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The time‑fractional kinetic 
equation for the non‑equilibrium 
processes
Ekrem Aydiner

In this study, we consider the non-Markovian dynamics of the generic non-equilibrium kinetic process. 
We summarize the generalized master equation, the continuous and discrete forms of the time-
fractional diffusion equation. Using path integral formulation, we generalized the solutions of the 
Markovian system to the non-Markovian for the non-equilibrium kinetic processes. Then, we obtain 
the time-fractional kinetic equation for the non-equilibrium systems in terms of free energy. Finally, 
we introduce a time-fractional equation to analyse time evolution of the open probability for the 
deformed voltage-gated ion-channel system as an example.

A stochastic theory of the kinetics in univariant, non-equilibrium systems that undergoes phase transitions has 
been formulated in Refs.1–5. In these studies, the path integral formulation of the density distribution and condi-
tional probability was given based on the Markovian master equation6,7 and the kinetic transition probability8–10.

Although the path integral approximation for the stochastic Markovian and non-Markovian processes are well 
known and well-studied topics in physics11–16, to the best of our knowledge, the path integral formulation of the 
non-Markovian dynamics of the non-equilibrium kinetic processes has never been discussed so far. Therefore, 
in this study, we generalized the path integral solutions of the Markovian systems to the non-Markovian case 
for the non-equilibrium kinetic system according to the methods presented in Refs.1–5.

Therefore, in this study, we consider a generic non-equilibrium kinetic system with non-Markovian dynamics. 
Following the formalism in Refs.1–5 we construct the conditional probability for the non-Markovian dynamics by 
using path integral formulation. Then, we show that the non-Markovian processes in the non-equilibrium system 
kinetic systems lead to time-fractional kinetic equations. Additionally, we consider the simplest voltage-gated 
ion-channel system as an example to analyze the time-fractional dynamics of the open probability.

The outline of our paper is given as follow: First, we introduce the non-Markovian master equation. Then, 
in the following section, we obtain the time-fractional kinetic equation for the non-Markovian dynamics of the 
non-equilibrium kinetic process. Here, we also introduce the fractional kinetic equation of the deformed voltage-
gated ion-channel system. Finally, we review the obtained results and present a brief discussion.

Generalized Master equation
First, we briefly give the information about the master equation for the non-Markovian dynamics which is called 
as generalized master equation (GME) in the literature17–19. The time evolution of finding probability P(x, t) can 
be presented on the one-dimensional space by

where R(x, x′, t − t′) is the transfer probability kernel from the position x to x′ . As seen from Eq. (1) that GME 
is very different from Markovian form. Here, we use the probability function of the generalized master equa-
tion kernel R(x, x′, t − t′) by reformulated the path integral formulation based on previous approximations1–4.

The Fourier-Laplace transformation of Eq. (1) is written as

where u is the Laplace variable, k is the wave number and f (x) ∗ g(x) ≡
∫∞

−∞
dx′f (x − x′)g(x′) denotes a Fou-

rier convolution of the f and g functions. Dividing by u, after Laplace inversion and differentiation ∂
∂t we obtain 

another representation

(1)
∂P(x, t)

∂t
=

∫ ∞

−∞

dx′
∫ t

0
dt′R(x, x′, t − t′)P(x′, t′),

(2)uP(k, u)−W0(k) = R(k, u) ∗ P(k, u),
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of the Eq.  (1). The new kernel of the master equation is given by R̃(x, x′; u) = R(x, x′; u)/u , i.e. 
R̃(x, x′; t) =

∫ t
0 dtR(x, x′; t) where R̃ can be presented with R̃(x, x′; t) = W(x, x′)�(t) . In this representa-

tion, the kernels W(x, x′) and � are responsible for spatial correlations and memory in any stochastic process. 
These kernels are classified by the finite characteristic waiting time T and the finite jump length variance �2 . 
It is known that, in the non-Markovian process, while the jump length variance �2 is finite, the waiting time T 
diverges due to the spatial deformations, entropic restrictions or other memory effects.

For a non-Markovian processes �(t) is represented by

where Ŵ is Gamma function, τ is the macroscopic relaxation parameter and the exponent γ takes the value 
between 0 < γ < 1 . We note that Eq. (4) corresponds to the long-tailed waiting time probability distribution.

In the new situation, the new kernel is given by

The solution of the GME shows a strong dependence on its stochastic history. Therefore, the resulting equa-
tion is

Equation (6) includes the defining expression20

where 0D
1−γ
t  is the Riemann–Liouville fractional derivative20. Time-fractional master equation can be expressed 

in te form

Here we briefly summarize that, the non-Markovian dynamics in the continuum limit leads to the time-
fractional differential equation Eq. (8). The discrete form of Eq. (8) is given by

Using Eq. (9) we will construct the path integral formulation of the conditional probability function P(x, t).

Time‑fractional kinetic equation
It should be noted that the kernel of the spatial correlation for the kinetic processes can be defined in terms of 
Helmholtz free energy

where β is the inverse temperature, � is a constant and F is the free energy of the thermodynamic system. This 
definition of the kinetic transition probability in Eq. (10) suggested by Langer8–10, which is an extension of a 
model proposed by Glauber21 based on Zwanzig theory22,23.

Afterwards, following previous theoretical schema1–5 we construct the path integral definition of the prob-
ability function for the non-Markovian dynamics of the generic non-equilibrium kinetic. Thus, we write the 
master equation in Eq. (9) can be given in the form

where H(x, ∂x) is written as

which causes the Kramers-Moyal expansion24,25

(3)
∂P(x, t)

∂t
=

∂

∂t

∫ ∞

−∞

dx′
∫ t

0
dt′R̃(x, x′, t − t′)P(x′, t′),

(4)�(t) =
1

Ŵ(γ )

(

t

τ

)γ−1

,

(5)R(x, x′; u) = W(x′, x)
1

Ŵ(γ )

(

t

τ

)γ−1

.

(6)
∂P(x, t)

∂t
=

1

Ŵ(γ )

∂

∂t

∫ t

0
dt′

(

t − t ′
)γ−1

∫ ∞

−∞

dx′W(x, x′)P(x′, t′).

(7)0D
1−γ
t P(x, t) =

1

Ŵ(γ )

∂

∂t

∫ t

0
dt′

(

t − t ′
)γ−1

P(x, t),

(8)
∂P(x, t)

∂t
=0 D

1−γ
t

∫ ∞

−∞

dx′W(x, x′)P(x′, t).

(9)
∂P(x, t)

∂t
=0 D

1−γ
t

∑

x′

W(x, x′)P(x, t ′).

(10)W(x, x′) = exp(−
(x′ − x)2

�
) exp{−β

1

2
[F(x′)− F(x)],

(11)
∂P(x, t)

∂t
= −0D

1−γ
t H(x, ∂x)P(x, t),

(12)H(x, ∂x)P(x, t) =
∑

δ

(1− e−δ∂/∂x)W(x → x + δ)P(x, t),
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where ∂
m

∂xm operates at the same time both W(x → x + δ)P(x, t) and W(x → x + δ) . The sums are over all pos-
sible values of the multi-indices m. It should also be noted that we set δ = x′ − x and x′ = x + δ in Eqs. (12) 
and  (13) for the convenience.

At this point, by using definition of the derivatives we can arrange the left side of Eq. (11)1–5, and then we can 
write the probability function P(x, t +�t) as

We define the Fourier transform F{P}(k, t +�t) of Eq. (14) as

This of course is represented by

where H(x0,−ik) is obtained from Eq. (13) by replacing ∂/∂x with −ik and x with x02–4. On the other hand, the 
inverse Fourier transform of Eq. (16) is given by

Here, introducing Eqs. (16) into (17) and recognizing that for small �t the curly bracket in Eq. (16) is an 
exponential, in this case, we obtain

The kernel of Eq. (18) can be defined as

where ẋ(t′) = (x − x0)/�t . This kernel represents the path integral formulation of the conditional probability 
for non-Markovian kinetics. We clearly see that the integral argument in Eq. (19) corresponds to Lagrangian of 
the system, which is given as

where H
(

−ik(t′), x(t ′)
)

 can be read as Hamiltonian. The path integral in Eq. (19) can be defined as the limit of 
the multiple integral

when L = (t − t0)/�t → ∞ . We consider here that the transition between the small paths along the trajectory 
are independent of each other. Now, by using Eq. (10) we can write H(−ik, x) as

or very small � values, the integrations can be obtained as

(13)H(x, ∂x)P(x, t) =

∞
∑

m=1

(−1)m+1

m!
δn

∂m

∂xm

∑

δ

δmW(x → x + δ)P(x, t),

(14)P(x, t +�t) = {1+�t 0D
1−γ
t

∞
∑

m=1

(−1)m+1

m!
δn

∂m

∂xm

∑

δ

δmW(x → x + δ}P(x, t).

(15)F{P}(k, t +�t) = F{P}(k, t)+�t 0D
1−γ
t

∞
∑

m=1

(−1)m+1

m!
δmkm(−i)|m|}F{WP}(k, t).

(16)F{P}(k, t +�t) = (2π)−1/2

∫ ∞

−∞

dx0e
ikx0{1+�t 0D

1−γ
t H(x0,−ik)}P(x0, t),

(17)P(x, t +�t) = (2π)−1/2

∫

dke−ikx
F{P}(k, t +�t).

(18)

P(x, t +�t) = (2π)−m

∫ ∞

−∞

dx0

∫ ∞

−∞

dk exp

[

−�t{ik(x − x0)/�t} −0 D
1−γ
t H(−ik, x0)

]

P(x0, t).

(19)Kγ (x, t|x0, t) =

∫

D(x0)

∫

D(k) exp

[

−

∫ t

t0

dt′{ik(t ′)ẋ(t′)} −0 D
1−γ

t′ H(−ik(t ′), x(t ′)

]

,

(20)Lγ (k, x, ẋ) = ik(t′)ẋ(t′)} −0 D
1−γ

t′ H
(

−ik(t′), x(t ′)
)

,

(21)

�

dxL−1 . . .

�

dx1

�

dkL−1 . . .

�

dk0(2π)
−mL exp



−�t

L−1
�

j=0

{�ikj , (xj+1 − xj)/�t� −0 D
1−γ

t′ H(−ikj , xj)}



,

(22)

H(−ik, x)) =i

m
∑

j=1

kj

∫

dδδj exp(−�−1�δ, δ�) exp

[

−β
1

2
{F(x + δ)− F(n)}

]

−
1

2

m
∑

j=1

m
∑

i=1

kjki

∫

dδδjδi

× exp(−�−1�δ, δ�) exp

[

−β
1

2
{F(x + δ)− F(n)}

]

.
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Introducing Eqs. (23) into (21) and integrating over k, we get the time-fractional kernel

The path of extreme probability are those for which 
∫ τ

0 dt′Lγ (x, ẋ, k) is extremized, namely, time-fractional 
action integral satisfy the condition

where Lγ (k, x, ẋ) is the time-fractional Lagrangian of the system. Euler-Lagrange equation in the action Eq. (25) 
can be solved due to k as

The solution of Eq. (26) gives the time-fractional kinetic equation

where 0 < γ < 1 . As can be seen from Eq. (27) that the time evolution of the stochastic variable x is governed 
by integro-differential operator. The operator 0D

γ
t  points out that the solution of the kinetic equation Eq. (27) 

possesses Mittag–Leffler function.

An example: the deformed ion‑channel systems.  In the simplest voltage-gated ion channel system, it 
is assumed that the channels are located on a two-dimensional membrane. At the equilibrium, the channels are 
open or closed depending on temperature and membrane voltage. Besides, the status of the channels depends 
on their intrinsic properties, the state of the channel is mainly determined by the membrane potential at a con-
stant temperature. In these models, for simplicity, it is assumed that the channels are identical and distributed 
randomly on the membrane surface.

In this simple schema, the number of the channels is given by n = n1 + n2 where n1 denotes channels with 
energy ε1 and n2 admits the open channels with energy ε2 , respectively. In the statistical framework, the Helmholtz 
energy of such channel model around equilibrium can be written as26,27

where x = n2/n is the open probability P0 under external potential V, �(x) corresponds to the number of con-
figurations which is given by ln�(x) = −n[(1− x) ln(1− x)+ x ln x] and z is the number of charges, and e0 is 
the charge of electron. It is shown that the open probability can be found from first derivative of the Helmholtz 
free energy in Eq. (28) as to the variable x. Thus it can be written as

where V0 = −(ε1 − ε2)/ze0 is the critical threshold voltage value. In the case of Markovian dynamics, it is 
assumed that the half of the channels on the membrane surface are open.

The open probability of the channel system in Eq. (29) is a well-known and well-studied topic in the literature. 
Furthermore, the kinetic behavior of the voltage gated ion channels was also examined within the framework 
of the Markovian formalism26,27. However, in the presence of the deformations such as a genetic mutation in 
the channel, we expect that ion channels have non-Markovian dynamics due to decoupling dynamics as stated 
in the previous section. As a result, channel conductivity is damaged and the cell may not be able to perform its 
previous tasks. If the channel kinetics is analyzed within the framework of the non-Markovian formalism, the 
time-fractional kinetic for the open probability of the ion channel system can be obtained as

As seen from this particular example, one can apply the fractional numerical integration method to Eq. (30) 
to obtain the time evolution of the open probability for the non-Markovian ion channel system far from steady-
state. Hence, the time variation of the open probability and relaxation parameters of the non-Markovian ion 
channels can be obtained by using Eq. (30). The fractional derivative in Eq. (30) clearly indicates that the solution 
of the relaxation drastically deviates from the Markovian solution given in Refs.26,27.

(23)H
(

−ik(t′), x(t ′)
)

= −
1

2
βŴ

m
∑

j=1

ikj
∂F

∂xj
−

1

2
Ŵ

m
∑

j=1

k2j , Ŵ = (2π�)m/2�.

(24)Kγ (x, t|x0, t0) =

∫

D(x) exp

[

−

∫ t

t0

dt′
{

0D
γ
t x(t

′)+ Ŵβ
∂F(x(t′))

∂x

}2
]

.

(25)δ

∫ t

t0

dt′Lγ [k(t
′), x(t ′), ẋ(t ′)] = 0,

(26)
∂Lγ

∂k
= 0.

(27)0D
γ
t x(t)+ Ŵβ

∂F(x(t))

∂x
= 0,

(28)F(x) = n[(1− x)ε1 + xε2]+ ze0n(1− x)V − β−1 ln�(x),

(29)P0 = x =

{

1+ exp [−βze0(V − V0)]
}−1

,

(30)0D
γ
t P0 =

Ŵ

n

{

βze0(V − V0)− ln
P0

1− P0

}

.
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Conclusion
In this study, firstly, we briefly introduce the generalized master equation for non-Markovian dynamics. We also 
present the continuous and discrete forms of the time-fractional diffusion equation in the same section. In the 
subsequent section, we generalized the path integral solutions of the Markovian system to the non-Markovian 
for the non-equilibrium kinetic processes. Using path integral formulation we obtain the time-fractional kinetic 
equation for the non-equilibrium systems in terms of free energy. Here, we consider, as an example, a voltage-
gated ion-channel system that behaves as a non-equilibrium system under cell voltage. We introduce the time-
fractional kinetic equation for the open probability of the simple ion-channel system.

The non-Markovian dynamics and non-equilibrium behavior of the physical systems are very important two 
topics in physics. Indeed, many physical systems in nature may have one or both of these properties. Systems can 
be considered as systems which far from equilibrium that cannot reach equilibrium in very large time scales, and 
such systems can also be considered as systems that reach equilibrium in short time scales. On the other hand, 
we know that complex or disordered physical systems generally have non-Markovian dynamics. Therefore, it is 
very interesting to examine the time evolutions of kinetic systems with both non-equilibrium and Markovian 
dynamics.

The method presented in the study can be applied to the other physical systems to analyze the time-dependent 
evolution of the kinetic systems such as the interface dynamics of the phase transitions, kinetic flows, bacterial 
growth phenomena, other deformed ion channels, internet networks, and chemical kinetics28–33.
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