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Abstract
Platinum resistance is one of the major concerns in ovarian cancer treatment. Recent 
evidence shows the critical role of epithelial–mesenchymal transition (EMT) in this 
resistance. Epithelial-like ovarian cancer cells show decreased sensitivity to cisplatin 
after cisplatin treatment. Our study prospected the association between epithelial 
phenotype and response to cisplatin in ovarian cancer. Microarray dataset GSE47856 
was acquired from the GEO database. After identifying differentially expressed genes 
(DEGs) between epithelial-like and mesenchymal-like cells, the module identifica-
tion analysis was performed using weighted gene co-expression network analysis 
(WGCNA). The gene ontology (GO) and pathway analyses of the most considerable 
modules were performed. The protein–protein interaction network was also con-
structed. The hub genes were specified using Cytoscape plugins MCODE and cyto-
Hubba, followed by the survival analysis and data validation. Finally, the co-expression 
of miRNA-lncRNA-TF with the hub genes was reconstructed. The co-expression net-
work analysis suggests 20 modules relating to the Epithelial phenotype. The antique-
white4, brown and darkmagenta modules are the most significant non-preserved 
modules in the Epithelial phenotype and contain the most differentially expressed 
genes. GO, and KEGG pathway enrichment analyses on these modules divulge that 
these genes were primarily enriched in the focal adhesion, DNA replication pathways 
and stress response processes. ROC curve and overall survival rate analysis show 
that the co-expression pattern of the brown module's hub genes could be a potential 
prognostic biomarker for ovarian cancer cisplatin resistance.

K E Y W O R D S
cisplatin resistance, co-expression network, epithelial-mesenchymal transition, ovarian cancer, 
prognostic markers

1  |  INTRODUC TION

Ovarian cancer is one of the deadliest gynaecological malignan-
cies with a low survival rate (Near 15% 5-year survival for stage 
IV).1 Ovarian cancers are classified as non-epithelial and epithelial 

ovarian cancers (EOC). EOC is associated with ovarian cancer-related 
deaths.2 About 25% of patients with ovarian cancer are resistant to 
platinum-based therapy.3 Furthermore, about 80% of patients suffer 
from recurrence of ovarian cancer, and these tumours are typically 
platinum-resistant, which leads to chemotherapy failure.3,4 So, it 
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is crucial to overcome this resistance in ovarian cancer cells. Cis-
diamminedichloroplatinum (cisplatin) is a platinum-based chemo-
therapy drug that treats various cancers like bladder, ovarian, lung, 
breast and brain cancers.5,6 Cisplatin forms DNA adducts involved 
in activating DNA damage recognition, DNA repair and apoptosis 
signalling pathways.7 Two mechanisms have been suggested for 
platinum resistance in cancer cells. In the first mechanism, cispla-
tin uptake decreases while its detoxification increases. The second 
mechanism is the activation of anti-apoptotic pathways like NF-κB 
and MAPK pathways after treatment.8–11

Recent evidence shows the association of EMT with cellular re-
sistance to cisplatin. During the EMT process, epithelial cells lose 
the polarized epithelial structure and transform into moving mes-
enchymal cells, increasing their invasiveness. It has been shown that 
EMT is associated with drug resistance and apoptosis scape in a 
variety of cancer types.12–15 Many observations indicate a link be-
tween drug resistance and EMT in various cancers like colorectal,16 
breast17,18 and ovarian.19–25 Furthermore, Miow et al.7 discovered 
that epithelial-like ovarian cancer cell lines exhibit resistance to cis-
platin treatment, along with NF-κB activation and apoptotic impair-
ment. Identification of molecular mechanisms which are involved in 
this process would be helpful.

Today, co-expression network analysis is used for underly-
ing the regulatory mechanisms relating to the specific biological 
processes. The WGCNA is a powerful method for analysing gene 
expression data, discovering modules of highly related genes 
and connecting each module to sample traits.26,27 This tool 
constructs a co-expression network based on the expression 
profile similarities in samples.28 WGCNA hierarchical cluster-
ing methods use holistic gene expression information to dis-
cover gene network signatures in a phenotype, which helps us to 
reduce bias.29

In this study, we applied WGCNA to the expression profile of 
cisplatin-treated ovarian cancer cell lines to identify critical modules 
in treated cell lines with epithelial status compared to mesenchymal 
cell lines. These modules were closely associated with cisplatin re-
sistance in ovarian cancer cell lines. The analysis of co-expression 
networks may decipher new insights into molecular mechanisms and 
signalling pathways of drug resistance in ovarian cancer to improve 
its prognosis and treatment.

2  |  MATERIAL S AND METHODS

2.1  |  Acquisition of microarray datasets

The flow chart of our study is shown in Figure 1. Raw CEL files of 
Microarray dataset GSE47856 from the NCBI Gene Expression 
Omnibus (GEO) database were collected.7 The dataset platform was 
GPL6244 Affymetrix Human Gene 1.0 ST Array [HuGene-1_0-st], in-
cluding 46 different human ovarian carcinoma cell lines divided into 
two groups based on Cisplatin treatment. The 16 Cisplatin-treated 

cell lines with three biological replicates were selected for further 
analysis.

2.2  |  Microarray data preprocessing and DEGs 
identification

A total of 48 samples in CEL format were simultaneously pre-
processed using Robust Multi-chip Analysis (RMA) function for back-
ground adjustment, quantile normalization and summarization.30,31 To 
come by the highest possible level of data quality and to eliminate 
mistargeted and nonspecific probes on the microarrays, the Principal 
Component Analysis (PCA) was used to identify and remove outlier 
samples from the dataset.32 The multiple probes measure the expres-
sion of a given gene, and it is necessary to collapse the multiple probe 
sets to the same gene by applying the collapseRows function, which 
was reported as an effective method previously (MaxMean was used 
for collapsing rows).33 Finally, 20,849 genes were used as input in the 
DEGs and co-expression network analyses. The limma package was 
used for DEGs analysis through linear modelling and empirical Bayes 
methods.34 The criteria considered for DEG extraction were as |log2 
fold change| ≥ 0.58 and adjusted p-value <0.05.

2.3  |  Construction of a signed-hybrid weighted 
gene co-expression network

To construct the co-expression networks, we used the WGCNA 
package. A signed-hybrid weighted gene co-expression network was 
built based on Mesenchymal and Epithelial gene expression. The 
pickSoftThreshold function of the WGCNA package was used to set 
soft threshold power β as a tradeoff between scale-free topology 
and mean connectivity for Mesenchymal and Epithelial.

2.4  |  Module detection

2.4.1  |  Generating adjacency and TOM 
similarity matrices

Based on the selected soft-power, calculation of the adjacency ma-
trix into a topological overlap matrix (TOM) was accomplished to 
minimize the effects of noise and spurious associations. Based on 
the TOM dissimilarity, hierarchical clustering was exerted to classify 
highly co-expressed genes as dense interconnected branches of the 
tree (dendrogram) into the same modules and extracted through the 
dynamic hybrid tree-cutting algorithm. Modules with high eigengene 
correlation were merged using the mergeCloseModules function 
(cutHeight = 0.3, corresponding to correlation of 0.7).35 Application 
of eigengenes in WGCNA would be in modules summarization and 
measuring module memberships (kME) to earn suitable target genes. 
These genes are recognized as connectivity based on eigengenes, 



4532  |    NAGHSH-NILCHI et al.

which are calculated by the moduleEigengenes function. Eigengenes 
would be conducted as the first principal component of each module 
leading to the weighted average of the module's co-expression pro-
files by summarizing and comparing them.36,37

2.4.2  |  Module preservation analysis

To assess critical modules in the Epithelial network compared 
to the Mesenchymal network, the modulePreservation analysis 

of the WGCNA package was used based on Zsummary and me-
dianRank benchmark. While the value of Zsummary depends 
on module size with a positive correlation, the medianRank 
was employed to compare the preservation details of mod-
ules in different sizes. In other words, a given module with a 
lower value of Zsummary and higher medianRank manifests 
the module which is non-preserved between the Epithelial and 
Mesenchymal statuses. Our study determined preserved mod-
ules with higher density and connectivity by Zsummary >5 and 
MedianRank ≤8.35

F I G U R E  1  Schematic workflow of overall in silico steps
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2.4.3  |  Gene ontology and pathway enrichment 
analysis of the candidate module

Significant up- and down-regulated genes in the four non-preserved 
modules were identified by the VennDiagram package version 
1.6.20 in R, to candidate module with the most fluctuated gene 
signature related to ovarian cancer cells with cisplatin resistance.38 
Afterwards, significantly implicated GO and KEGG pathways of the 
candidate module's genes were identified by the clusterProfiler39 
package in R (adjusted p-value <0.05).

2.5  |  Construction of protein–protein 
interaction Network

The protein–protein interaction (PPI) network of the non-preserved 
module was constructed using the STRING tool in Cytoscape ver-
sion 3.7.2.40 The potential interaction between genes at the protein 
level predicts protein interactions and the weight of each edge (line) 
in the PPI network. The criteria used for the network is a combined 
score greater than 0.4. The molecular complex detection (MCODE) 
analysis was used to identify the significant clusters of the candidate 
module PPI network with degree cut-off 2, max depth 100, k-core 2 
and node score cut-off 0.2.41 MCODE's highest-ranked cluster was 
screened by the cytoHubba Cytoscape plugin, using Maximal Clique 
Centrality (MCC) parameter to detect hub genes.42

2.6  |  Reconstruction of miRNA-lncRNA-TF-hub 
gene co-expression network

The significantly differentially expressed miRNAs, lncRNAs and 
transcription factors (TF), which have co-expression correlation with 
hub genes, were identified. The co-expression network was visual-
ized using Cytoscape version 3.7.2.

2.7  |  Hub gene screening and validation

Among the candidate hub genes, the Kaplan–Meier survival curve 
and the receiver operating characteristic (ROC) curve were used to 
predict the potential ability of each gene to be independent pre-
dictors using the KM-plotter43 and easyROC (version 1.3.1)44 as 
interactive web tools. The platin-based treatment survival curves 
for ovarian cancer patients were plotted using data from GEO, EGA 
and TCGA databases to confirm the genes contributing to survival. 
Single-gene survival analysis was executed on hub genes in non-
preserved modules as the significant prognostic module. Finally, 
univariate and multivariate Cox regression analyses were performed 
on processed RNA-seq transcription profiling data (GSE149146) pro-
vided by Gallon et al.45 from the GEO database to assess whether 
these hub genes could be independent prognostic biomarkers of 
ovarian cancer chemotherapeutic resistance.

3  |  RESULTS

3.1  |  Uncovering of modules related to cisplatin 
resistance in ovarian cell lines

We obtained a normalized expression profile data matrix of the 
GSE47856 GEO dataset containing 36 Ovarian Cell line samples 
(12 cell types with triple biological replication treated with cispl-
atin) and 20,849 expressed genes. Three thousand two hundred 
and one DEGs were identified based on the screening criteria as 
|log2FC| ≥ 0.58 and adjusted p-value <0.05, including 1677 up-
regulated and 1524 down-regulated genes. The volcano plot and 
heatmap of differentially expressed genes were illustrated in R by 
ggplot2 package version 3.3.546 (Figure 2).

An optimal soft-thresholding power is primarily required to con-
struct a weighted co-expression network in which co-expression 
similarity was fetched up adjacency calculation. Thus, we utilized 
network topology analysis for various soft thresholding powers to 
have the network's relatively balanced scale-free and mean con-
nectivity by WGCNA package (Figure  S1A,B). We used WGCNA-
recommended power based on the number of samples (power 9). 
This power was chosen to produce expressed genes’ hierarchical 
clustering trees based on TOM dissimilarity. Subsequently, the 
WGCNA gene clustering was performed to divide genes into various 
modules with similar expression and phenotypes tendency associ-
ation. Two different hierarchical clustering trees for Mesenchymal 
and Epithelial cell lines were generated. Afterwards, modules with 
eigengene correlation above 0.7 were merged (Figure S1C,D), which 
resulted in 20 modules in both Mesenchymal and Epithelial. Every 
similarly expressed gene, represented as tightly connected leaves 
on the dendrogram, displayed a gene module. The resulting gene 
dendrogram with respective module colours is shown in Figure 3A 
as Epithelial and Figure 3B as Mesenchymal clustering dendrogram. 
The number of genes per module has been displayed in Table  S1. 
Mesenchymal and Epithelial status were used as independent vari-
ables to calculate the module's tendency to ovarian cisplatin resis-
tance initiation and progression.

3.2  |  Four non-preserved modules are 
identified in epithelial cell lines through network 
preservation analysis

We used the Epithelial data set as the reference and the 
Mesenchymal data set as the test for network preservation analy-
sis. Due to the high difference between Epithelial and Mesenchymal 
expression, we expected most modules to be non-preserved. In this 
sense, module preservation indicates which module is related explic-
itly to Epithelial status. Preservation analysis presented four non-
preserved modules, including antiquewhite4, brown, darkmagenta 
and darkturquoise modules with Zsummary <2.5 and medianRank 
>15 (Figures  3C and S2; Table  S2). The alteration of connectiv-
ity patterns in the non-preserved modules may be related to drug 
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resistance status and recurrence of ovarian cancer. We hypoth-
esized that non-preserved modules in Epithelial cell lines might high-
light dysregulated pathways in the drug resistance compared to the 
sensitive network. Figure  3C shows the preservation statistics of 
Epithelial modules in the Mesenchymal network.

3.3  |  Antiquewhite4, brown and darkmagenta 
modules covering the most number of DEGs 
among non-preserved modules

A total of 679 and 463 genes showed significant up/down-regulation 
in non-preserved modules, respectively (Figure 4A). After discrete 
assessment of overlapped DEGs among four non-preserved mod-
ules (Figure S3), Epithelial and Mesenchymal markers discovered 
by Miow et al.7,47 were also captured to choose critical modules 
in cisplatin resistance status. Figure 4B–D represent the 326, 153 
and 180 up, 139, 101 and 155 down-regulated genes, and 30, 20 
and 10 Epithelial markers belonging to the brown, antiquewhite4 
and darkmagenta non-preserved modules, respectively.

3.4  |  Enrichment analysis in antiquewhite4, 
brown and darkmagenta non-preserved modules 
implies cancer progression

GO function and KEGG pathway enrichment analyses were per-
formed to assess the function of co-expressed genes in the 

antiquewhite4, brown and darkmagenta modules. As shown in 
Figure 5A, the brown module is enriched in epithelial cell migra-
tion, extracellular matrix organization, ameboidal-type cell migra-
tion, focal adhesion, cell−substrate junction, cell–cell junction and 
binding functions such as integrin, heparin, and glycosaminogly-
can binding, and KEGG pathway including focal adhesion and ECM 
receptor interaction pathways. The GO and KEGG enrichment 
analysis of the darkmagenta module containing DNA replication 
processes, catalytic activity acting on DNA and DNA replica-
tion pathway are illustrated in Figure 5B. Antiquewhite4 module 
is primarily enriched in stress response biological processes and 
proton and ions transporting ATPase activity function shown in 
Figure 5C.

3.5  |  Candidate modules PPI network construction 
illustrates key genes in cancer and drug resistance

The antiquewhite4, brown and darkmagenta module genes were 
used to construct the physical and functional associations of the 
proteins. The antiquewhite4, brown and darkmagenta module PPI 
networks comprise 1041, 1594 and 1579 nodes as proteins and 
3109, 7440 and 9331 edges as their interactions, extracted from 
the STRING tool in Cytoscape software. The top-scored interpreted 
clusters as closely interlinked regions of the PPI network ranked by 
Cytoscape plugin MCODE were chosen for further analysis (antique-
white = 11.818, brown = 20.435, darkmagenta = 39.143). The top 
MCODE cluster with detailed topological parameters is represented 

F I G U R E  2  The heatmap and volcano plots indicate 3201 DEGs including 1677 up-regulated and 1524 down-regulated genes. (A) 
Differentially expressed genes (DEGs) clustering heatmap, blue indicates Epithelial, and pink indicates Mesenchymal group. (B) In the DEGs' 
volcano plot, the x-axis represents log2 fold change, and the y-axis indicates −log10 adjusted p-value. Each dot represents one gene with 
detectable expression in both Mesenchymal and Epithelial groups. Green and red dots show significantly up and down-regulated genes 
based on the given criteria (|log2FC| ≥ 0.58 and adjusted p-value <0.05)
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in Table  S3. Antiquewhite4 top cluster consists of 12 nodes and 
65 edges (Figure 6A), brown1 consists of 24 nodes and 235 edges 
(Figure  6C), and finally, darkmagenta contains 50 nodes and 959 
edges (Figure 6E).

Chromosome 12 open reading frame 66 (C12orf66), ATPase H+ 
Transporting V0 Subunit B (ATP6V0B) and solute carrier family 38, 
member 9 (SLC38A9) in antiquewhite4 module, Interferon Induced 
With Helicase C Domain 1 (IFIH1), Interferon-Induced Protein With 
Tetratricopeptide Repeats 2 (IFIT2), Interferon-Induced Protein 
With Tetratricopeptide Repeats 3 (IFIT3), 2′-5’-Oligoadenylate 
Synthetase 1 (OAS1), 2′-5’-Oligoadenylate Synthetase 2 (OAS2), 
XIAP Associated Factor 1 (XAF1) and Radical S-Adenosyl Methionine 
Domain Containing 2 (RSAD2) in the brown module, and GINS 
Complex Subunit 2 (GINS2), Aurora Kinase B (AURKB), and Cell 
Division Cycle 45 (CDC45) in darkmagenta module, as hub genes of 
PPI, were identified by the cytoHubba.

3.6  |  miRNA-lncRNA-mRNA-TF co-
expression network

The miRNAs, lncRNAs and TFs co-expressed with hub genes in 
each module were filtered out based on (|log2FC| ≥ 0.58 and ad-
justed p-value <0.05). The antiquewhite4 module contains one 
miRNA, miR-30C2 and four functional TFs, including Homeobox 
B5 (HOXB5), Homeobox B7 (HOXB7), Zinc Finger Protein 93 
(ZNF93) and NFE2 Like BZIP TF3 (NFE2L3) (Figure  6B). The 
brown module contains two miRNAs, one functional TF and one 
lncRNA, including miR-200c, miR-622, Interferon Regulatory 
Factor 1 (IRF1) and HLA Complex P5 (HCP5), respectively 
(Figure  6D). The darkmagenta module contains four lncRNAs, 
including PAX8 Antisense RNA 1 (PAX8-AS1), LOC339803, 
Long Intergenic Non-Protein Coding RNA 965 (LINC00965) and 
Long Intergenic Non-Protein Coding RNA 885 (LINC00885) 

F I G U R E  3  Four non-preserved modules are identified in Epithelial cell lines through network preservation analysis based on the 
MedianRank and Zsummary criteria. Hierarchical clustering dendrograms of identified co-expressed genes in (A) Epithelial and (B) 
Mesenchymal modules based on a dissimilarity measure (1-TOM). Each horizontal-coloured bar represents highly interconnected genes that 
correspond to each module. (C) The module preservation analysis of epithelial network as reference and Mesenchymal as test data; each 
point represents a module, labelled by different colours. Four non-preserved modules were considered (indicated by *). The dashed blue and 
red lines indicate Zsummary = 5 and MedianRank = 8 thresholds

1.
0

Gene clustering on TOM-based dissimilarity (Epi Status Samples)

0.
7

0.
8

0.
9

Dynamic Tree Cut

Merged dynamic

H
ei

gh
t

Merged dynamic

Dynamic Tree Cut

(A)

(B)

0.
6

0.
7

0.
8

0.
9

1.
0

Dynamic Tree Cut

Merged dynamic

Gene clustering on TOM-based dissimilarity (Mes Status Samples)

Merged dynamic

Dynamic Tree Cut

H
ei

gh
t

M
ed

ia
nR

an
k

Module_Size

Module_Name

Preservation_Type
non−preserved
Preserved

(C)

5

10

15

0 5 10 15

1000
2000
3000
4000

blue
darkviolet
royalblue
lightcoral
darkgrey
lavenderblush2
brown2
bisque4
darkorange2
darkorange
antiquewhite2
brown4
coral3
mediumorchid
brown
black
antiquewhite4
darkturquoise
darkmagenta

Zsummary

**

* *



4536  |    NAGHSH-NILCHI et al.

(Figure  6F). The relative expression of each module member is 
shown in Figure  7. To identify the regulation of each module 
through circular RNAs (circRNAs) literature review was used 
to discover circRNAs, including experimentally validated inter-
actions with miRNAs in candidate modules. Circ_VMA21 and 
circ_0057481 may regulate the brown module through miR-
200c and circ_GLG1, circ_TMX4, circ_MTUS1, circ_UBXN7, 
circ_0119872, circ_0000231 and circ_0000211 may regulate 
this module through miR-622.

3.7  |  The hub genes were validated using 
other datasets

Data validation was accomplished using the GSE149146 dataset, 
including three platinum-sensitive and three platinum-resistant 
cell lines. The PCA analysis was performed to distinguish and re-
move outlier samples from the dataset. Subsequently, ROC curve 
analysis was used to evaluate the diagnostic prediction values of 
the hub genes as candidate prognostic biomarkers of cisplatin 

F I G U R E  4  Genes in non-preserved modules show overlap with the significant up, and down-regulated gens (DEGs). (A) The significant 
463 up and 679 down-regulated genes were screened by the Venn diagram for non-preserved modules. Overlapped Up and down-regulated 
genes in (B) Brown, (C) Antiquewhite4 and (D) Darkmagenta modules with DEGs and Mesenchymal and Epithelial markers. (Up-regulated, 
down-regulated genes shown in green and red; Mesenchymal, Epithelial markers shown in yellow and blue, respectively)
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resistance (Figure 8A). Our results show that AUC for OAS1 was 
0.9519 (p < 0.05). At the optimal cut-off value of 3.85, both sensi-
tivity and specificity were 100%. Similar results were obtained for 
SLC38A9, OAS2, IFIT2, IFIT3, IFIH1, RSAD2 and XAF1 (Figure 8A; 
Table  1). These results demonstrate that these hub genes pos-
sessed a high ability to discriminate between cisplatin resistance 
and sensitivity. To analyse the expression signature of candidate 
hub genes as prognostic biomarkers in response to platinum 

treatment, publicly available data and tools from GEO, EGA and 
TCGA databases were utilized. As shown in Figure 8B, the Kaplan–
Meier survival analysis results show the high expression levels of 
IFIH1, IFIT2, IFIT3, OAS2, RSAD2 SLC38A9 and XAF1 are the risk 
factors affecting the prognosis of ovarian platinum-based treated 
patients (p < 0.05). However, the patients with lower ATP6V0B, 
AURKB, C12orf66 and GINS2 genes expression levels showed 
lower overall survival rates. In contrast, the expression of the 

F I G U R E  5  GO functional enrichment analyses of genes in the candidate modules suggest specific roles in epithelial cell migration, 
extracellular matrix organization, cell–cell junction, DNA replication processes and stress response. GO term and KEGG pathway enrichment 
analysis results for (A) Brown, (B) Darkmagenta and (C) Antiquewhite4 modules. The bar plot depicts the biological process (BP), molecular 
function (MF) and respective cellular component (CC) of the GO terms (up). The bubble plot illustrates the most significant and top KEGG 
pathways (down). The y-axis shows the GO and KEGG pathway terms and the number of genes on the x-axis. The region of bars and bubbles 
is significantly proportional to the number of genes in a given GO term or KEGG pathway. The adjusted p-value of each term is coloured 
according to the legend
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F I G U R E  6  Comprehensive analysis of the candidate modules protein–protein interaction (PPI) network explicit hub genes in cisplatin 
resistance. The significant modules were identified from the PPI network using the MCODE method. Nodes stand for proteins, and each 
edge for the interaction between them. The importance of nodes in the network is displayed in two different colours. Red shows top-ranked 
proteins by cytoHubba, and blue represents nodes interacting with hub genes. (A) CytoHubba and (B) co-expression network of miRNA-TF 
with hub mRNAs of Antiquewhite4 module. (C) CytoHubba and (D) co-expression network of miRNA-lncRNA-TF with hub genes of Brown 
module. (E) CytoHubba and (F) co-expression network of lncRNA with Darkmagenta module's hubs. Grey rectangle, green oval, yellow 
diamond, blue hexagon and pink octagonal nodes stand for miRNAs, lncRNA, TF, circRNA and mRNAs. The transparency of each edge shows 
the weight of the co-expression between each node. Dash line edges show the regulatory interaction between circRNAs and miRNAs
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F I G U R E  7  The relative expression of each module member between epithelial and mesenchymal groups. Expression boxplot of hub 
genes and their co-expressed miRNA-lncRNA-TF with hub genes among epithelial and mesenchymal ovarian cancer cell lines. Indicated p-
value as less than 0.05, 0.01 and 0.001 illustrated with one, two and three stars, respectively
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CDC45 gene did not significantly affect the patient's prognosis 
(Figure 8B).

4  |  DISCUSSION

Platinum resistance hinders the development of effective ovarian 
cancer therapeutics. Many studies show the importance of EMT in 
disease processes such as tumour progression. Emerging evidence 
indicates a role for EMT in the drug resistance development in can-
cer cells, like resistance to paclitaxel in breast cancer cell lines with 
the transitioned phenotype.12,13,15,17 In vitro treatment of breast, 
colorectal and ovarian cancer cells with chemotherapeutic agents 
like cisplatin, oxaliplatin, doxorubicin and paclitaxel results in drug 
resistance. It has been shown that this drug resistance is associated 
with developing a transitioned phenotype.16,18,22 Cisplatin-treated 
cancer cell lines acquired cisplatin resistance accompanied by NF-κB 
activation and impairment of apoptosis.7 However, there is a lack of 
precise therapeutic and prognostic biomarkers related to EMT phe-
notype and drug resistance in ovarian cancer. Therefore, it is essen-
tial to prospect genes associated with drug resistance in this cancer.

Using bioinformatics analysis, our research identifies critical 
genes that correlate strongly with EMT phenotype and chemothera-
peutic resistance in this cancer. The most widely used co-expression 
network method, WGCNA, has been used in various applications, 
like cancer genetic analysis. WGCNA is notably useful for identifying 
the gene co-expression modules that correlate with tumour clinical 
traits and biological behaviour. WGCNA has many advantages over 
other differential expression analysis methods since its focus is on 
co-expression patterns, which helps discover functional modules 
containing related genes. Hub genes in the non-preserved modules 
related to particular traits may be used as prognosis or diagnosis bio-
markers or therapeutic targets.

In this study, 3201 DEGs comprising 1524 up-regulated and 1677 
down-regulated genes with |log2FC| ≥ 0.58 and adjusted p-value 
<0.05 were discerned from the dataset. We employed WGCNA to 
investigate gene co-expression alternation between ovarian cancer 
cell lines with an epithelial phenotype and those with a mesenchymal 
phenotype. Using module preservation analysis, we found that four 
modules (Brown, Antiquewhite4, Darkmagenta and Darkturquoise) 
were significantly related to the epithelial phenotype, which indi-
cated the implication of these modules in the progress of cisplatin 
resistance in ovarian cancer cell lines. Then, Venn diagrams were 
represented to show the overlap between the DEGs and genes in 
non-preserved modules. The brown, antiquewhite4 and darkma-
genta modules have the most overlap with up and down-regulated 
genes.

Further GO functional enrichment analysis showed that the 
brown module was primarily enriched in the extracellular matrix 
and external encapsulating structure organization, cell morphogen-
esis, amoeboidal-type and epithelial cell migration processes, and 
focal-adhesion and ECM receptor interaction pathways. The ECM 
receptor interactions were shown to induce cell adhesion-mediated 

drug resistance (CAM-DR) in EOC.48 Januchowski et al.49 reported 
that the extracellular matrix (ECM) could affect drug resistance pro-
gression in ovarian cancer by prohibiting the drug penetration into 
cancer cells and developing resistance to apoptosis. The enrichment 
analysis of the antiquewhite4 module genes suggests the role of cel-
lular stress response and detoxifying processes and proton and ions 
transporting ATPase activity functions in the progression of drug re-
sistance in epithelial ovarian cancer. A common feature among drug-
resistant cells is the upregulation of the ABC transporters, active in 
multi-drug resistance pathways. It efficiently removes hydrophobic 
molecules, like taxol and doxorubicin, from the cell.50 Besides, GO 
and KEGG analysis of the darkmagenta module explicit the enrich-
ment of the DNA replication processes in this module. Platinum-
based drugs induce a state of replication stress and severely block 
the progression of DNA polymerases. It selectively promotes the 
elimination of cancer cells proliferation.51 Specifically, a majority of 
ovarian cancer cell lines exhibit strong defects in nucleotide exci-
sion repair (NER) during the S phase relative to G0–G1 and G2–M 
after platinum-based treatment.52 Hence, the generation of ssDNA 
at RNA polymerase stalling sites at platin-damaged DNA sites might 
promote replication stress via collisions between the blocked tran-
scriptional machinery and DNA polymerases.53 Although the precise 
mechanisms remain incompletely known for removing DNA lesions 
or inhibiting their formation, modulation of the cellular response to 
replication stress, like pathways that stabilize or resolve stalled rep-
lication forks, is a key determinant of cisplatin resistance in cancer.54

Next, the STRING database was used to construct the PPI net-
work of genes belonging to the candidate modules. CytoHubba was 
used to identify the hub genes of the top-scored MCODE cluster 
in each module based on the MCC score. The brown module con-
tains the top seven hub genes, including RSAD2, OAS1, OAS2, IFIT2, 
IFIT3, IFIH1 and XAF1. The expression levels of these hub genes 
were evaluated in ovarian cancer cell lines with epithelial pheno-
type and mesenchymal phenotype. Survival analysis indicates the 
potential prognostic value of these hub genes in ovarian cancer. In 
this module, one TF (IRF1), one lncRNA (HCP5) and two miRNAs 
(miR-200C and miR-622) were significantly co-expressed with the 
identified hub genes. Literature review reveals that nine circRNAs 
may regulate this coexpression network through miRNA-200c and 
miR-622 including circ_VMA21, circ_0057481, circ_GLG1, circ_
TMX4, circ_MTUS1, circ_UBXN7, circ_0119872, circ_0000231 and 
circ_0000211.55–63

Studies show that RSAD2 is up-regulated and associated with 
worse relapse-free survival in breast cancer.64 Tang et al.65 reported 
that the overexpression of this immune-related gene is associated 
with tumour grade, stage and size in breast cancer. Albeit, some 
studies have shown the anti-tumour role of RSAD2 in lung and oral 
cancers.66,67 Our analysis indicates that RSAD2 is up-regulated in 
epithelial ovarian cell lines, and this overexpression is significantly 
associated with poor prognosis. It has been shown that OAS family 
members are involved in a variety of diseases, like autoimmune dis-
orders, infections and cancer, as the regulator of cell growth, differ-
entiation, gene regulation and apoptosis.68–71 Researchers indicate 
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F I G U R E  8  Hub genes were validated using ROC, Kaplan–Meier plot. (A) ROC plot of candidate genes to validate their discrimination 
ability by another dataset. (B) Kaplan–Meier curves to survival analysis of candidate genes regarding platinum-treated patients through 
TCGA and GEO. Roles of the up-regulated key genes in Epithelial cisplatin resistance associated with a lower overall survival rate imply 
cancer invasion after treatment
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that the activity of this family is related to cancer progression. For 
example, OAS1 activates cell migration.72 Moreover, a recent study 
revealed that high expression of OAS1 predicts poor survival in 
breast cancer patients.73 Multiple stimuli can induce IFITs, such as 
interferon (IFN)-dependent or IFN-independent signalling pathways. 
Based on stimulus, cell type and tissue type, IFITs can execute nu-
merous complex functions.74 Studies demonstrated a correlation 
between IFIT2 down-regulation and EMT induction, metastasis 
and multi-drug resistance in patients with oral squamous cell carci-
noma (OSCC). IFIT2 is significantly overexpressed in ovarian cancer 
stem cells, indicating its potential role in drug resistance in ovarian 
cancer.75 Nonetheless, elevated IFIT3 expression correlates with 
poor survival and increased resistance to various chemotherapeu-
tic drugs, including cisplatin in OSCC patients.74 IFIT proteins reg-
ulate multiple complex cellular processes based on cell and tissue 
types. Therefore, depending on the cell system, its functions could 
be altered.

The IFIH1 gene encodes the MDA5 (Melanoma Differentiation-
Associated protein 5) protein, which has a role in the antiviral re-
sponse by recognizing dsRNA.76 After dsRNA recognition, IFIH1 
activates a signalling cascade that induces the type I interferon 
and interferon-stimulated genes that initiate antiviral immune 
responses. Studies show down-regulation of the IFIH1 gene is 
associated with Docetaxel resistance in prostate cancers.77 On 
the other hand, the overexpression of IFIH1 is involved in ovar-
ian cancer drug resistance, indicating the role of IFIH1 is cancer-
dependent.78 The expression of XAF1, a pro-apoptotic protein, is 
frequently suppressed in human cancers. Studies show a positive 
feedback loop between XAF1 and p53 by direct binding to the 
N-terminal domain of p53, which supports the tumour suppres-
sor role of XAF1 in a p53-dependant manner.79–81 XAF1 expres-
sion is reduced in various cancers, including ovarian.82 Pieces of 
evidence show that overexpression of XAF1 increased the cis-
platin sensitivity of SKOV3 cell lines, which have a mesenchy-
mal phenotype.7,82,83 Nevertheless, some evidence shows the 

over-expression of XAF1 promotes Temozolomide resistance in 
GBM cell lines and is negatively correlated with long-term sur-
vival in glioblastoma patients.84 Over-expression of XAF1F, one of 
XAF1 transcript variants, in gastric cancer-derived circulating tu-
mour cells with EMT characteristics is shown to promote tumour 
invasion, lymph node metastasis and venous invasion.85 However, 
our study shows the overexpression of XAF1 is positively cor-
related to epithelial phenotype and cisplatin resistance in ovar-
ian cancer cell lines, indicating the phenotype-dependent role of 
XAF1 in ovarian cancer cisplatin resistance. Some studies show 
the association of IRF1 overexpression with increased overall sur-
vival of ovarian carcinoma patients.86 However, IRF1 silencing im-
proved Taxol sensitivity in ovarian cancer cells.87 Cisplatin is more 
effective in proliferating cells. Pavan et al.88 discovered that IRF1 
expression in ovarian cancer cell lines is elevated in response to 
cisplatin treatment, limiting the cell response to cisplatin through 
cell cycle arrest at G1 phase. It has been shown that lncRNA 
HCP5 plays a cancer-promoting role in several cancer types, such 
as pancreatic, colorectal, lung and thyroid cancers.89 It was first 
observed that HCP5 was significantly downregulated in ovarian 
cancer.90 However, the latest study by Wang et al.91 revealed that 
the upregulation of HCP5 in ovarian cancer tissues and cells in-
duced the EMT process via the HCP5/miR-525-5p/PRC1 axis and 
increased the proliferation, invasion and migration of these cells. 
Recent studies show HCP5 promotes proliferation and contributes 
to cisplatin resistance in gastric cancer cells.92,93 Overexpression 
of tumour miR-622 was also associated with a poor prognosis in 
ovarian cancer patients.94 Choi YE et al.95 reported that miR-622 
leads to platinum resistance in ovarian cancer cell lines. miR-200c 
is a member of the miR-200 family. This family has been associ-
ated with the cancer stem cells formation and regulation of the 
EMT process.96,97 Overexpression of miR-200c induces cisplatin 
resistance in the A2780 ovarian cancer cell line.98 However, other 
studies show the overexpression of miR-200c increases the cispla-
tin sensitivity of ovarian cancer cells.99 Our analysis indicates that 

TA B L E  1  The results of AUC analysis for candidate hub genes in candidate modules

Module Marker AUC p-Value LowerLimit UpperLimit Sensitivity Specificity

Brown RSAD2 0.9377362 1.19E-10 0.804535 1 1 0.83

OAS1 0.9518966 8.01E-04 0.6876886 1 1 1

OAS2 0.8580055 1.23E-02 0.5778157 1 0.667 1

IFIT2 0.9775556 2.24E-53 0.9166971 1 1 1

IFIT3 0.9444248 4.21E-12 0.8187296 1 1 0.833

IFIH1 0.9328008 1.29E-02 0.5916245 1 1 1

XAF1 0.8543789 1.88E-02 0.5587648 1 1 0.83

Antiquewhite4 ATP6V0B 0.3098784 2.05E-01 0.01566976 0.6040871 1 0

SLC38A9 0.9777828 4.34E-05 0.7487513 1 1 0.833

C12orf66 0.766804 5.79E-02 0.49102256 1 1 0.5

Darkmagenta AURKB 0.07941252 0.01046927 0 0.4014275 1 0

CDC45 0.6341437 0.3901268 0.3282086 0.9400789 1 0.5

GINS2 0.14384058 0.01511212 0 0.4311456 1 0
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the over-expression of miR-141 and miR-200c can cause cisplatin 
resistance through the EMT process. These findings suggest that 
more experimental proof on different ovarian cancer cell lines is 
needed to confirm the role of these miRNAs in ovarian cancer cis-
platin resistance.

The antiquewhite4 module contains three hub genes, includ-
ing ATP6V0B, SLC38A9 and C12orf66. These hub genes were not 
significantly dysregulated in epithelial compared to mesenchymal 
phenotype. In this module, four TFs (HOXB5, HOXB7, NFE2L3 and 
ZNF93) and one miRNA (miR-30C-2) were co-expressed with the 
identified hub genes. Vacuolar ATPase (V-ATPase), a multisubunit 
enzyme, has an integral V0 subunit that mediates the acidifica-
tion of eukaryotic intracellular organelles.100 A higher expression 
level of ATP6V0B has been reported in oesophageal squamous 
cell carcinoma (ESCC) and metastatic melanoma samples.101,102 
SLC38A9 promotes cancer cell proliferation and tumour growth 
by activating mTORC1, which is commonly activated in tumours 
and supports biosynthetic needs for the rapid proliferation of 
cancer cells.103 This gene was shown to be down-regulated in 
drug-resistant ovarian cancer cell lines.50 There are not enough val-
idated studies discovering the role of C12orf66 in cancer progres-
sion and drug resistance. The solid experimental proof is required 
to illustrate the precise role of this gene in cancer progression. 
Highly conserved members of the homeobox superfamily (HOX) 
encode a TF with a fundamental role in regulating various cellular 
mechanisms.104 The growing evidence mentions that they have a 
fundamental oncogenesis role in several tumour types, including 
colorectal, breast and ovarian cancer.104,105 HOXB5 and HOXB7 
are significantly up-regulated in serous epithelial ovarian can-
cers.106 Evidence shows the overexpression of HOXB7 promotes 
cell survival and induces chemo-radiotherapy resistance in oral 
cancer.107 NRF3 promotes tumour suppressor p53 degradation, 
which increases cancer cell proliferation.34 The overexpression of 
NFE2L3 promotes proliferation and metastasis in hepatocellular 
carcinoma and colon cancer.108,109 Evidence shows that ZNF93 
upregulation in cisplatin-resistant ovarian cancer cell lines is asso-
ciated with low survival, and its knockdown enhanced sensitivity 
to cisplatin.110 The miR-30c-2, a member of the miR-30 family, is 
generally recognized as a multifunctional regulator of cell prolifer-
ation, differentiation, metabolism and apoptosis, which is related 
to cancer metastasis and chemoresistance in-vivo. Jia et al.111 re-
ported that the overexpression of miR-30c-2 in the ovarian cell 
proliferation process could induce cell proliferation during ovar-
ian cancer progression. Our analysis indicates the upregulation of 
miR-30c-2 in epithelial ovarian cell lines may be related to cisplatin 
resistance status.

The darkmagenta module includes three hub genes, including 
AURKB, CDC45 and GINS2. Like antiquewhite4 hub genes, these 
genes show no differential expression between the Epithelial and 
Mesenchymal phenotypes. These hub genes are co-expressed 
with four lncRNAs (LOC339803, LINC00965, LINC00885 and 
PAX8-AS1). The overexpression of AURKB has been shown 
in various human cancers, including ovarian cancer.112 This 

overexpression is associated with worse overall survival in ovarian 
cancer.113 Studies show the association of AURKB overexpression 
with cisplatin resistance in gastric cancer cells, tamoxifen resis-
tance in breast cancer and cetuximab resistance in head and neck 
squamous cell carcinoma.114–116 CDC45, a proliferation-associated 
antigen, is up-regulated in human cancer cell lines promoting can-
cer cell division.117 Studies show that CDC45 overexpression is 
involved in colorectal, papillary thyroid and non-small cell lung 
cancer initiation and progression.118–120 A recent study shows that 
CDC45 knockdown impaired DNA damage and induced resistance 
to combination therapy in ovarian cancer cells.121 Evidence shows 
that GINS2 (GINS complex subunit 2) has a role in regulating cell 
cycle and apoptosis and is overexpressed in different malignant 
cancers, including pancreatic, lung and thyroid cancers.122–124 
GINS2 is overexpressed in human EOC, promotes cancer progres-
sion and impairs apoptosis.125 LOC339803, a newly discovered 
lncRNA, was shown to have a role in the progression of hepatocel-
lular carcinoma cells (HCC). The overexpression of LOC339803 in 
HCC is associated with HCC invasion and lower survival time.126 
Our results show that the overexpression of this lncRNA is also 
associated with a lower survival rate in ovarian cancer. LINC00965 
is a newly discovered lncRNA, and there is no data about it. Abba 
et al. reported the molecular effects of LINC00885 as a new on-
cogenic lncRNA associated with early breast cancer progression. 
Overexpression of this lncRNA is closely associated with a lower 
survival rate and poor prognosis in breast and cervical cancer 
patients.127,128 Lu et al.129 demonstrated that high expression of 
PAX8-AS1 is associated with poor relapse-free survival in thyroid 
cancer patients. However, a recent study reported the tumour 
suppressor role of PAX8-AS1.130 PAX8 has a role in transforming 
the ovarian cancer cell into mesenchymal phenotype.131 We hy-
pothesize that PAX8-AS1 may maintain epithelial characteristics 
in these cells by regulating PAX8.

In summary, we provide a Holistic biological interpretation of 
gene expression data derived from different ovarian cancer cell 
lines. WGCNA analysis identified 40 modules, 4 of which were 
significantly associated with an epithelial phenotype. We suggest 
that the brown module contains a potential prognostic biomarker 
of ovarian cancer progression and drug resistance based on the 
expression pattern, ROC curve and survival analysis. This mod-
ule includes 10 hub/key genes co-expressed with different TFs, 
miRNAs, and lncRNAs. Pathway analysis implicates that this co-
expression pattern may have a role in developing drug resistance 
in ovarian cancer. This study also provides several circRNAs for 
future in vitro and in vivo investigations of their molecular mecha-
nisms regulating cisplatin resistance in ovarian cancer. Our findings 
add to our understanding of the processes and genes that under-
pin ovarian drug resistance through the EMT process. However, 
solid experimental proof is required to confirm our predictions.
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