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Cardiovascular diseases, including arrhythmias and heart fail-

ure, are commonly treated with percutaneous procedures

guided by X-ray fluoroscopy. The visualization of the targeted

structures can be enhanced using preacquired respiratory-

resolved anatomic data (dynamic roadmap), which is displayed

as an overlay onto X-ray fluoroscopy images. This article dem-

onstrates how dynamic roadmaps using an affine motion model

can be obtained from one respiratory-resolved three-dimen-

sional whole-heart acquisition using the previously introduced

Radial Phase Encoding-Phase Ordering with Automatic Win-

dow Selection method. Respiratory motion in different regions

of the heart was analyzed in 10 volunteers, and it was shown

that the use of dynamic roadmaps can reduce misalignment

errors from more than 10 down to less than 1.5 mm. Further-

more, the results suggest that reliable motion information can

be obtained from highly undersampled images due to the ad-

vantageous undersampling properties of the radial phase

encoding trajectory. Finally, results of a three-dimensional

dynamic roadmap obtained from a patient before catheter abla-

tion for atrial fibrillation treatment are presented. Magn Reson

Med 68:205–213, 2012.VC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

Image-guided percutaneous procedures are commonly used
to assess and treat cardiovascular diseases. Their applica-
tions include diagnosis and treatment of ischemic and con-
genital heart disease (1) as well as cardiac arrhythmia (2–4)
and heart failure (5). All these procedures benefit from high
quality three-dimensional (3D) anatomical images for an
accurate diagnosis, accurate treatment planning, and reliable
guidance during the interventional procedure. In particular,

the treatment of cardiac arrhythmias requires detailed ana-

tomical information about the atria, ventricles, pulmonary

veins, and coronary sinus. In order to ensure optimal depic-

tion of the complex geometries this image data should be

acquired with a high isotropic resolution to avoid image deg-

radation such as partial volume effects.

The common imaging modality for catheter guidance

is X-ray fluoroscopy. It offers high spatial and temporal

resolution and a good catheter visualization. However,

X-ray fluoroscopy suffers from low soft tissue contrast

and only yields two-dimensional projection images mak-

ing it difficult to visualize structures in 3D. Therefore,

preacquired cardiac computer tomography (CT) data are

more frequently used as a ‘‘roadmap’’ to provide 3D ana-

tomical information during the procedure. Nevertheless,

cardiac computer tomography data are obtained during

breathhold, whereas the patient is breathing during the

intervention. This can result in misalignments between

the roadmap and the actual position of the anatomy (6).

These alignment errors can be minimized using dynamic

3D computer tomography data, but it involves a signifi-

cant radiation dose for the patient.

Magnetic resonance imaging (MRI) has recently been

reported to be able to provide roadmaps for catheterization

with excellent soft tissue contrast (1,7,8). Furthermore, it

can provide additional information about cardiac func-

tion, blood flow, and myocardial scar tissue. Respiratory

motion has been reported as a major challenge leading to

misalignments between the roadmap and the X-ray fluo-

roscopy images (8). Therefore, ‘‘dynamic roadmaps’’ have

been proposed to minimize these errors (9–11). The shape

and position of the roadmap are updated according to a

preacquired motion model and a motion surrogate

recorded during the interventional procedure.

The complexity of respiratory motion models has been

studied by several groups using X-ray angiography (12),

multiple MR pencil beams (13), and cardiac 3D MR images

(14,15). It has been shown that patient-specific 3D affine

motion models can describe the respiratory motion of the

heart with a satisfactory degree of accuracy (10,12,15). In

order to create such 3D affine motion models, dynamic

MR data have to be acquired in addition to the 3D anatom-

ical data, which prolong the overall scan time (10).

Here, we present an approach that yields all necessary
information for a dynamic roadmap within one 3D
whole-heart MR scan. It is based on the recently pub-
lished Radial Phase Encoding-Phase Ordering with Auto-
matic Window Selection (RPE-PAWS) acquisition
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scheme (16). It was shown that RPE-PAWS leads to an
efficient acquisition of a high-resolution 3D whole-heart
image while providing undersampled 3D data sets at dif-
ferent stages in the breathing cycle.

In this article, we investigate the use of these respira-
tory-resolved 3D image datasets to create a 3D affine
motion model without the need for any additional data
acquisition. Affine motion is determined between the
different image data sets, and a motion model is created
by polynomial fitting of the affine parameters over time.
In contrast to previous methods (10), high-resolution
data sets are used both to obtain the anatomical informa-
tion for the roadmap and to determine the respiratory
motion information. The images available for the motion
estimation can be impaired by undersampling artefacts.
Therefore, the effect of image quality on the results of
the motion estimation is assessed. The 3D affine motion
models are evaluated using data from 10 healthy volun-
teers, which have been acquired with RPE-PAWS. The
motion of important anatomical landmarks (LMs) of the
heart is determined, and differences between volunteers
are reported. The accuracy of the affine model is quanti-
tatively assessed. An analysis of the respiratory motion
and results of the 3D dynamic roadmap from a patient
before catheter ablation for atrial fibrillation treatment
are presented.

METHODS

Data Acquisition and Reconstruction

Previously we have introduced RPE-PAWS to overcome

the problem of long scan times due to low efficiencies
using respiratory gating. In contrast to respiratory gating,

where data are only recorded if a corresponding naviga-

tor signal lies within a predefined navigator window,
PAWS acquires data for different respiratory motion

bins, and the final image is reconstructed using data

from adjacent bins (17). This approach is especially
helpful for irregular breathing patterns where respiratory

gating can lead to excessively long scan times (5,18).
RPE-PAWS combines RPE (19) with a PAWS approach

that uses two adjacent respiratory motion bins. RPE uses
Cartesian frequency encoding with phase encoding along
radial lines (Fig. 1a,b). The interleaved bit-reversed RPE
scheme ensures a homogeneous distribution of acquired
k-space data over the two-dimensional phase-encoding
plane for undersampled data sets. Furthermore, data
from two adjacent bins are complementary and can be
combined for image reconstruction using a sliding win-
dow approach to improve the sampling density (Fig. 1b).

The scan is successfully finished if the desired k-space
information is acquired in one combination of two bins.
The latter shall be referred to as ‘‘complete’’ bin

FIG. 1. a: RPE-PAWS acquires data simultaneously in multiple bins (red/blue bars) covering the entire amplitude A of the respiratory
motion of the diaphragm. The width w is defined prior to the acquisition and the number of the acquired respiratory phases N is given

by A/w. Data are acquired with an interleaved bit-reversed radial phase encoding (RPE) trajectory which leads to a homogeneous cover-
ing of k-space during the entire scan and allows for the optimal combination of k-space data from adjacent bins (numbers indicate the
sampling order in each bin). A further decrease of scan time can be achieved using a partial Fourier acquisition along the radial direction

(color/gray ¼ sampled/unsampeld k-space positions). b: The scan is successfully finished if one combination of two bins yields the
desired k-space information and a complete image (C) can be reconstructed. Additional images can be reconstructed from the noncom-

plete (nC) bin combinations. c: After selecting a region of interest around the heart the complete image (C) is registered to the noncom-
plete images (nC) using a 3D affine registration. d: This yields 12 affine parameters (stars) which are fitted with a third-order polynomial
(line) for the final motion model. The graphs show the affine parameters for translation, rotation, scaling and shearing as a function of A

for foot-head (blue), left-right (black) and anterior-posterior (red).
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combination and the images obtained from this data as
‘‘complete’’ images. It is important to note that the com-
plete data does not necessarily have to be fully sampled
to provide a high-resolution image with an iterative
reconstruction method. All other combinations of bins
contain less data and will be referred to as ‘‘noncom-
plete,’’ i.e., higher undersampling factors depending on
respiratory motion.

The respiratory bins are positioned to cover the entire
amplitude A of the navigator signal. The width w of the
bins has to be set prior to the data acquisition and deter-
mines the residual motion and therefore the image qual-
ity of each respiratory motion state. In addition, w
defines the number of bins, i.e., number of acquired re-
spiratory phases N ¼ A/w (Fig. 1a). For all data pre-
sented here, the width of the bins was set to 3 mm.

For high undersampling factors, and therefore short
scan times, a non-Cartesian SENSE reconstruction (20) is
used. This ensures reconstruction of complete images
with excellent quality and isotropic resolution as well as
good image quality for noncomplete data sets. In order to
speed up the data acquisition further the RPE scheme is
combined with a half-Fourier approach along the radial
direction (Fig. 1a,b). The image data is reconstructed off-
line by performing a homodyne reconstruction along the
radial direction and a subsequent non-Cartesian SENSE
reconstruction.

The 3D data sets are reconstructed using a sliding win-
dow approach. Therefore, from N acquired respiratory
phases, N � 1 respiratory-resolved images are obtained.

Three-Dimensional Affine Motion Model

The respiratory motion of the heart was modeled using a
subject-specific 3D affine motion model M, which
describes the temporal behavior of translation, rotation,
shearing, and scaling. The main steps of this registration
process are summarized in Fig. 1c,d. The 12 affine pa-
rameters were obtained using a custom 3D affine registra-
tion algorithm, which was applied to a 3D rectangular
region of interest around the heart. The normalized
cross-correlation function was used as a similarity mea-
sure. The complete image was registered to the different
noncomplete images, which represent the different respi-
ratory phases. This yielded a set of 12 affine parameters
(y1. . . y12) for each registration, i.e., N � 1 different respi-
ratory phases rphn:

hi½rph1; rph2; . . . rphN�1� with i ¼ 1 . . . 12: ½1�

In order to create a motion model M, each of the 12 pa-
rameters yi [rph1, rph2,. . .rphN-1] were fitted by a third-

order polynomial as a function of the diaphragm position
in millimetres. Therefore, the affine parameters are not
just defined at discrete positions of the diaphragm given
by the respiratory bins but can be interpolated for a con-
tinuous range of breathing stages. The fitted yi were then
used to create a matrix defining the 3D affine transforma-
tion between the complete and the noncomplete images.

Evaluation of Heart Motion

The effect of respiratory motion was evaluated for differ-
ent areas in the heart, i.e., ventricles, atria, and coronary
arteries. For that, eight anatomical LMs were selected
manually as lateral/medial apex, lateral/medial tricuspid
valve, lateral/medial annulus, and origin of the left/right
coronary artery (Fig. 3a).

Effect of Undersampling on Motion Estimation

All 3D image sets, which were reconstructed from the
RPE-PAWS data, had the same high isotropic resolution.
However, the noncomplete images, which were used to
form the motion model, could be impaired by undersam-
pling artefacts. Therefore, their quality depended mainly
on the amount of acquired k-space data in each bin,
which was determined by the individual breathing pat-
tern and thus cannot generally be predicted. The influ-
ence of image quality on the accuracy of the motion
model was assessed on data that were retrospectively
undersampled. For this, noncomplete sets of images con-
taining 40, 30, 20, 15, 10, and 5% of k-space data were
generated (100% correspond to the complete image) in
one specific volunteer exhibiting an irregular breathing
pattern allowing for this analysis, which will be dis-
cussed in more detail in the ‘‘Results’’ section. The
k-space data were undersampled such that the data were
distributed the same as if the scan had originally been
stopped at 40, 30, . . . 5%.

In a previous study introducing RPE-PAWS, image
quality parameters were analyzed as functions of k-space
undersampling (16). Here, the effect of undersampling
was analyzed with respect to the accuracy of motion
models. For this, six motion models (M40%, M30%,..)
were derived from the undersampled data sets and were
applied to the LMs determined in the complete image.
This led to six sets of predicted LMs, LM40%, LM30%,..,
which were then compared with the LM positions pre-
dicted by the motion model Mref created from the origi-
nal data. As a means of comparison the maximum and
root mean square (RMS) error of the distance between
the positions of the LM points LMref and LM40%,
LM30%,. . . were calculated:

EUSðiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8N

X8
lm¼1

XN
rph¼1

MrefðrphÞLMðlm; rph ¼CÞ �MiðrphÞLMðlm; rph ¼CÞj j2
vuut ½2�

with i ¼ 40, 30, 20, 15, 10, and 5%, with rph ¼ C referring
to the complete image and with lm and rph describing the
different LMs and respiratory phases, respectively.

The RMS error (EUS) averaged over all LMs and all re-
spiratory phases and an increase in EUS for individual
targets might not have been immediately obvious from
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that value. The maximum error on the other hand is sen-
sitive to the behavior of single LMs. Therefore, a differ-
ent behavior of the RMS and the maximum error as a
function of undersampling would have indicated that
EUS did not change evenly but showed a dependency on
the LM position.

It is important to note that for this analysis the LM
positions predicted by Mref were compared to the ones
predicted by M40%, M30%. . ..M5%. Therefore, any errors
introduced by inaccurate selection of the position of LM
were avoided and could not distort the result.

Model Accuracy

The accuracy of motion models is usually assessed using
the target registration error, which describes the distance
between different pairs of LMs (21). For this study, the
3D target registration error was determined for eight LM
points by measuring their position in each of the non-
complete images and the position of the LMs predicted
by applying the motion model M to the LM positions
determined in the complete image (rph ¼ C). In addition
to the mean value and standard deviation the RMS error
of the model accuracy EMA is given as the RMS error
over all Nv volunteers and all N respiratory phases:

EMAðlmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NNV

XNV

v¼1

XN
rph¼1

LMðlm; v; rphÞ �Mðv; rphÞLMðlm; v; rph¼CÞj j2
vuut ½3�

where lm ¼ 1. . .8 described the different LMs.
The LM points were visually selected, and therefore,

the intraobserver and interobserver variabilities of the
model accuracy were determined in order to assess the
reproducibility of the evaluation.

Motion Model Application

For the final roadmap, five regions of interest for cardiac
catheterization (left/right ventricle, left/right atrium, and
coronary arteries) were segmented in the complete
images using a semiautomatic approach (ITK-SNAP;
www.itksnap.org) (22). The motion model M was applied
to this roadmap and the position and shape of it were
analyzed qualitatively for different respiratory phases.

EXPERIMENTS

Volunteer and Patient Studies

Three-dimensional whole-heart data were acquired in 10
healthy volunteers and one patient (43 years, due to
undergo catheter ablation for paroxysmal atrial fibrilla-
tion treatment) on a 1.5-T MRI scanner (Philips Medical
Systems, Best, The Netherlands) with a balanced steady-

state free precession sequence using the following speci-
fications: T2-prep pulse (TE ¼ 50 ms), isotropic FOV:
288 mm3, isotropic resolution: 1.5 mm3, fat suppression,
90� flip angle, TR/TE ¼ 4.3/2.2 ms, segmented approach
(TFE factor ¼ 24) with low-high profile order. The
images of the volunteers were obtained with a 32-chan-
nel cardiac phased array coil, and patient data were
acquired with a 5-channel cardiac phased array coil. The
data were undersampled in the angular direction, and a
partial Fourier factor of 0.75 was used along the radial
direction which resulted in an overall undersampling
factor of 4 for the complete image. The acquisition
matrix consisted of 144 phase encoding points in the
radial direction and 64 radial lines. Mid-diastolic trigger-
ing was applied and each respiratory bin covered a dia-
phragm displacement of 3 mm. Therefore, an image for
each 3 mm of the respiratory cycle is available. Written
informed consent was obtained from all participants.

The effect of undersampling on the motion estimation
was analyzed using data from a volunteer exhibiting a
highly irregular breathing pattern. This led to a homoge-
neous distribution of k-space data in a wide range of bin
combinations rather than a clear most probable breathing
state (e.g., end-expiration) as with regular breathing

Table 1
Summary of Volunteer Study

Volunteer NE # Bins # Bins �40% # Bins �10% # Bins rejected Resp. amp (mm)

1 0.63 5 3 5 0 7.65
2 0.49 10 4 8 2 18.00

3 0.64 4 3 4 0 6.71
4 0.49 6 4 6 0 9.49
5 0.34 9 7 9 0 13.58
6 0.41 8 7 8 0 11.05
7 0.33 7 6 7 0 9.12

8 0.62 3 3 3 0 6.18
9 0.50 9 5 7 2 14.15
10 0.63 5 4 5 0 9.00

Navigator efficiency (NE), total number of respiratory bin combinations (# Bins), number of bin combinations containing more than 40

and 10% of k-space data compared to the complete bin combination (# Bins �40%, # Bins �10%), number of rejected bins (# Bins
rejected) and the maximum of respiratory motion amplitude over all landmarks in each volunteer. Data from volunteer 5 (bold) were
used to study the effect of undersampling on the accuracy of the motion estimation.
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FIG. 2. Assessment of the effect of undersampling on the motion model accuracy. a,b: Histogram showing the amount of k-space data

acquired in different respiratory bin combinations for a regular (a) and irregular (b) breathing pattern. Only an irregular breathing pattern
leads to a high number of bins with a large amount of acquired k-space data sufficient for this analysis. c: The noncomplete bin combi-
nations (>45%) of one volunteer with an irregular breathing pattern were retrospectively undersampled to 40%, 30%, . . .5% of k-space

data (100% correspond to the complete image). The prediction of the six motion models M40%, M30%,. . .M5% of the position of the land-
marks LM were compared to the original model Mref. d: Behavior of 4 � 3 affine parameters for different undersampling factors. Each

column represents the results of the registration of one of the non complete images (nC1, nC2,. . .) to the complete image. The complete
image represents a respiratory phase between nC4 and nC6. Each individual image shows either translation (transl), rotation (rot), scal-
ing (scale) or shearing (shear) in anterior-posterior (AP, red), foot-head (FH, blue) and right-left (RL, black) as a function of the under-

sampled motion models (>45%, 40%, 30%,. . .5%). The scaling of the figures was set to visualize significant changes of the
parameters. e: The RMS and maximum error for different motion models. The latter were obtained from retrospectively undersampled
images and compared to the motion model determined from the original data. The amount of k-space data used for the noncomplete

images is given in percent relative to the complete image. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]



patterns. Furthermore, for this volunteer, the behavior of
the individual affine parameters describing the motion
models was studied as a function of undersampling.

The motion of the LMs was studied between the differ-
ent volunteers, and the mean motion between end-inspi-
ration and end-expiration was calculated and standard
deviation was given. Furthermore, the intraobserver and
interobserver variabilities were assessed in one volunteer
by determining the model accuracy EMA for the eight
LMs in all respiratory phases by the same observer twice
and by two different observers, respectively. The mean
and standard deviation of EMA over the LM positions
were used as a quantitative parameter.

In the data set acquired from the patient before catheter
ablation treatment, the respiratory motion and the model
accuracy were assessed for LMs close to the atrium (ori-
gin of coronary arteries, tricuspid valve, and annulus).
Furthermore, a 3D roadmap was segmented from the
complete image data, and the motion model was applied.

RESULTS

The scan was successfully finished in all 10 volunteers.
The total acquisition time ranged from 8.4–14.8 min
with a mean navigator efficiency of 52%. The number of
obtained bins/respiratory phases was between 4 and 9
(mean 6.3) depending on the individual breathing pat-
terns, i.e., the amplitude of the respiratory movement of
the diaphragm in foot-head direction. A summary of the
individual breathing parameters is given in Table 1.

The majority of volunteers showed regular breathing
patterns, which led to a well-defined most probable
breathing state in end-expiration and therefore one
highly populated bin combination and several other bins
with considerably less data (Fig. 2a). Data from these
subjects were not suitable for the analysis of the effect of
undersampling on the motion model, because only a few
respiratory phases were available due to the small
amount of data in the noncomplete bins and only a small
range of undersampling factors could have been ana-
lyzed. Therefore, for the assessment of the effect of
undersampling on the motion model a volunteer exhibit-
ing a highly irregular breathing pattern was selected (Fig.
2b). For this subject, a large number of respiratory bins
with a high amount of acquired data in each of them
were available. This data set consisted of one complete
bin combination (100% k-space data) and eight noncom-
plete bin combinations containing 9.6, 45, 88, 97, 95, 87,
52, and 16% of k-space data. The percentage values
describe the amount of k-space data in each combination
of bins relative to the complete image. The first and the
last bin combinations were not included in this analysis
in order to achieve more homogeneously distributed data
with at least 45% of k-space data. Figure 2c shows one
slice of the reference image and one of each of the data
sets, which were retrospectively undersampled to 40, 30,
20, 15, 10, and 5%. The outline of the heart is still visi-
ble for a wide range of undersampling ratios but image
quality decreases strongly for the 5% case as it contains
as few as three-sampled RPE lines.

FIG. 3. a: Eight landmarks were selected at anatomically well defined positions in the heart: lateral/medial apex, lateral/medial tricuspid

valve (TV), lateral/medial annulus and origin of left/right coronary arteries (OCA). b: Mean values and standard deviation (error bars) of the
displacement of landmarks between end-inspiration and end-expiration (RMinsp-exp) and the model accuracy (EMA). c,d: The grayscale
image shows an oblique plane through the heart at end-inspiration. c: The white contours were obtained from the same plane but in end-

expiration exhibiting significant displacements not just in the apex (dashed arrow) but also in the area of the origin of the coronary arteries
(arrow heads). d: Applying the obtained 3D affine transformation to the end-expiration image corrects for these displacements. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 2d shows the 4 (translation, rotation, scaling,
and shearing) � 3 [anterior-posterior (AP), foot-head
(FH) and right-left (RL)] affine parameters as functions of
undersampling for different respiratory phases. Each col-
umn describes the results of the registration of one of the
non-complete images (nC1, nC2,. . .) to the complete
image. The complete image describes a respiratory phase
between nC4 and nC6. The different columns visualize
the behavior of the affine parameters for different respi-
ratory phases. Relative to the complete data set, nC6 and
nC7 show increasing translation in FH but no scaling or
shearing. Moving from the complete image toward end
inspiration, translation in the opposite direction, and
additional scaling and shearing occurs. All parameters
reach a maximum change relative to the complete data
set at end inspiration.

The affine parameters show little variation for images
using at least 10% of k-space data. For higher undersam-
pling factors some parameters change strongly, which
suggests that the image quality is not sufficient for a reli-
able image registration.

The RMS and maximum error of the motion model
due to undersampling (EUS) over all seven respiratory
phases and over all eight LMs for the different motion
models are depicted in Fig. 2e. Both errors show a simi-
lar behavior, which suggests that the motion models
describe the respiratory motion of the heart for all eight
LMs equally well and the errors do not depend on the
position of the LMs.

The assessment of the effect of undersampling is also
summarized in Fig. 2c.

The behavior of both the individual affine parameters
and of EUS suggests that a threshold of 10% of k-space
data is sufficient to ensure accurate motion estimation.
Therefore, this threshold was applied to all volunteer
data, which meant that for two volunteers two bins each
were discarded.

The quantitative analysis of the motion between end-
expiration and end-inspiration of the eight LM points
and the model accuracy for the different LMs was carried
out on the data after excluding four bins as mentioned
above. Eight LMs were selected in each respiratory phase
from all 10 volunteers with a mean number of 6.3 respi-
ratory bins leading to a total of 504 LMs. Eight points
had to be removed because their visibility was strongly
impaired by undersampling artefacts. The results of the
analysis of the remaining 496 LMs are shown in Fig. 3b.
The motion decreases with increasing distance from the
diaphragm, but it is still in the range of 6 mm even for
the origin of the coronary arteries. In addition, there is a
considerable standard deviation between different volun-
teers. The mean error of EMA lies below the voxel size
(1.5 mm) for all LMs with a standard deviation between
60.22 and 60.41 mm (Table 2). Table 2 also includes the
RMS and maximum error of EMA. All values do not
exhibit an explicit dependency on the position of the LMs.

The intraobserver and interobserver variabilities
of EMA were found to be �0.13 mm (60.34 mm) and
�0.13 mm (60.33 mm), respectively.

Figure 3c and d depicts an oblique plane of the 3D
whole-heart data in end-inspiration. The white contour
in Fig. 3c is obtained from the corresponding end- Ta
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expiration image showing misalignments at the apex and
also at the origin of the coronary arteries. Figure 3d
shows the contour of the end-expiration image, which
was transformed to end-inspiration with the obtained 3D
affine motion model.

The acquisition of the patient data took 9.3 min with a
respiratory gating efficiency of 59%. All of the six bin
combinations contained more than 10% of k-space data
and no data had to be discarded. Figure 4 summarizes
the results of the patient scan. The obtained affine
parameters for translation and scaling are displayed in
Fig. 4a,b and snapshots of the final dynamic roadmap
are shown in Fig. 4c,d for end-inspiration and end-expi-
ration. The dominant breathing motion is scaling and
translation in foot-head direction, which can be seen in
Fig. 4a,b. Figure 4e shows the left and right atrium and
the measured and predicted positions of 33 LMs. The
amplitude of respiratory motion was more than 9 mm
and the model accuracy EMA was 1.17 mm 6 0.36 mm.

DISCUSSION

The dynamic information provided by RPE-PAWS can
be used to create an accurate 3D affine motion model
from a single scan describing the respiratory motion of
the heart in order to minimize alignment errors due to
breathing. A qualitative and quantitative analysis of
respiratory heart motion shows significant displacements
not only at the apex but also at the base of the heart. Fur-
thermore, a strong variability between different subjects
is reported. Both the results are in good agreement with
earlier studies (12,14,15) and emphasize the importance
of patient specific dynamic roadmaps.

The mean error of the accuracy of the motion model
EMA lies below the acquired resolution of 1.5 mm. This
suggests that EMA is limited by how accurate the LM
points can be defined by the observer rather than how
well the affine motion model describes the respiratory
motion of the heart.

The effect of undersampling on the motion model
accuracy was studied on only one volunteer. Neverthe-
less, the obtained threshold value of 10% of k-space data
has been verified in the analysis of the model accuracy
on 11 subjects as it led to an accurate motion model for
all volunteers and one patient.

The number of respiratory bins (e.g., the number of
acquired respiratory phases) depends on the individual
breathing pattern, the amplitude of the diaphragm move-
ment A and the predefined bin width w. Some volun-
teers exhibit small A, which can lead to as few as four
acquired respiratory phases. This could be overcome
using a 3D Golden RPE trajectory (23), which would
allow for a retrospective definition of different widths w.

For several volunteers bin combinations had to be
excluded from the registration and motion modeling,
because they did not contain enough data for reliable
motion estimation. This was due to the current stopping
criteria of RPE-PAWS, which has been defined for the
shortest possible scan time of the complete data set
rather than obtaining all noncomplete images with a cer-
tain amount of k-space data. In order to optimize the
data acquisition for motion modelling a new stopping
criteria based on the results from the analysis of the
motion model stability could be defined. The results of
Fig. 2d and e suggest that a threshold of 10% of k-space
data would be enough to ensure a sufficient image qual-
ity in each bin combination for accurate affine motion
estimation. Therefore, the RPE-PAWS acquisition could
also be carried out until each bin combination contains
at least 10% of k-space data. In this case, the k-space tra-
jectory for complete bin combinations could be rotated
by half of the angular gap between adjacent lines in
order to increase the sampling density and therefore the
image quality of the complete images and avoid the
acquisition of redundant data. This would lead to a more
predictable population of the respiratory bins and to an
accurate motion model for the entire extent of the respi-
ratory cycle with only a slight increase in scan time. Our

FIG. 4. Results of the patient scan. a,b: Affine parameters describing translation and scaling in anterior-posterior (AP), foot-head (FH)
and right-left (RL) direction (star: measured, line: third polynomial fit). c,d: Snapshots showing the segmented dynamic roadmap at end-
inspiration (Insp) and end-expiration (Exp) (LA/RA left/right atrium, LV/RV left/right ventricle). The dominant motion components are a

translation and scaling in FH. e: The measured positions (black dots) and the positions predicted by the obtained motion model (red
line) of the selected landmarks displayed on the segmented RA and LA. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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simulations have shown that an additional scan time of
about 2 min would have halved the number of excluded
bins in our volunteer study.

The reported total scan time of our whole-heart acqui-
sition is higher than commonly used respiratory gated
Cartesian 3D acquisitions. This is due to the fact that
RPE-PAWS provides an acquired isotropic resolution in
contrast to the majority of 3D Cartesian trajectories,
which use retrospective interpolation methods usually in
the slice encoding direction to achieve a reconstructed
isotropic resolution.

Previous studies have shown that the difference
between inspiration and expiration translation can reach
up to 6 mm (14). Our presented approach does not
model the inspiration and expiration cycle separately. In
principle, this is possible but would require the acquisi-
tion of more k-space data and thus a longer scan time. In
addition, the positive effect of modeling the inspiration
and expiration cycle separately has so far not been
shown for cardiac roadmaps (10).

The motion model is obtained as a function of the dia-
phragm movement but this information is not always
available during interventional procedures. Nevertheless,
the 3D affine motion model also allows the use of differ-
ent surrogates such as the position of a catheter at a cer-
tain anatomical location in the heart.

The non-Cartesian reconstruction of the image data is
carried out iteratively, which is computationally demand-
ing. Nevertheless, an implementation of the iterative
SENSE algorithm on a graphical processor unit is possible
and can strongly reduce reconstruction times (24).

CONCLUSION

We have shown that RPE-PAWS yields all the necessary
information to obtain accurate dynamic cardiac road-
maps with one 3D whole-heart scan without the need of
additional data acquisition. The motion of the heart dur-
ing the respiratory cycle can lead to misalignment errors
of more than 10 mm. The 3D affine motion models
obtained from the RPE-PAWS data reduce this error to
less than the acquired resolution (1.5 mm). The accuracy
of the motion models is influenced by image quality and
the results suggest that at least 10% of k-space data com-
pared to the complete image is required for reliable
motion estimation. Nevertheless, the beneficial under-
sampling properties in combination with flexible stop-
ping criteria of RPE-PAWS can ensure an accurate
motion model for all breathing phases. Finally, results
from a patient scan emphasize the importance of respira-
tory-resolved roadmaps for cardiovascular interventions
targeting thin structures such as the atrial wall and dem-
onstrate the accuracy of our 3D dynamic roadmaps.
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