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Abstract

Protein–protein interactions play a fundamental role in all cellular processes. Therefore, determining the structure of
protein–protein complexes is crucial to understand their molecular mechanisms and develop drugs targeting the
protein–protein interactions. Recently, deep learning has led to a breakthrough in intra-protein contact prediction, achieving
an unusual high accuracy in recent Critical Assessment of protein Structure Prediction (CASP) structure prediction
challenges. However, due to the limited number of known homologous protein–protein interactions and the challenge to
generate joint multiple sequence alignments of two interacting proteins, the advances in inter-protein contact prediction
remain limited. Here, we have proposed a deep learning model to predict inter-protein residue–residue contacts across
homo-oligomeric protein interfaces, named as DeepHomo. Unlike previous deep learning approaches, we integrated
intra-protein distance map and inter-protein docking pattern, in addition to evolutionary coupling, sequence conservation,
and physico-chemical information of monomers. DeepHomo was extensively tested on both experimentally determined
structures and realistic CASP-Critical Assessment of Predicted Interaction (CAPRI) targets. It was shown that DeepHomo
achieved a high precision of >60% for the top predicted contact and outperformed state-of-the-art direct-coupling analysis
and machine learning-based approaches. Integrating predicted inter-chain contacts into protein–protein docking
significantly improved the docking accuracy on the benchmark dataset of realistic homo-dimeric targets from CASP-CAPRI
experiments. DeepHomo is available at http://huanglab.phys.hust.edu.cn/DeepHomo/
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INTRODUCTION

As one of the most important biological macromolecules in
living organisms, proteins have evolved to conduct diverse cel-
lular functions, from serving as reaction catalysts to regulat-
ing DNA translation and transcription. Proteins rarely work in
monomeric form but are rather assembled in homo-oligomers
or hetero-oligomers to perform their biological functions [1, 2].

The structural characterization of protein–protein interactions
and high-order assemblies is therefore crucial to elucidate the
molecular mechanisms behind them and understand the related
biological processes [3, 4]. Despite the great progress in exper-
imental determination of macromolecular structures [5–7], the
number of protein structures that have been experimentally
determined and deposited in the Protein Data Bank (PDB) [8] is
still limited. Compared with the limited structures in the PDB,
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the genetic sequential information has increased dramatically
as the result of high-throughput sequencing technologies and
large-scale genome projects [9, 10]. Taking advantage of the huge
sequence information through sophisticated statistical models
provides a valuable alternative to determine the structures [11–
14]. Recently, direct-coupling analysis (DCA) [15–19] and similar
tools [20, 21], which try to distinguish direct from indirect corre-
lation effects, have been developed to improve the performance
of residue–residue contact prediction from multiple sequence
alignments (MSAs). Such computational methods have proven
to be very useful in monomer protein structure prediction in
the Critical Assessment of protein Structure Prediction (CASP)
experiments [22–25].

Subsequently, such DCA methods have been extended from
the contact prediction within the monomer protein structure
to residue–residue contact prediction at the hetero protein–
protein interface [26, 27]. Despite some successes, there is still
a challenge for such coevolution-based contact prediction in
protein–protein interactions. That is, how to create a joint MSA of
high quality, in which each line contains the sequences of a pair
of interacting proteins [28]. Constructing an MSA for individual
proteins is relatively easy using protein sequence searching
software like HHblits [29] or PSI-blast [30]. However, generation
of the joint MSA from the two MSAs of interacting proteins is
difficult due to the existence of paralogs [28, 31–33]. In bacte-
ria, the two individual MSAs can be concatenated according to
their genomic distance because the genes coding for interacting
proteins are often colocalized in the same operon [26, 27]. For
eukaryotes, phylogeny tree may be used to concatenate MSAs
[34]. Recently, two iterative methods have been presented to
identify specific interacting paralogs by maximizing the DCA
signals [31, 32]. However, all above methods have limitations
because the produced MSA does not have sufficiently divergent
sequences or contains many incorrect paired sequences. Besides
the DCA models, some machine/deep learning methods have
been developed to predict the residue–residue contacts between
protein–protein interfaces with [34] or without producing the
joint MSA for the complex [35–38]. However, the accuracy of these
methods is still relatively low.

To avoid the joint MSA challenge, Uguzzoni et al. have
focused on the interactions between homo-oligomers rather
than hetero-oligomers, for which the produced individual MSA
was directly used to perform the statistical analysis on the basis
of the assumption that the protein in each line of the MSA
also forms homo-oligomeric interface like the queried protein
[39]. This avoids the challenge of creating of the joint MSA for
residue–residue contact prediction in hetero-oligomeric protein
interface. However, another problem presents, that is how to
distinguish the intra-protein and inter-protein contacts in a
homo-oligomer [14]. Uguzzoni et al. assumed that the predicted
residue pair contacts with long intra-monomer distances are
inter-protein contacts. Recently, a similar method has been pro-
posed by the Cheng’s group to predict the inter-protein contacts
of homo-oligomers [40]. The true intra-protein contacts obtained
from the monomer structure and their neighbors within a square
region of a certain size were removed from the contact maps
predicted by the intra-protein contact predictor DNCON2 [41],
and the retained contacts were considered as the predicted inter-
protein contacts. However, using the monomer structure to filter
all the intra-protein contacts may neglect the residue–residue
contacts that are both intra-protein and inter-protein.

Recently, deep learning has achieved great successes in intra-
protein residue–residue contact prediction and demonstrated
high accuracy in the 12th and 13th Critical Assessment of

protein Structure Prediction (CASP12 and CASP13) challenges
[42–49]. However, there are significant differences between
monomer proteins and homo-oligomeric complexes in terms
of contact prediction [39]. First, for homo-oligomeric interface
contact prediction, it is difficult to remove the potential intra-
protein contact noises that exist in the MSA. Second, the
number of inter-protein contacts is far smaller than that of
intra-protein contacts for homo-oligomers. To overcome these
challenges, we have here presented a deep learning model
to predict residue–residue contacts across homo-oligomeric
interfaces, named as DeepHomo, by integrating evolutionary
coupling, sequence conservation, structural features, and
physico-chemical information of monomers. With the help of
the integrated structural features and the deep learning network,
DeepHomo can robustly distinguish the inter-protein contacts
from the intra-protein contact noises in the MSA features and
achieve a better performance than traditional DCA and machine
learning (ML)-based methods. DeepHomo was extensively tested
on 300 diverse homo-oligomeric proteins from the PDB and
28 realistic targets from recent CASP-Critical Assessment of
Predicted Interactions (CAPRI) challenges [50–52].

MATERIALS AND METHODS
Deep learning architecture

Figure 1 shows the workflow of our deep learning-based inter-
protein contact prediction for homo-oligomeric complexes
(DeepHomo). DeepHomo starts with a monomer structure that
may be taken from an experimental structure or predicted by
a third-party protein structure prediction method like I-TASSER
[53, 54]. As shown in Figure 1, 1D convolutional neural network
is first used to capture the sequential context and extract the
high-dimensional features from sequential features. Then the
extracted high-dimensional sequential features are converted
into pairwise features through outer concatenation as used
in the RaptorX-contact study [42]. The converted features are
concatenated with input pairwise features together. At last, the
2D convolutional neural network is used to capture pairwise
context and output the predicted contact probability for each
residue pair.

Like other deep learning methods proposed for monomer
structure contact prediction, the central part of our convo-
lutional neural network (CNN) is a stack of residual network
(ResNet) blocks [55, 56]. ResNet has been widely used in
computer vision and protein contact prediction because the
shortcut connection added in ResNet makes the training of
extremely deep CNN possible. Different with RaptorX-contact,
we used ResNet v2 [56] as the basic network block for both 1D
and 2D networks in this study, which has been shown to make
training easier and improve generalization. The ResNet v2 block
consists of two batch normalization layers, two activation layers,
two convolutional layers and a shortcut connection between the
input and output of the last convolutional layer. If the input
tensor of the block has a different dimension with the output
one of the convolutional layer, a convolutional layer with kernel
size of 1 × 1 will be used to change the dimension of the input
tensor, that is the identity layer as shown in Figure 1.

The 1D CNN contains six 1D ResNet v2 blocks with an
increased number of filters. A convolutional layer with two
1 × 1 filters is used to compress the output tensor of the 1D
network. The kernel size of the 1D network is set to 17. The
numbers of filters for the six blocks in the 1D network are set to
35, 40, 45, 50, 55 and 60, respectively. The 2D CNN is stacked



Contact prediction for homo-oligomeric complexes 3

Figure 1. The framework of the DeepHomo model. The model consists of two components: a 1D convolutional neural network with 1D features as input, which contain

secondary structure (SS), hydrophobicity features and PSSM matrix (top), and a 2D convolutional neural network (bottom) with 2D features as input, which include

distance map, docking map and DCA scores.

by 36 2D ResNet v2 blocks with nine groups of filters. The
numbers of filters for the nine groups of 2D blocks are set to
32, 32, 48, 64, 64, 64, 48, 32 and 32, respectively. The output block
consists of a batch normalization layer, an activation layer and a
convolutional layer with 1 × 1 kernel where a sigmoid activation
is used to convert the predicted probability in the range 0 to 1.
The convolutional kernel size of the 2D network is set as 3 × 3.
The exponential linear unit is utilized as the activation function
in the network. All the convolutional operations are with zero
padding to maintain the size of the predicted contact map. As the
training parameters in the network are independent to the size
of input, our model can take variable-length proteins as input.

Data sets

Protein homo-oligomers have different symmetry types and
stoichiometry, which may form different residue contacts at the
interfaces. To avoid the effect of multiple interfaces and reduce
potential noise, we focused on the homo-dimeric proteins with
C2 symmetry type, which is the largest class of the homo-
oligomers [2]. First, we queried all the biological assemblies in
the PDB with the following criteria: (i) they are assigned C2
symmetry by the authors; (ii) the resolution is better than 3.0
Å; (iii) the biological unit only contains two protein chains; (iv)
the lengths of protein chains range from 50 to 500. All the
queried biological assemblies were checked using blast [57] to
make sure that the two chains in one assembly share more than
99% sequence identity. Next, all the candidate assemblies were
clustered using MMseqs2 [58, 59] with a sequence identity cutoff
of 30% to remove the redundancy. The assembly with the best
resolution was chosen as the representative of the cluster. Then,
the interface area was calculated for each assembly structure
and only the structures with interface more than 1000 Å2 were
retained. The interface area was measured as half of the change
in the solvent accessible surface area of two monomers upon
binding (�SASA), where �SASA was calculated by the sum of
SASA of the two monomers minus the SASA of the dimer. Finally,

the candidates with the sequence identity of more than 30%
with any target in the CASP-CAPRI test set were also removed
to guarantee that there was no homology between the CASP-
CAPRI test set and the training set. This yielded a final data set of
4132 homo-dimeric complex structures, of which 3532 structures
were used as the training set, 300 structures as the valid set and
300 structures as the test set.

In addition, another independent data set, called CASP-CAPRI
test set, was also constructed to evaluate the performance of our
deep-learning model in realistic applications. The joint CASP-
CAPRI challenge has been established since 2014, which is a
double blind experiment and aims to assess the computational
methods of modelling protein assemblies in the community
[50–52]. We collected all the homo-dimeric targets from recent
four CASP-CAPRI challenges that have experimental complex
structures available, yielding a total of 27 targets. In addition,
we also split the CAPRI target T149 (CASP target T0999) into
two interacting targets T149_D1 and T149_D4 according to the
domain definition in the CASP experiment due to the large size
of 1589 residues. Finally, the CASP-CAPRI test set consists of 28
homo-dimeric targets with known experimental structures. To
test the realistic performance of our DeepHomo model, for each
target in CASP-CAPRI test set, the first Zhang-Server model, i.e.
Zhang-Server-TS1, in the CASP experiments was used as the
input monomer structure of DeepHomo during the evaluations.
The quality of the monomer model is measured by its TM-score
[60–62].

Input features

Similar to the inter-protein contact definition in the previous
studies [26, 27, 39], two residues from different monomers are
considered as in contact if any two heavy atoms from the two
residues are within 8 Å. Another distance threshold of 6 Å as
adopted by BIPSPI [38] was also used to train our model and the
results were shown in the Supplementary Material. Multiple fea-
tures were used in our deep learning model to predict the residue
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contacts. These features can be grouped into two categories. One
is one-dimensional (1D) sequential features including protein
sequence profile like position-specific scoring matrix (PSSM), 8-
state secondary structure types and three hydrophobicity scales
of each amino acid. The other is two-dimensional (2D) pairwise
features, including residue–residue distance map of monomer
structure, docking map created by our FFT-based docking pro-
gram and direct co-evolutionary information calculated by CCM-
pred [18].

Give a monomer of L amino acids, we first built an MSA
for its sequence by running HHblits [29] with a minimum cov-
erage of 40% and a maximum pairwise sequence identity of
99% with the query sequence against the UniRef30_2020_03
database [63] by three iterations. The e-value threshold was set
as the default one of 0.001. Then, according to the constructed
MSA, the raw and average product correction (APC)-corrected
direct coupling scores were calculated by running CCMpred.
The protein sequence profile (PSSM) was also generated. The
direct co-evolutionary feature was represented as a matrix with
dimension L × L × 2 and the PSSM feature was represented as a
matrix with size of L × 20.

Besides the sequence for each target, the 3D monomer struc-
ture was also used to produce the input features. It is expected
that the features derived from monomer structures are helpful
to distinguish inter-protein from intra-protein contacts. The Dic-
tionary of Protein Secondary Structure (DSSP) program [64] was
first used to assign the secondary structure type for each amino
acid of the monomer structure. Then, the assigned secondary
structure types were converted into a matrix with dimension
L × 8 according to one-hot encoding. The ‘ACC’ column in the
output of DSSP, which represents the water molecules in contact
with this residue, was also used as a hydrophobicity feature.
The absolute solvent accessible surface area of each residue
calculated by the Naccess program [65] was used as another
hydrophobicity feature. DSSP uses Shrake and Rupley’s method
[66] to calculate the solvent accessible surface area where the
surface is approximated by a set of points, while Naccess adopts
Lee and Richards’s method [67] where the surface is approxi-
mated by the outline of a set of slices [68]. To better describe
the hydrophobicity feature, we have used the both features in
our model. The Wimley–White whole residue hydrophobicity
scale [69] was used as the third hydrophobicity feature. The
pairwise distance map of the monomer structure consisted of
the minimal heavy atom distances of all residue pairs with size
of L × L × 1. At last, the docking map was generated from a
modified version of our in-house FFT-based docking program,
HSYMDOCK [70, 71]. The angle interval was set as 6◦, which
resulted in 960 evenly distributed rotations in Euler space. For
each rotation, the top 100 translations according to the shape
complementary score were used to generate the docking map.
Specifically, for each binding mode, i.e. one predicted complex
structure, a contact map for the interaction of two chains was
constructed with the same definition as described above. Then,
the union of all the 96 000 contact maps was taken as the docking
map with size of L × L × 1. For each target in the training, valid
and test set, the monomer structure was directly exacted from
the experimental complex structure. For each target in the CASP-
CAPRI test set, the top Zhang-Server model from CASP was used
as the monomer structure.

Implementation

The Keras with the Tensorflow as backend was used to imple-
ment our deep learning model. The hyper-parameters were set

as follows: mini-batch size: 1, optimizer: Adam [72], learning
rate: 0.001, and L2-norm regularization coefficient: 1e-4. The L2-
norm regularization was applied by adding a weight decay to
each convolutional layer. The learning rate decay strategy was
set as follows. If the loss of the valid set stops improving in
two epochs, the learning rate will reduce by a factor of 0.2 and
the minimal learning rate was set as 1e-6. Due to the extremely
unbalance between non-contact residue pairs and the contact
ones, here we used the Focal Loss [73] as the loss function to train
our deep learning model. The loss function for each residue pair
of i and j is described as follows.

FL
(
pt

) = −αt
(
1 − pt

)γ log
(
pt

)
(1)

where αt and pt are defined as

αt =
{

α y = 1
1 − α y = 0

(2)

and

pt =
{

pij y = 1
1 − pij y = 0

. (3)

Here, pij is the predicted contact score of residue i and residue
j, α is the parameter to balance the importance of positive and
negative examples, and γ is the tunable focusing parameter to
focus learning on hard examples and down-weight the numer-
ous easy examples. In our model, α was set as 0.25 and γ was set
to 1.5, Due to the limited graphics processing unit (GPU) memory,
the maximum length of the protein fed into the network was
limited to 400. If the length is more than 400, a continuous sub-
sequence with length of 400 is randomly sampled to represent
the protein. The model was trained on one K80 GPU and after
around 20 epochs (about 24h), the model converged to a stable
solution.

As homo-dimeric protein often has a C2 symmetry type, the
ideal contact map for a homo-dimeric interface is diagonally
symmetric. Hence, the labels and the input features used to
train our model have to be operated to ensure the symmetry. For
the input pairwise features, the transposed and untransposed
matrixes were averaged to get the final input symmetric matrix.
For the labels of the contact map, if the residue pair (i, j) was
with label of 1, the residue pair (j, i) would be set to 1 too, and
vice versa. Mask records were created for missing residue pairs
in the complex structure to ignore those missing residue pairs
in the loss function.

Evaluation criteria

The performance of residue–residue contact prediction was
measured by three parameters. One is the precision, which is
defined as the percentage of true positive (TP) contacts among
the top n predicted contacts. As a few correct restraints may
significantly help filter the correct binding modes for molecular
docking [74], so the precision of the top contact predictions is
crucial for complex structure prediction. The average precision
of all the targets was used to represent the performance of a
model on the data set. Besides the precision of the top N contact
predictions, we also evaluated the top L/K(K = 30, 20, 10, 5, 2)

predicted contacts to show the L-dependent precision which



Contact prediction for homo-oligomeric complexes 5

is commonly used in both intra- and inter-protein contact
predictions [24, 34, 42, 45–47]. However, it should be noted that
if there are not N or L/K contacts in the native structures, the
precisions will be underestimated when more than N or L/K
contacts are considered. The other two are the accuracy order
and the accuracy rate used by Zhao and Gong [35] to evaluate the
performance of inter-chain contact predictions. The accuracy
order is defined as the rank of first correct prediction divided by
the total number of the residue pairs in the target. The accuracy
rate is defined as the percentage of the targets with at least
one successfully predicted contact when a certain number of
predicted contacts are considered, compared to all the targets in
the test set. Such accuracy order and accuracy rate parameters
are useful if users want to validate the predicted contacts using
experimental methods, because they will know how many pairs
of residues need to be examined to get a positive result.

For docking applications, the quality of a predicted binding
mode is measured by the TM-score [61, 62, 75] and the CAPRI
criteria. If more than one top binding modes were considered for
a target, the one with the highest TM-score was used to assess
the docking performance for the target. For the CAPRI criteria,
the quality is divided into four categories: high, medium, accept-
able and incorrect [76]. The success rate is used to measure
the docking performance, which is defined as the percentage
of the targets with at least one successful (acceptable or better
accuracy) prediction among the total number of targets in the
test set when a certain number of top predictions are considered.

RESULTS AND DISCUSSION
Overall Performance of DeepHomo

Evaluation on experimental PDB structures

We first evaluated the performance of our DeepHomo model in
inter-protein residue–residue contact prediction on a large test
set of 300 experimental homo-dimeric complexes from the PDB.
Figure 2 shows the precision and accuracy rate of DeepHomo in
contact prediction as a function of the number of predicted con-
tacts on the 300 homo-dimers. For comparison, the figure also
shows the corresponding results of DCA-based methods and ML-
based approaches on this test set. The precisions and accuracy
rates for top 1, 10 and 100 predicted contacts are listed in Table 1.
The top L/K precisions and the accuracy orders are listed in
Table 2. The DCA-based methods used as baselines in this study
are similar to the Uguzzoni et al’s method [39]. First, based on
the produced MSA, the direct coupling scores containing the raw
direct information (DI) score and APC-corrected score were cal-
culated using CCMpred. Then, according to the input monomer
structure, the residue pairs with intra-monomer distances of
more than 12 Å were regarded as the candidates of inter-protein
contacts in the homo-oligomeric interface. At last, the candidate
contacts were sorted by their co-evolutional scores, DI scores or
APC scores, which represent DCA_DI and DCA_APC contact pre-
diction approaches. BIPSPI is a ML method for the prediction of
residue–residue contacts in the hetero-dimer interfaces, which
employs extreme gradient boosting (XGBoost) models as a clas-
sifier [38]. It was trained on the Protein–Protein Docking Bench-
mark version 5.0 [77] and has achieved a good performance.
BIPSPI has two versions that accepts the sequence as input
(BIPSPI_seq) or the structure as input (BIPSPI_struc), respectively.
We have tested both the sequential and structural versions by
submitting jobs to the BIPSPI web server. The sequences and
monomer structures uploaded to the web server were the same
as those used by our DeepHomo model. After the jobs was done,

the predicted results were downloaded from the BIPSPI web
server and analyzed.

It can be seen from Tables 1– 2 and Figure 2 that our Deep-
Homo model achieved a much better performance than DCA-
based methods and ML-based methods. For the top 1, 10 and
100 predicted contacts, DeepHomo obtained the precisions of
61.0%, 55.6% and 40.2%, respectively, compared with 29.7%, 16.3%
and 4.8% for DCA_DI, 32.0%, 24.0% and 8.2% for DCA_APC, 7.3%,
6.6% and 4.9% for BIPSPI_seq, and 24.0%, 23.8% and 18.4% for
BIPSPI_struc (Table 1). For all the top L/K(K = 30, 20, 10, 5, 2) pre-
cisions, DeepHomo also achieved the best performance among
the five methods and obtained very high precisions (Table 2).
Similar advantages of DeepHomo over DCA-based and ML-based
approaches can also be observed in the accuracy rate and the
accuracy order of contact prediction. For example, DeepHomo
gave a high accuracy rate of 91.0% for top 100 predicted contacts,
which is significantly higher than 73.7% for DCA_APC, 67.7%
for DCA_DI , 72.0% for BIPSPI_seq and 87.7% for BIPSPI_struc
(Table 1). DeepHomo also obtained the best accuracy order of
1.2� among the five methods, which means that only the top
1.2� residue pairs need to be experimentally examined to find
a true contact when all the residue pairs are ranked by our
DeepHomo.

Although our deep learning model used the same MSA and
monomer structure with DCA-based methods, the precision of
DeepHomo almost doubled the precision of DCA_APC when the
top predicted contact was considered. For top 100 predicted con-
tacts, the improvement was much more significant and the pre-
cision has been improved almost over four times, compared with
DCA_APC method. For DCA-based methods, DCA_APC method
performed better than DCA_DI method for all the top 100 pre-
dicted contacts. This is consistent with the previous study in
monomer protein contact prediction that APC helps improve the
prediction quality [19, 78].

Application to realistic CASP-CAPRI targets

As the monomer structure for a sequence is normally unknown
in real applications, we have further tested our DeepHomo
model on the CASP-CAPRI set of 28 realistic homo-oligomeric
targets. To be consistent with the blind prediction challenge in
CASP, we have used the top Zhang-Server model, which has been
blindly predicted by the I-TASSRER server from the Zhang group
[53, 54], as the monomer structure for the input of DeepHomo
during the evaluation. Figure 3 shows the precision and accuracy
rate of DeepHomo in residue contact prediction as a function of
the number of predicted contacts on the CASP-CAPRI test set.
For comparison, the figure also gives the corresponding results
of other DCA-based methods and ML-based approaches. The
precisions and accuracy rates for top 1, 10 and 100 contacts are
listed in Table 3. The top L/K precisions and the accuracy orders
are listed in Table 4.

It can be seen from Figure 3 that DeepHomo achieved the
best performance among the five methods and gave a much
higher precision and accuracy rate than the other four methods.
Specifically, DeepHomo obtained the precisions of 67.9%, 49.6%
and 30.7% for top 1, 10 and 100 predicted contacts, while the
second-best method BIPSPI_struc gave much lower precisions
of 25.0%, 14.6% and 14.5%, respectively (Table 3). DeepHomo
also outperformed the other methods and gave very high top
L/K precisions (Table 4). Similar trends can also be observed in
the accuracy rates and accuracy orders of different approaches,
showing that DeepHomo yielded an overall much better perfor-
mance than the other four approaches. Another notable feature
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Table 1. Comparison of the precisions and accuracy rates by DeepHomo and the other four methods on the PDB test set of 300 experimental
homo-dimeric complexes when the top 1, 10 and 100 predicted contacts are considered

Precision (%) Accuracy rate (%)

Method Top 1 Top 10 Top 100 Top 1 Top 10 Top 100

DeepHomo 61.0 55.6 40.2 61.0 74.7 91.0
DCA_APC 32.0 24.0 8.2 32.0 53.3 73.7
DCA_DI 29.7 16.3 4.8 29.7 50.0 67.7
BIPSPI_seq 7.3 6.6 4.9 7.3 29.3 72.0
BIPSPI_struc 24.0 23.8 18.4 24.0 67.3 87.7

Table 2. Comparison of the top L/K(K = 30, 20, 10, 5, 2) precisions and the accuracy orders by DeepHomo and the other four methods on the
PDB test set of 300 experimental homo-dimeric complexes

Precision (%) Accuracy order(�)

Method Top L/30 Top L/20 Top L/10 Top L/5 Top L/2

DeepHomo 57.2 54.9 52.1 47.8 39.4 1.2
DCA_APC 25.9 23.4 18.9 13.5 8.5 10.3
DCA_DI 18.2 15.7 11.9 7.8 4.9 25.4
BIPSPI_seq 7.0 6.7 6.0 5.6 4.8 5.8
BIPSPI_struc 23.3 23.2 22.5 20.9 18.6 3.8

Figure 2. The performance of DeepHomo, two DCA-based approaches (DCA_DI and DCA_APC) and two machine learning-based methods (BIPSPI_seq and BIPSPI_struc)

on the PDB test set of 300 experimental homo-dimeric structures. (A) The precision, number of TP predictions divided by number of predictions, as a function of the

number of predicted contacts. (B) The accuracy rate, number of the targets with at least one successfully predicted contact divided by the total number of targets in a

test set, as a function of the number of predicted contacts.

Table 3. Comparison of the precisions and the accuracy rates by DeepHomo and other four approaches on the CASP-CAPRI set of 28 realistic
targets when the top 1, 10 and 100 predicted contacts are considered

Precision (%) Accuracy rate (%)

Method Top 1 Top 10 Top 100 Top 1 Top 10 Top 100

DeepHomo 67.9 49.6 30.7 67.9 67.9 85.7
DCA_APC 14.3 17.5 7.3 14.3 42.9 75.0
DCA_DI 25.0 12.1 3.9 25.0 32.1 53.6
BIPSPI_seq 7.1 5.4 5.1 7.1 25.0 75.0
BIPSPI_struc 25.0 14.6 14.5 25.0 57.1 85.7

in Figure 3B is that among the four approaches except Deep-
Homo, BIPSPI_struc obtained an overall better performance than
the rest three approaches. Given the importance of structural
features in contact prediction, this finding can be understood
because BIPSPI_struc used the monomer structure as input in
its contact prediction, while the other three approaches only

took the sequence as input. Comparing Figures 2A and 3A, one
can also find that DeepHomo maintained a comparably high
precision of >60% on both the PDB test set of 300 homo-dimers
and the CASP-CAPRI test set of 28 realistic targets. Given that
the PDB test set consists of experimental monomer structures
while the CASP-CAPRI test set is formed by blindly predicted
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Table 4. Comparison of the top L/K(K = 30, 20, 10, 5, 2) precisions and the accuracy orders by DeepHomo and the other four methods on the
CASP-CAPRI set of 28 realistic targets

Precision (%) Accuracy order (�)

Method Top L/30 Top L/20 Top L/10 Top L/5 Top L/2

DeepHomo 51.2 47.1 43.2 37.4 28.2 2.1
DCA_APC 17.9 16.8 12.4 9.4 6.0 22.6
DCA_DI 13.9 11.7 7.1 5.0 3.1 35.4
BIPSPI_seq 6.4 5.9 6.6 5.5 5.4 3.1
BIPSPI_struc 16.3 15.4 15.8 14.4 13.3 6.9

Figure 3. The performance of DeepHomo, two DCA-based approaches (DCA_DI and DCA_APC) and two machine learning-based methods (BIPSPI_seq and BIPSPI_struc)

on the CASP-CAPRI of 28 realistic homo-dimeric targets. (A) The precision as a function of the number of predicted contacts. (B) The accuracy rate as a function of the

number of predicted contacts.

Figure 4. Ablation experiments of DeepHomo on the PDB test set of 300 experimental homo-dimeric structures (A) and the CASP-CAPRI test set of 28 realistic homo-

dimeric targets (B). ‘All’ stands for the original DeepHomo model using all the features. ‘Structure’ stands for the model using only the features obtained from monomer

structures. ‘MSA’ stands for the model using only the features obtained from MSAs.

models, the similar accuracy of DeepHomo on the two test sets
suggested that DeepHomo is robust to the quality of monomer
structures. This is especially valuable because the monomer
structure is often unknown and needs to be predicted by a
structure prediction method in realistic applications.

Impact of MSA and monomer structure

Ablation studies of MSA and structural features

To investigate the effects of the MSA and the monomer structure
on the performance of DeepHomo, we have conducted the abla-
tion studies and tested the retrained models on the PDB test set

of 300 homo-dimers and the CASP-CAPRI test set of 28 realistic
targets. In the ablations studies, all the hyper-parameters were
fixed, only the input features were changed during each exper-
iment. The structural features include distance map, docking
map, secondary structure and two hydrophobic features, and
the MSA features consist of DCA scores and PSSM matrix. As
shown in Figure 4, the structural features and MSA features are
both very important to our model. With only the structural or
MSA features as input, the precisions of top 1 and 10 predictions
both decrease a lot on the two test sets. It is obviously that
the MSA features is critical to our deep learning model where
the information of spatial adjacencies between residues may
be hidden in the evolutionary information. Compared with the
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Figure 5. The impact of MSA depth and monomer structural quality. The precisions of top 1 (a) and top 10 (b) predicted contacts by DeepHomo, DCA_DI and DCA_APC

with respect to the MSA depth measured by ln(Meff) on the PDB test set of 300 homo-dimeric structures. The precisions of the top 1 (c) and top 10 (d) predicted contacts

by DeepHomo and other four methods with respect to the quality of monomer structures measured by TM-score on the CASP-CAPRI test set of 28 realistic targets.

MSA features, the structural features have a higher impact on
the accuracy of DeepHomo on the PDB test set. However, on
the CASP-CAPRI test set, the MSA features may be slightly more
important than the structural features. This can be understood
because the crystal structures of monomers were used for the
PDB test set while the predicted monomer structures were used
for the realistic CASP-CAPRI test set.

Impact of the MSA depth

As the MSA is crucial to our DeepHomo model and other DCA-
based approaches, we have examined the effect of the MSA
depth on the performance of our method. Here, the effective
number of sequence homologs in an MSA, Meff, was used to
measure the MSA depth. Meff can be regarded as the number of
non-redundant sequence homologs in an MSA under a sequence
identity cutoff. The sequence identity between two sequences in
an aligned MSA is defined as the percentage of the positions with
corresponding residues. In this study, a sequence identity cutoff
of 70% was used to remove redundancy. The Meff is calculated as
follows:

Meff =
M∑

i=1

1/mi (1)

where M is the number of sequences in an MSA and mi is the
number of sequences that have sequence identity >70% with the
i-th sequence in the MSA.

Figures 5A and 5B show that the precisions of top 1 and top
10 predicted contacts with respect to ln(Meff) on the test set.
The first three intervals were merged together because of the

small number of proteins in these intervals. It can be seen from
the figure that our DeepHomo method outperformed the two
DCA-based approaches regardless of the number of Meff. As the
evolutionary information is included in the MSA, all methods
generally obtained a better performance with increased Meff for
both top 1 and top 10 predicted contacts. A higher Meff generally
leads to better coevolutionary scores for the DCA-based methods
and evolutionary input features for our deep learning model,
which resulted in a better performance of all tested methods.
It is interesting to note that the top 1 and 10 precisions in the
4–5 range show unexpected high values. This may be attributed
to the much larger interfaces of the targets in this range. The
average interface area for the targets in the 4–5 range is 2240
Å2, compared with 1797 Å2 for the 5–6 range, 1933 Å2 for the 6–
7 range and 2026 Å2 for the >7 range, respectively. Target with
larger interface may have more inter-protein contacts, which
may make it easier to predict the contacts. In addition, despite
the high accuracy for the cases of ln(Meff) > 6 (approximately
Meff > 400), our DeepHomo model also obtained good accuracies
in the 4–5 and 5–6 ranges of ln(Meff) and gave the precisions
of 70.0% and 52.4% for top 1 predicted contact and 55.0% and
42.4% for top 10 predicted contacts, respectively. This suggests
that DeepHomo is able to learn correct contact information from
not very deep MSAs with the help of other information such as
structural features.

Impact of monomer structural quality

To investigate the impact of the quality of monomer structures,
we have examined the performance of our DeepHomo model on
the monomer structures with different accuracies in the CASP-
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Figure 6. Comparison between the native contacts and the top 100 contacts predicted by DeepHomo (lower left triangle) and DCA_APC (upper right triangle) for T85

(A) and T93 (B). The native contacts, correct predictions and incorrect predictions are colored in gray, green and red, respectively. The diagonal line is colored in black.

CAPRI test set. Here, TM-score [61] was used to measure the
quality of a monomer structure. For each target in the CASP-
CAPRI test set, the TM-score between the predicted monomer
structure and the native structure was calculated using TM-align
[60]. Figure 5C and 5D give the average precisions of DeepHomo
for top 1 and top 10 predicted contacts in the different bins of
TM-score. For comparison, the figure also shows the correspond-
ing results of other three approaches, DCA_DI, DCA_APC and
BIPSPI_struc. Here, BIPSPI_seq was excluded because it does not
need monomer structures in the contact prediction. In addition,
as no TM-score is in the range 0.5-0.6, no result is shown for this
interval in the figure. All targets with TM-score<0.5 were merged
in one interval [62].

From Figures 5C and 5D, one can see a general trend that
DeepHomo and BIPSPI_struc show better accuracies for better-
quality monomer structures with higher TM-scores, while the
performance trend is not very clear for the DCA-based meth-
ods. It can also be seen from Figures 5C and 5D that the TM-
score of 0.7 seems to be a threshold for different approaches.
On the one hand, the accuracies of the DCA-based methods
for TM-score>0.7 become much better than those for TM-score
<0.7 when the top 10 predicted contacts were considered. This
may be understood because the targets with TM-score <0.7
tend to be hard targets and do not have many homologous
sequences. Therefore, the DCA-based approaches would not be
able to extract significant coupling information due to the lim-
ited number of sequences in the MSA. On the other hand, Deep-
Homo performed better with the increased quality of monomer
structures for TM-score>0.7, and reached a stable precision of
about 32% for TM-score<0.7 when the top predicted contact
was considered. From Figure 5C and 5D, one can also see that
overall DeepHomo and BIPSPI tend to depend on the TM-score
of monomer structures more than the DCA-based approaches.
This can be understood because both DeepHomo and BIPSPI
take structural features extracted from the monomer struc-
ture as input. The tendency of the precisions for the first two
bins (<0.5 and 0.6-0.7) is slightly different. The top 1 preci-
sion does not change, while the top 10 precision decreases
slightly with the increasing TM-score, which may be attributed
to the insufficient statistics becasue there are only three tar-
gets for each bin. However, for the DCA-based methods, the

monomer structure was only used as a filter in the post process,
so these methods rely less on the quality of the monomer struc-
tures. Despite the impact of structural quality, our DeepHomo
model can achieve a good precision of 66.7% for targets with
TM-score in 0.7-0.8 for the top predicted contact. This means
that our deep learning model is accurate enough to learn cor-
rect contact information with only moderate-quality monomer
structures.

In addition to assessing our DeepHomo using the monomer
models predicted by the Zhang-Server on the CASP-CAPRI test
set, We have also evaluated our DeepHomo model using the
native monomer structures, whose results are shown in Supple-
mentary Tables S1 and S2. As there were some missing residues
in the PDB structures, the predicted monomer models were first
trimmed according the length of the native structures to ensure
a fair comparison. Then, the trimmed monomer models and
the native structures were used to produce different structural
features, where the sequential features were the same, which
were obtained from the same MSAs. It can be seen from Supple-
mentary Tables S1 and S2 that using the true native monomer
structures for the prediction of inter-protein contacts achieved
a better performance than using the predicted monomer struc-
tures. Specifically, DeepHomo obtained a precision improvement
of around 5% when using the native structures. Improvement
of the accuracy rate and accuracy order can also be observed
in Supplementary Tables S1 and S2. These results again demon-
strated the importance of the quality of monomer structures for
the inter-protein contact prediction.

Examples of contact prediction

Figure 6 shows two selected examples of the top 100 predicted
contacts by our DeepHomo model and the DCA_APC method
versus the native contact map for targets T85 and T93 in the
CASP-CAPRI test set. Comparisons between DeepHomo and the
other three methods (DCA_DI, BIPSPI_seq and BIPSPI_struc) are
shown in Supplementary Figure S4A. It can be seen from the
figures that the predicted contacts by our DeepHomo model are
all distributed near the native ones and can grab the important
interaction mode. However, the predicted contacts by the DCA-
based methods are very dispersed across all the contact map,
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Figure 7. Top 10 predicted contacts by DeepHomo (A and C) and DCA_APC (B and D) on T85 (A and B) and T93 (C and D). The two monomers of native homo-dimeric

structures are shown in ribbons and colored in pink and blue, respectively. The correct and wrong predictions are shown in green and red connections.

Figure 8. Success rates and TM-scores of DeepHSYMDOCK, i.e. DeepHomo+HSYMDOCK, and ab initio HSYMDOCK docking algorithms in binding mode prediction on

the CASP-CAPRI test set of 28 realistic targets when top one to five predictions were considered.

which results in many false positive predicted contacts, while
the predictions by BIPSPI methods are more concentrated but
with many false positive predictions. Specifically, DeepHomo
achieved the high precisions of 56% and 87% on the two targets
of T85 and T93, while the precisions of the DCA_APC method
were only 25% and 31% with 0% and 28% for DCA_DI, 19% and
3% for BIPSPI_seq and 17% and 29% for BIPSPI_struc, respectively.
From Figure 6, one can also see that the predicted contacts
by DeepHomo are mostly close to the native contacts on the
contact map, even though they may not overlap. That means that
such near-native contacts by DeepHomo are still roughly correct,
even though they may be classified to be incorrect contacts
according the cutoff of 8 Å. In contrast, for the DCA_APC method,
many of its predicted contacts are far from the native ones

and thus are truly wrong contacts (Figure 6). Figure 7 shows a
comparison of the top 10 predicted contacts by DeepHomo and
DCA_APC in the native homo-dimeric structures of T85 and T93.
The top 10 predictions by other three methods are shown in
Supplementary Figure S4B. It can be seen from the figure that
our DeepHomo model successfully predicted all the contacts
and achieved an precision of 100% on targets T85 and T93 for
top 10 predicted contacts, while the DCA_APC method only
gave correct predictions for 40% and 80% of the native contacts
on these two targets with 0% and 90% for DCA_DI, 40% and
0% for BIPSPI_seq and 10% and 20% for BIPSPI_struc, respec-
tively (Figure 7 and Supplementary Figure S4). These results
again suggest the accuracy and robustness of our DeepHomo
approach.
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Integration of DeepHomo into protein docking

Accurate prediction of inter-protein contacts will greatly help
the structure determination of corresponding protein–protein
complexes. To investigate the practical role of DeepHomo in
complex structure prediction, we have integrated the predicted
contacts by DeepHomo into our ab initio HSYMDOCK symmetric
docking program by applying the predicted contacts in a post-
docking filter, named as DeepHSYMDOCK, and evaluated its
performance on the CASP-CAPRI test set of 28 realistic targets.
For each target, the same monomer structure, i.e. the first Zhang-
Server model, was used as the input structure for the Deep-
Homo and HSYMDOCK processes of DeepHSYMDOCK. All the
default parameters were used during the HSYMDOCK docking
calculations. Given that the accuracy of contact prediction is
critical to the docking process, only the top predicted contact by
DeepHomo was used to filter the final binding modes predicted
by HSYMDOCK.

Figure 8 shows the success rates of DeepHSYMDOCK and
HSYMDOCK in binding mode prediction on the CASP-CAPRI
test set. It can be seen from the figure that the predicted con-
tacts by DeepHomo did significantly improve the docking per-
formance in complex structure prediction, When the top five
predictions are considered, DeepHSYMDOCK achieved a success
rate of 42.9% and 60.7% for top 1 and 5 predictions, which is
considerably higher than 32.1% and 42.9% for the ab initio HSYM-
DOCK docking program. Similar trends can also be observed in
the TM-scores of docked complex structures, where the TM-
score was calculated using MMalign [75]. Namely, DeepHSYM-
DOCK obtained an average TM-score of 0.645 and 0.708 for the
top 1 and 5 predictions, respectively, compared to 0.603 and 0.666
for HSYMDOCK. Without using contacts, HSYMDOCK did not
predicted any correct complex structures within the top five pre-
dictions for T85 and T93. However, with the help of the top pre-
dicted contacts, DeepHSYMDOCK achieved a medium-accuracy
binding mode with Lrmsd=2.804 Å, Irmsd=2.247 Å, fnat=60.211% and
TM-score= 0.942 for T85, and an acceptable-accuracy binding
mode with Lrmsd=7.441 Å, Irmsd=3.446 Å, fnat=29.167% and TM-
score= 0.816 for T93, within the top predictions. These results
demonstrated the important role of DeepHomo in the structure
prediction of protein–protein complexes.

CONCLUSIONS
We have presented a deep learning model for inter-protein
residue–residue contact prediction across homo-oligomeric
protein interfaces by integrating both structural and MSA
features of monomers, named as DeepHomo. Our DeepHomo
model was extensively evaluated on two independent data
sets, the PDB test set of 300 experimental structures and
the CASP-CAPRI test set of 28 realistic homo-dimeric targets,
and compared with state-of-the-art DCA-based methods
(DCA_APC and DCA_DI) and ML-based approaches (BIPSPI_seq
and BIPSPI_struc). It was shown that DeepHomo achieved a high
accuracy in inter-protein contact prediction and outperformed
existing DCA and ML-based methods. DeepHomo was robust
to the depth of MSAs and the quality of monomer structures,
and can achieve good accuracies for the MSA of ∼100 sequences
and the monomer structure of TM-score∼0.7. Integrating the
predicted contacts into protein–protein docking significantly
improved the docking accuracy, suggesting the practical role
of DeepHomo in the determination of homo-dimeric structures.
The present model demonstrated the efficacy of integrating both

structural and sequential features into a deep learning model
for accurate inter-protein residue–residue contact predictions.

Key Points
• Protein–protein contacts in homo-oligomeric com-

plexes were accurately predicted using a deep learning
model.

• Unlike traditional approaches, our model includes dis-
tance and docking maps based on monomer structures.

• Our model much outperformed existing direct-coupling
analysis and machine learning-based approaches on
realistic complexes.

• Our model was robust to monomer structures and still
performed well with predicted protein structures like
CASP models.

• Integrating predicted contacts into protein–protein
docking significantly improved the docking accuracy.

AVAILABILITY
DeepHomo is available at http://huanglab.phys.hust.edu.cn/
DeepHomo/. The package consists of the processed files of the
datasets, the trained model, source code and a step-by-step
instruction for users.
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