ð15Þ

Thus, as shown in Figure 5, the best fit model contains the

possibility of some immature B cells ‘‘skipping’’ the peripheral

T1/2 stages and differentiating directly to mature B cells; T1/2 cells

may differentiate into either T3 or mature B cells; and, as

mentioned above, cell death in the mature B cell compartment is

negligible. The death rate in the T3 subset is highest, and this stage

is an end stage into which both T1/2 and mature B cells may be

directed.

Discussion

This study models the kinetics of splenic B cell compartments,

using a combination of in vivo BrdU labeling data [28] and a

mathematical model of B cell population dynamics [24–27]. Our

results suggest the T3 compartment represents a death niche for

peripheral B cells, and includes cells from both newly formed and

mature compartments undergoing apoptotic death. Thus, under

normal steady state conditions, up to 40% of the T3 pool could

represent entry from mature pools, with the remainder being

derived from newly formed cells. Finally, our analyses are most

consistent with a model in which most cells that enter the FO pool

do so from the T1 and T2 subsets directly.

We find that the in vivo labeling data are consistent with a

model in which the death rate among T3 B cells is higher than in

any other subpopulations, suggesting this pool represents the

principal death niche for peripheral B cells. The model predicts

that a majority of T3 B cells are derived from recent marrow

émigrés, confirming prior assumptions that the T3 subset contains

newly formed B cells that fail to meet the selective criteria imposed

during transitional differentiation [31–32]. Death during transi-

tional differentiation reflects either the failure to meet a minimum

tonic BCR signaling requisite or the onset of anergy from

sustained BCR cross-linking. Accordingly, our findings support a

model whereby the T3 pool follows a branch-point at which TR

cells destined for death versus final maturation have bifurcated

[31]. Indeed, the model suggests that the bulk of mature cells arise

from the T1/2 pools, with few, if at all, being rescued from the T3

subset [31–32].

Our analyses also reveal that up to 40% of the T3 pool, or about

105 T3 B cells, may be derived from the mature B cell

compartment. Because the mature pool is numerically large

compared to the T3 pool, this indicates a low overall frequency

Figure 4. The number of T3 B cells differentiating from the
mature compartment per time step. Here we plotted the mature B
cell differentiation term (dm3*Bm) in every time step (6 hours), obtained
by a simulation of the new hypothesis. The figure shows the steady
state that this number reaches within less than 2 months. Parameter
values are given in Table 2.
doi:10.1371/journal.pone.0009497.g004
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with which mature B cells meet this fate. Nonetheless, it suggests

that nearly all mature B cell losses could proceed via this

phenotypic intermediate, because the mature B cell turnover of

,2% per day would generate a steady state value in the 105 range.

Thus, B cell losses in the T3 compartment can not only account for

all losses at the TR to mature B cell checkpoint, but can

accommodate the bulk of mature B cell turnover as well. This is

consistent with the view that T3 cells represent peripheral B cells

destined for death regardless of origin, in accord with recent

suggestions from Merrell et al [23].

Together, these findings suggest that B cells fated for imminent

elimination from pre-immune subsets comprise the T3 compart-

ment, where they reside briefly. It is tempting to speculate that this

reflects a common death pathway, especially since all of these cells

rely on continuous signaling via the BCR and BLyS receptor 3

(BR3, also termed BAFFR) to survive. Accordingly, failure to fall

within appropriate ranges for signaling via these two systems–

regardless of the basis - may lead to acquisition of the T3

phenotype and subsequent death.
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