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In mouse models, the recovery of liver volume is mainly mediated by the proliferation of hepatocytes after partial hepatectomy
that is commonly accompanied with ischemia-reperfusion. /e identification of differently expressed genes in liver following
partial hepatectomy benefits the better understanding of the molecular mechanisms during liver regeneration (LR) with appliable
clinical significance. Briefly, studying different gene expression patterns in liver tissues collected from themice group that survived
through extensive hepatectomy will be of huge critical importance in LR than those collected from the mice group that survived
through appropriate hepatectomy. In this study, we performed the weighted gene coexpression network analysis (WGCNA) to
address the central candidate genes and to construct the free-scale gene coexpression networks using the identified dynamic
different expressive genes in liver specimens from the mice with 85% hepatectomy (20% for seven-day survial rate) and 50%
hepatectomy (100% for seven-day survial rate under ischemia-reperfusion condition compared with the sham group control
mice). /e WGCNA combined with Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment
analyses pinpointed out the apparent distinguished importance of three gene expression modules: the blue module for apoptotic
process, the turquoise module for lipid metabolism, and the green module for fatty acid metabolic process in LR following
extensive hepatectomy. WGCNA analysis and protein-protein interaction (PPI) network construction highlighted FAM175B,
OGT, and PDE3B were the potential three hub genes in the previously mentioned three modules. /is work may help to provide
new clues to the future fundamental study and treatment strategy for LR following liver injury and hepatectomy.

1. Introduction

Partial hepatectomy is a routine surgical procedure in liver
resection, trauma, and transplantation. Liver ischemia-
reperfusion injury commonly happens as one of the main
causes of acute liver dysfunction and failure after partial
hepatectomy and liver transplantation [1, 2]. However, the
precise mechanisms underlying ischemia-reperfusion injury
have been poorly elucidated. Liver function cannot be fully
restored after ischemia-reperfusion injury [3]. Partial hep-
atectomy and ischemia-reperfusion trigger hypovolemic

shock in liver as an inevitable complication and a significant
challenge for clinical management [4]. /e investigation on
the gene expression alterations with the underlying mo-
lecular mechanisms in ischemia-reperfusion injury helps us
to manage and control iatrogenic liver damage and dys-
function. Commonly, partial (two-thirds) hepatectomy is
used to resect diseased livers [5], while a larger proportion of
liver resection is required for liver donation. Moreover, the
progress on liver regeneration (LR) already made the suc-
cessful treatments of liver cancer and liver cirrhosis with
extensive hepatectomy and the feasibility of liver
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transplantation [6]. In this study, we used mouse models
with 50% or 85% hepatectomy accompanied with ischemia-
reperfusion to identify the differentially expressed genes
(DEGs) in liver tissues. For liver resection, the classic re-
generation model is the 2/3 liver resection model established
in 1931 by Higgins and Anderson. We simulated the surgical
method of clinical liver resection by combining hepatectomy
under ischemia-reperfusion. We achieved the seven-day
survival rates of 100% and 20% for the mice treated with 50%
and 85% hepatectomy under ischemia-reperfusion condi-
tion, respectively. Meanwhile, the sham group mice were
also included as control for experiment group mice.
Comparisons between the sham group and 50% and 85%
hepatectomy reflected the dynamic gene expression changes
in LR. Herein, we explored an 85% of hepatectomy in mice
and aimed to investigate the molecular mechanisms and
provide a theoretical basis to expand surgical hepatectomy
ratio. /e weighted gene coexpression network analysis
(WGCNA), a highly effective method for the construction of
coexpression networks by using large-scale datasets and for
the rapid identification of genes with close associations in
functions [7], was performed in current work. /e relevant
gene modules and hub genes in important biological pro-
cesses were also extensively explored using WGCNA in the
combination with KEGG and GO enrichment analyses re-
lated to liver regeneration. /e DEGs together with their
potential interaction mechanisms raveled in current work
provide new clues to the future fundamental study and
treatment strategy for LR following liver injury and
hepatectomy.

2. Materials and Methods

2.1. Animals and Experiments. /e animal protocol was
approved by the Institutional Animal Care and Use Com-
mittee (IACUC) of Dalian Medical University (Dalian,
China) and was carried out in accordance with the
Guidelines of the Care and Use of Laboratory Animals
issued by the Chinese Council on Animal Research (Ap-
proval Number: AEE19042 2019). Male C57BL/6J mice
(8–10 weeks of age, ～19 g) were obtained from the specific
pathogen-free (SPF) Animal Laboratory Center of Dalian
Medical University (Dalian, China). /e experiments were
divided into seven groups with three mice in each group./e
seven groups were sham group, sham operation, 0 h; test 1
group, ischemia-reperfusion 50% hepatectomy at 6 h; test 2
group, ischemia–reperfusion 50% hepatectomy at 12 h; test 3
group, ischemia-reperfusion 50% hepatectomy at 24 h; test 4
group, ischemia-reperfusion 85% hepatectomy at 6 h; test 5
group, ischemia-reperfusion 85% hepatectomy at 12 h; test 6
group, ischemia-reperfusion 85% hepatectomy at 24 h
(Table 1). In the sham group, only the mouse abdominal
cavity was opened, the liver lobes were turned without re-
section, and samples were taken at 0 h. Mice were anes-
thetized by inhalation with Sevoflurane (4.0% v/v; Maruishi
Pharmaceutical, Japan), maintained on 37°C thermostatic
heat pads, and underwent laparotomy. /e hepatic portal
veins were occluded with a vascular clamp for 20min and
hepatectomy was performed at the same time. Based on our

preliminary but extensive experimental trials, we ensured
that the longest time required for 85% hepatectomy was
20min. In order to eliminate the effect of clamping time on
mouse, we uniformed the clamping time of 20min for each
mouse. /e skin and connective tissue beneath and around
the xiphoid process were dissected in prior to open the
abdominal cavity, and two parallel incisions of the left and
right xiphoid process were made to expose the liver. /e
surgeon used sterile 5–0 silk ligatures to isolate both lobes
simultaneously as close as possible to the inferior vena cava
(IVC), dissected the tissue distal to the ligature, and oc-
cluded the hepatic portal vein and hepatic artery with a
vascular clamp for 20min during hepatectomy. 50% hep-
atectomy included the resections of the left and the half of
the middle liver lobe, while 85% hepatectomy included 50%
hepatectomy plus all the middle, right lower, and caudate
liver lobes [8]. /e mice were allowed to recover for 30min
before being sacrificed by cervical transection. Tissues were
harvested at the designated time point and stored or pro-
cessed accordingly (see Table 1 for more details). Every effort
was deployed to minimize pain.

2.2. RNA Isolation and mRNA Microarray Analysis.
Snap-frozen liver tissues were ground and subjected to total
RNA isolation using Trizol reagent (Invitrogen, Carlsbad,
CA, USA), purified with a RNeasy mini kit from Qiagen
(Valencia, CA, USA), and quantified with a spectropho-
tometer and bioanalyzer 2000 (Agilent Technologies, Santa
Clara, CA). /e RNA samples (150 ng each) were subjected
to reverse transcription to generate biotinylated cDNA
probes using the Ambion® WT Expression Kit (Austin, TX,
USA). /e fragmented cDNA probes (denatured at 95°C for
3min) were hybridized at 45°C for 16 h onto Gene Chip
Affymetrix Mouse Clariom® D Arrays (Affymetrix, Santa
Clara, CA) in accordance with the manufacturer’s protocol.
/e following day, the gene chips were washed and stained
in the Affymetrix Fluidics Station 450, in accordance with
the standard Affymetrix protocol. /e gene chips were
scanned using an Affymetrix® Gene Chip® Scanner 3000 7Gwith the Gene Chip Command Console (AGCC), and the
data were analyzed using the robust multichip analysis
(RMA) algorithmwith default Affymetrix settings and global

Table 1: Experimental grouping for mouse partial hepatectomy.

Sample Partial hepatectomy Time
Sham Sham operation 0 h

Test 1 50% hepatectomy with ischemia-reperfusion
20min 6 h

Test 2 50% hepatectomy with ischemia-reperfusion
20min 12 h

Test 3 50% hepatectomy with ischemia-reperfusion
20min 24 h

Test 4 85% hepatectomy with ischemia-reperfusion
20min 6 h

Test 5 85% hepatectomy with ischemia-reperfusion
20min 12 h

Test 6 85% hepatectomy with ischemia-reperfusion
20min 24 h
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scaling for normalization. One-way ANOVA test was used
to identify DEGs among the seven groups of samples. /e
thresholds for upregulation and downregulation of DEGs
were set as a fold change >1.5 and a P value< 0.05. We
identified 5,312 differentially expressed genes (DEG). /ese
microarray data are publicly available at NCBI Gene Ex-
pression Omnibus (GEO) with the accession number
GSE133271.

2.3. Function Enrichment Analyses. GO (https://
geneontology.org/) and KEGG pathway (https://www.
kegg.jp/) analyses were performed for DEGs. /e results
from three gene modules in apoptotic process, in lipid
metabolism, and in fatty acid metabolic process were ob-
tained and visualized by the R package software (ggplot
version 2 3.10). Statistical analysis involved Fisher’s exact test
(P< 0.05), and the Benjamini–Hochberg method was used
to correct FDR< 0.05.

2.4. Weighted Gene Coexpression Network Construction.
WGCNA is an algorithm based on high-throughput gene
expression profiling [9, 10]. It is most suitable for gene
coexpression network analysis for revealing the correlation
between genes and related gene function modules. In this
study, we used WGCNA in the R environment [11] to
construct a scale-free coexpression network of DEGs in mice
livers after receiving different proportions of liver resection
plus ischemia-reperfusion. /e Data Analysis Hierarchical
Clustering Tab is a powerful and useful tool that can be used
to analyze large genomic datasets and evaluate three types of
DEGs: binary, aggregate, and hierarchical clustering. /e
first step of hierarchical clustering is to calculate the distance
matrix between gene expression data. Aggregation level
processing consists of repeated loops, where the two closest
remaining items (items with the smallest distance) are
connected by nodes/branches of the tree, and the length of
the branches determines the distance between the connected
items. After that, the two merged projects are deleted from
the list of projects being processed and replaced with
projects that represent the new branch. /en, we calculated
the distance between the new item and all other remaining
items and repeated the process until only one item remained.
We set the soft threshold power β as 21 and the scale-free R2

as 0.90 to construct a standard scale-free network with the
function of “soft threshold.”

2.5. Identifying Significant Modules and Identification of
Candidate Hub Genes. First, we calculated the correlation
between ME and each model group to identify related
modules. Modular intrinsic genes (MEs) were defined as the
first major component of the gene expression matrix of each
corresponding module. We focused on the three most rel-
evant modules for test 4, test 5, and test 6 to be shown in
blue, turquoise, and green (P< 0.05). In the linear regression
between gene expression and the experiment group, the gene
significance (GS) was defined as log10P (GS� lgP). We de-
fined the module signal (MS) as the average of the GSs of all

genes in the module [12]. We also measured the absolute
value of Pearson’s correlation (|MM|> 0.8) to indicate gene
connectivity. Module membership (MM) was defined as the
correlation between module characteristic genes (ME) and
gene expression. Central genes highly correlated with time
were then identified in the module with the absolute value of
Pearson’s correlation (|GS|) over 0.2. /erefore, based on |
GS|> 0.2 and |MM|> 0.8, we were able to identify hub genes.

2.6. Coexpression of mRNA and mRNA. /e correlation
coefficient of mRNA-mRNA pairs was used to construct a
coexpression network [13]. /e centrality degree of each
gene was calculated by Cytoscape 3.6.0 neutral analyzer
(https://cytoscape.org/). /en, we selected top ten genes
according to the centrality degree as our hub genes [14] for
further analysis.

2.7. Statistical Analysis. All the experimental data are
summarized as mean± standard deviation (SD) and were
analyzed using Student’s t-test andone-way ANOVA test.
P< 0.05 was considered statistically significant.

3. Results

3.1. Identification of Differentially Expressed Genes (DEGs).
/e workflow of our study is shown in Figure 1(a). In the
model of ischemia-reperfusion hepatectomy (sham opera-
tion vs. test 1 vs. test 2 vs. test 3 vs. test 4 vs. test 5 vs. test 6),
we screened 5,312 DEGs under the threshold of |FC|> 1.5
(P< 0.05; Figure 1(b)). /ese DEGs were then used for
subsequent analysis.

3.2. Weighted Coexpression Network Construction and
Identification of Key Modules. Clustering of the DEGs was
based on sham, test 1, test 2, test 3, test 4, test 5 and test 6
groups as separately marked with color bars in Figure 2.
Before the construction of the weighted coexpression net-
work, a weighted parameter of the adjacency function (soft-
threshold β� 21) was selected to build the scale-free net-
works as shown in Figures 3(a) and 3(b). /e data dem-
onstrated that the closer was for the branches, and the more
similar was for their expression profiles. Nine coexpressed
gene modules were detected by dynamic tree cutting and
merging similar modules, which were visualized by a
clustering dendrogram (Figure 4). We found that all nine
modules and sample types showed clear correlations (Fig-
ure 5). /e brown, yellow, magenta, blue, turquoise, and
green modules were found most relevant to the sham, test 2,
test 3, test 4, test 5 and test 6 groups, respectively. As the
results showed that the last three modules were negatively
correlated with DEGs in test 4, 5, and 6 groups, later on, we
mainly focused and explored the significances of these
modules in mouse LR receiving the extensive liver resection
of 85%.

Based on the combinational analyses of module con-
nectivity and the absolute value of Pearson’s correlation, we
identified that the blue module, turquoise module, and green
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module showed the highest level of correlation for test 4, test
5, and test 6, respectively (Figures 6(a)–6(c)). /e blue,
turquoise, and green modules were the most meaningful
modules specifically in the apoptotic, lipid metabolism, and
fatty acid metabolic processes, which were demonstrated to
be closely related to mouse LR after an 85% hepatectomy for
6, 12, and 24 h, respectively. /ese modules were then used
to identify the hub genes.

3.3. Functional Enrichment Analysis of the Hub Genes in
WGCNA. We performed GO and KEGG pathway analyses
on the DEGs identified in the 3 modules. /e top ten blue
modules for biological processes and pathways, as deter-
mined by GO enrichment analysis, are shown in Figure 7(a),
including sensory perception of chemical stimulus, protein
transport, cellular response to DNA damage stimulus,
spermatid development transcription, DNA templating,
DNA repair, regulation of transcription, mitotic nuclear
division, NLS-bearing protein import into nucleus, and
apoptotic process. /e top ten KEGG pathways included the
cell cycle, nucleotide excision repair, thyroid hormone
signaling pathways, pyrimidine metabolism, fatty acid
degradation, purine metabolism, transcriptional mis-
regulation in cancer, herpes simplex infection, renal cell
carcinoma, RNA polymerase, and Epstein-Barr virus in-
fection. Apoptosis is a form of programmed cell death that
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Figure 1: Study design and hierarchical cluster analysis. (a) Analysis procedure flowchart: model establishment, data collection, pre-
processing, analysis, and verification. (b) Hierarchical cluster analysis of 5,312 DEGs inmice in the sham, test 1, test 2, test 3, test 4, test 5, and
test 6 groups.
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occurs in both physiological and disease states. Under
normal conditions, apoptosis and cell proliferation are
complementary and necessary for cell maintenance, growth,
and degradation./e regulation of apoptosis is critical in LR
process [15, 16]. Damage to LR in response to aging is
accomplished by reducing cell cycle activity and by in-
creasing the levels of autophagy and apoptosis [17]. MMP-9
plays an important role in liver regeneration after partial
hepatectomy; it is possible that this protein regulates changes
in pathways related to proliferation and apoptosis [18].

/e top biological processes (BPs) arising from GO
enrichment and KEGG pathway analyses in the turquoise
module are shown in Figure 7(b), including lipid meta-
bolism, sterol biosynthetic processes, steroid metabolic
processes and insulin resistance, and the adipocytokine
signaling pathway. /e top 10 BPs arising from GO en-
richment and KEGG pathway analysis in the green module
are shown in Figure 7(c). Among them, the fatty acid
metabolic process, pentose and glucuronate interconver-
sions, and steroid hormone biosynthesis involved in mouse
LR following 85% hepatectomy in 24 h. According to our
analyses, the functions and signal pathways in the meta-
bolism of sugar and fat played crucial roles in test 5 and test

6. /e regenerated liver quickly acquires the ability to
mobilize triglycerides as the larger normal liver to process
free fatty acids [19]. Fatty tissue lipids are liver neutral lipids
formed during LR and represent the source of fatty acids
contained in phospholipids [20]. Prior to the peak period of
proliferation, the regenerating liver undergoes a charac-
teristic period of transient lipid accumulation in hepato-
cytes. Our current results showed that 24 h after 85%
hepatectomy, the storage of lean and adipose tissues both
decreased dramatically, while only little was changed for
these factors in the control mice. At 24 h after surgery, the
quality of lean tissue had decreased by 10% and the mass of
fat had decreased by 20%. /ese catabolic changes were
previously reported to occur after the onset of hypoglycemia,
approximately three hours after partial hepatectomy [21].
Transient regeneration-associated steatosis (TRAS) was re-
ported as an indispensable aspect of successful LR, in which
fat acted as the main fuel for regeneration during the periods
of low liver function. /e increase in lipid catabolism during
LR is a promising option for clinical management [22]. /e
ability of mice to undergo complete LR after partial hepa-
tectomy is known to depend on the ability of liver cells to
acquire glucose [23].
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Figure 6: Dot scattering plots of highly correlated modules at different time points in the 85% partial resection mice. (a) /e blue module
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3.4. Hub Gene Identification through WGCNA and PPI.
Cytoscape software established a coexpression network to
show the common genes among the modules (Figure 8).
We analyzed the blue, turquoise, and green modules to get
the top ten genes for each module according to the cen-
trality degree value. 360, 746, and 110 hub genes in the
coexpression network were obtained for the blue, tur-
quoise, and green modules, respectively, as shown in
Figure 9. A total of 29 genes, including Arfgap2, Golga1,
Tceb3, Pdia5, Wdr59, Rab8a, Mapkap1, Nrd1, Fam175b,
Mapkapk2, Kat8, Rt-p3, Mtif2, Fkbp15, OGT, Als2, H3f3b,
Ublcp1, Cnot1, Eif6, Bbox1, Setd3, Mybbp1a, Pde3b,
Eif2b3, Psd3, Acbd5, Deptor and Pm20d1, were highlighted
by both WGCNA and PPI network analyses. /en, the
overlapping regions among the three modules by using BP
functional enrichment and KEGG pathways were used to
pick up specific target genes of interest. In the blue module,

we found that Fam175b gene showed BP enrichment and
acted as a negative regulator of apoptosis. At 6 h, Fam175b
was analyzed with a most expression reduction. In the
turquoise module, BP GO enrichment and KEGG pathway
enrichment assays provided OGT as a hub gene. It showed
an utmost expression decrease at 12 h./emain function of
OGT is to regulate the insulin receptor signal transduction
pathway, gluconeogenesis in cell glucose homeostasis, re-
sponse to insulin, and protein O-linked glycosylation. In
the green module, the hub gene was selected as Pde3b with
the largest decrease degree in expression at 24 h. Pde3b
plays key roles in angiogenesis, glucose homeostasis, cel-
lular response to insulin stimulus, insulin secretion, cell
adhesion, CAMP catabolic process, lipid catabolic process,
endocrine pancreas development, and signal transduction.
We focused particularly on its negative regulation of lipid
catabolic processes.
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4. Discussion

Globally, liver cancer ranks as one of most common causes
of death. 85,000 new cases of liver cancer increase yearly
worldwide. Surgical operations for the treatment of liver
diseases including liver cancers often require major hepa-
tectomy. Liver insufficiency, together with especially the
liver failure after the hepatectomy surgery, is a major
challenge for liver surgeons. One of the most significant
issues is that we do not know how the liver regenerates
following liver resection, particularly regarding the specific
action mechanisms. Mouse models of liver regeneration
(LR) have been extensively reported and most of the studies
predominantly focused on LR and related gene alterations
[24–26], while the mouse models did not fully consider or
mimic clinical issue of liver damage and dysfunction in-
duced by ischemia-reperfusion used in liver surgical oper-
ation. /e appropriate mouse model with different
expressive genes in their livers collectable through surviving
extensive hepatectomy with ischemia-reperfusion will be of
critical importance in LR for treating various liver diseases.

In current study, we designed an ischemia-reperfusion
hepatectomy mouse model of 85% hepatectomy with the
survival rate of ∼20%. Using Affymetrix gene-chip assays, we
identified over 5000 DEGs among the seven different ex-
periment groups. Encouragingly, the combinational analyses
using WGCNA, KEGG, and GO platforms pinpointed out
three gene expression modules: the blue module for apo-
ptotic process, the turquoise module for lipid metabolism
and the green module for fatty acid metabolic process in
mouse liver following 85% extensive hepatectomy at the time
intervals of 6, 12 and 24 h, respectively.

Apoptosis plays a central role in regulating liver de-
velopment and homeostasis. It can reflect the severity of liver
injury. /e degree of liver cell apoptosis is an important
parameter of liver quality [27]. Apoptosis is an early,
chronic, and temperate response that occurs following the
initiation of injury./e interference on the apoptosis of liver
cells can delay disease progression and reduce liver dys-
function. However, there is currently no such treatment
available in clinical practice. To treat premature cell death, it
may be possible to consider the key components that inhibit
apoptosis, such as caspase [28]. FAM175 family was reported
to negatively regulate the apoptotic process. /e activation
of FAM175 in the early stages after hepatectomy could
inhibit cell apoptosis and reduce liver damage, thereby in-
creasing LR and improving survival rate. FAM175B, also
known as ABRO1/KIAA0157, is a member of the FAM175
family and was originally reported as a component of the
BRCC36-containing isopeptidase complex (BRISC) deubi-
quitinating enzyme complex. In this complex, FAM175B
acts as a scaffold protein for BRISC to recruit proteins and
promote its deubiquitination activity. FAM175B acts as a
tumor suppressor in esophageal squamous cell carcinomas
(ESCC). /e action of this protein is mediated by inhibiting
the ubiquitin-dependent degradation of ATF4 and pro-
moting apoptosis [29]. FAM175B regulates the stability of
p53 protein and increases the latter’s transcriptional activity
in apoptosis. It cooperates with p53 in the mediation of

apoptosis [30]. Under normal conditions, the basal level of
apoptosis in cells transfected with GFP-vector was 12.5%
versus 4% in cells transfected with GFP-FAM175. When the
cells were treated with H2O2, 71% of the cells transfected
with GFP-vector were apoptotic compared with 44% of the
cells transfected with GFP-FAM175. Consequently and
interestingly, the overexpression of FAM175B protects cells
from apoptosis induced by oxidative stress [31, 32]. Herein,
current work shows that FAM175B, acting as a critical hub
gene, is involved in mouse LR with extensive hepatectomy
through acting on apoptosis process. Its downregulation
after hepatectomy potentially improves the growth of liver
cells via inhibiting their apoptosis in LR. It is of importance
in the fields of liver injury treatment, liver partial resection,
and liver transplantation.

LR requires the initial synthesis of large amounts of
lipids [33]. Some experiments have reported the down-
regulation of lipid-related genomic pathways during the
early stages of LR [34]. Our work showed that the turquoise
module for lipid metabolism was emphasized in mouse liver
following 85% extensive hepatectomy at 12 h with OCT as a
core hub gene. OGT was first isolated in 1992 from rat liver
[35] and is best known for its role in glycosylating nuclear
and cytoplasmic proteins. OGT is necessary for cell viability
[36–39]. In the liver and skeletal muscle of OGTMKOmice,
the levels of TAG increased by a factor of 2–3 fold in the
mice’s fatty livers with heavier liver weight, lighter liver
color, and steatosis [40]. Interestingly, compared with
control mice, the plasma TAG and cholesterol levels were
increased in mice that overexpressed OGT. It was reported
that OGT suppressed Insig-1, a negative regulator of lipid
synthesis, and induced insulin resistance and dyslipidemia
via PIP-dependent insulin signal disturbances [41]. Our
work shows OGT is downregulated in the liver of mice after
85% hepatectomy. It is clear that acting as a core hub gene,
OGT is involved in mouse LR through mediating lipid
metabolism process. It provides a new clue to the study on
liver injury, partial resection, and transplantation.

Current work revealed the involvement of fatty acid
metabolic process (the green gene module) in mouse LR
after 85% extensive hepatectomy for 24 h. Cyclic nucleotide
phosphodiesterase (PDE) is an important regulator of the
signal transduction process mediated by cAMP and CGMP.
PDEs belong to a complex and diverse superfamily con-
taining at least 11 structurally related, highly regulated, and
functional different genes (PDE1–PDE11) [42]. PDE3 is
encoded by two genes (PDE3A and PDE3B). It plays an
important role in the energy metabolism of different types of
cells including hepatocytes, brown and white adipocytes,
and pancreatic β cells [43, 44]. PDE3B plays important roles
in triglyceride and cholesterol biosynthesis in the liver fat
cells and liver fat formation [45–47]. In obese insulin re-
sistant db/db mouse, PDE3B was increased in mouse liver
but decreased in adipose tissue [45]. In PDE3B-KOmice, the
triglyceride (TG) level was significantly higher in mice livers
with increased expression of fatty acid synthase (FAS) [46].
Herein, our work establishes the association of PDE3B with
LR through fatty acid metabolic process. It is important in
the research and treatment of liver diseases.
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5. Conclusions

In this study, we used the ischemia-reperfusion 85% hep-
atectomy mouse model to screen the differentially expressed
genes (DEGs) in livers and used the bioinformatic assess-
ment to address molecular events in liver regeneration (LR)
after extensive hepatectomy. /ree key gene expression
modules were used: the blue module for apoptotic process,
the turquoise module for lipid metabolism, and the green
module for fatty acid metabolic process in mouse LR fol-
lowing an extensive 85% hepatectomy for 6, 12, and 24 h,
respectively. WGCNA analysis and protein-protein inter-
action (PPI) network construction highlighted that
FAM175B, OGT, and PDE3B were the potential core hub
genes separately for the blue, turquoise, and green modules.
/is work provides new clues to the future fundamental
study and treatment strategy for liver injury, partial resec-
tion, and transplantation.
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