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BACKGROUND Leprosy is a chronic infectious disease caused by Mycobacterium leprae, and compromises the skin and peripheral 
nerves. This disease has been classified as multibacillary (MB) or paucibacillary (PB) depending on the host immune response. 
Genetic epidemiology studies in leprosy have shown the influence of human genetic components on the disease outcomes.

OBJECTIVES We conducted an association study for IL2RA and TGFB1 genes with clinical forms of leprosy based on two 
case-control samples. These genes encode important molecules for the immunosuppressive activity of Treg cells and present 
differential expressions according to the clinical forms of leprosy. Furthermore, IL2RA is a positional candidate gene because it 
is located near the 10p13 chromosome region, presenting a linkage peak for PB leprosy.

METHODS A total of 885 leprosy cases were included in the study; 406 cases from Rondonópolis County (start population), 
a hyperendemic region for leprosy in Brazil, and 479 cases from São Paulo state (replication population), which has lower 
epidemiological indexes for the disease. We tested 11 polymorphisms in the IL2RA gene and the missense variant rs1800470 in 
the TGFB1 gene.

FINDINGS The AA genotype of rs2386841 in IL2RA was associated with the PB form in the start population. The AA genotype 
of rs1800470 in TGFB1 was associated with the MB form in the start population, and this association was confirmed for the 
replication population.

MAIN CONCLUSIONS We demonstrated, for the first time, an association data with the PB form for a gene located on chromosome 
10. In addition, we reported the association of TGFB1 gene with the MB form. Our results place these genes as candidates for 
validation and replication studies in leprosy polarisation.
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Leprosy is a chronic infectious disease caused by 
Mycobacterium leprae, an intracellular pathogen with 
a predilection for skin macrophages and Schwann cells, 
causing skin lesions and compromising peripheral nerves. 
It represents a significant public health problem, where 
approximately 210,000 new cases are diagnosed annually. 
Brazil ranks second in the incidence of leprosy globally.(1)

The disease presents as a broad clinical spectrum 
between two poles, tuberculoid (TT) and lepromatous 
(LL), based on a predominance of the Th1 or Th2 im-
mune response, respectively. The TT pole represents the 
localised form of the disease with the highest bacillus 
containment, and the LL pole represents the disseminat-
ed form with the highest bacillary spread. In addition, 
there are three intermediate forms: borderline tubercu-
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loid (BT), borderline borderline (BB), and borderline 
lepromatous (BL). This classification, proposed by Rid-
ley and Jopling,(2) is widely used in research centres and 
covers clinical, immunological, microbiological, and 
histopathological aspects. However, for treatment pur-
poses, the World Health Organization (WHO) has classi-
fied leprosy into paucibacillary (PB) and multibacillary 
(MB) since 1982. The first WHO classification consid-
ered PB as TT and BT patients with a 1+ bacilloscopic 
index.(3) Subsequently, WHO classified the PB cases only 
as those with a negative smear.(4) Finally, in 1994, WHO 
classified PB and MB based on the number of lesions.(5)

Although several studies have demonstrated the par-
ticipation of host genetic components in leprosy per se 
development, few studies have investigated the mark-
ers associated with the clinical forms of the disease. 
The number of genes associated with leprosy subtypes 
or its polarisation (39 associations in 28 genes) is lower 
than to leprosy per se (82 associations in 50 genes).(6) In 
most cases, the association analyses of clinical forms are 
secondary to studies about leprosy per se and are often 
comparisons of clinical form groups to healthy controls. 
However, as discussed by Gaschignard and colleagues,(6) 
these designs inappropriately consider the PB and MB 
forms of leprosy as “distinct diseases”. Further, the 
mechanisms involved in the disease per se are not neces-
sarily involved in the determination of the clinical form.



Rodrigo Mendes de Camargo et al.2|7

(6) In addition, a two-stage model has been proposed to 
assess genetic susceptibility to leprosy, which includes a 
set of genes to determine the risk of leprosy per se and 
another set to determine the clinical form of leprosy.(7)

The following genes were determined to have repli-
cated and/or validated associations with clinical forms 
of leprosy: 1) TNF, associated with the MB form in In-
dian(8) and Thai populations,(9) 2) MRC1 and MBL2, asso-
ciated with the MB form in Brazil(10,11) and Nepal,(12) and 
to the PB form in China,(13,14) 3) TLR2, associated with 
the PB form in Ethiopia(15) and Malawi and 4) LRRK2 
associated with the PB form in China(16) and India.(17) 
Besides, several studies have produced replicated asso-
ciation data for clinical forms of leprosy in the Chinese 
population.(13,14,18,19,20,21,22,23) From linkage scans in two 
studies, one peak at chromosomal region 10p13 for PB 
leprosy was discovered.(24,25)

The IL2RA gene, which encodes the alpha subunit of 
the IL-2 receptor, is known as CD25. It is a functional 
and positional candidate gene for the clinical forms of 
leprosy as it is located at the chromosomal region 10p15, 
near the linkage peak for PB leprosy.(24,25) CD25 is also 
an important marker of regulatory T cells (Tregs), which 
regulate the induction and maintenance of immunosup-
pression in lepromatous leprosy.(26) High numbers of 
CD25+ cells are found in patients of the lepromatous 
pole and are associated with M. leprae proliferation.
(27,28) The nature of FOXP3 activity, whether inhibiting 
or activating, appears to differ when comparing leprosy 
poles.(29) In addition, in lepromatous patients, miR155, 
which is involved in higher proliferation and longevity 
of Tregs,(29) is seen to be overexpressed. Notably, Treg 
cells use this receptor to consume IL-2 at the site of the 
immune response, which hinders activation and prolif-
eration of effector T lymphocytes and prevents activa-
tion of macrophages.(30)

The TGF-β is a pleiotropic cytokine, and it is an im-
portant effector molecule for the immunoregulatory ac-
tivity of Tregs.(31) It plays an important role in diseases 
caused by intracellular microorganisms, such as Leish-
mania, Trypanosoma cruzi, Toxoplasma gondii, Lacazia 
loboi, and mycobacteria, as it suppresses macrophage 
activation.(32) In vitro and in situ studies confirm higher 
TGF-β production in lepromatous patients, which con-
tributes to the anti-inflammatory milieu and bacillary 
persistence observed at this pole.(32,33,34,35)

Applying the strategy proposed by Gaschignard and 
researchers,(6) we conducted an association study of IL-
2RA and TGFB1 candidate genes in the “leprosy polari-
sation” phenotype, as this is a needy focus of inquiry in 
genetic epidemiology of leprosy.

SUBJECTS AND METHODS

Subjects and study design - We applied a step-wise 
strategy based on two Brazilian cohorts. We investigated 
eleven markers at IL2RA gene and one marker at TGFB1 
gene in a start population. Then, the markers reaching 
Bonferroni-corrected p-value threshold significance 
were tested in the replication population.

Our start population was sampled from Rondonópo-
lis County, located at Mato Grosso state, a hyperendemic 

region for leprosy in Brazil. The replication population 
is from the state of São Paulo, where the epidemiological 
indices of leprosy are more controlled.(36)

To classify patients as PB and MB, we adopted the 
WHO classification criterion of 1982.(3) Taking into ac-
count the Ridley and Jopling(2) spectrum, TT and BT 
patients with ≤ 1+ bacilloscopic indices were classified 
as PB, while those with bacilloscopic indices ≥ 2+ were 
classified as MB.

Patients from Rondonópolis included 406 individu-
als, of which 90 were PB and 310 MB. Leprosy diag-
nosis was confirmed by clinical laboratory tests in the 
outpatient service of the local family health clinics. São 
Paulo state enrolled 479 patients diagnosed at the Lauro 
de Souza Lima Institute (Bauru SP), of which 99 were 
PB and 380 were MB.

As a control for ethnicity in the association study, we 
defined the molecular ancestry for the start population 
by employing 46 ancestry informative indels, as previ-
ously described.(37) The estimates of individual ancestry, 
European, African, and Native American were anal-
ysed using the ADMIXTURE software.(38) The admix-
ture fraction mean values were 0.58, 0.27, and 0.15 in 
cases and 0.58, 0.25, and 0.17 in controls for European, 
African, and Native American ancestries, respectively. 
The descriptions of the general characteristics of these 
groups are detailed in the Table I.

DNA extraction and SNP genotyping - Genomic DNA 
was extracted from peripheral blood leukocyte samples 
using the salting-out method. Genotyping was performed 
by the allelic discrimination method based on TaqMan® 
technology (Applied Biosystems, Foster City, CA, USA) 
and was carried out using the Step One Plus real-time PCR 
equipment (Applied Biosystems, Foster City, CA, USA).

Markers selection - The rs1800470 polymorphism of 
the TGFB1 gene was selected based on the data from the 
literature, which reported the functional effects of this 
variant.(39,40,41,42,43,44,45,46,47) This is a missense polymor-
phism, which promotes a proline to leucine substitution 
at the 10th residue.

For the IL2RA gene, 11 tag SNPs were selected from 
the International HapMap Project database, taking the 
minimum minor allele frequency of 0.1 and an r2 cut-
off of 0.8 in the Yoruba population as parameters.(48) The 
following SNPs were selected: rs7910961, rs11256497, 
rs12722561, rs2245675, rs2386841, rs3134883, rs4749926, 
rs6602392, rs706778, rs942201, and rs9663421.

Statistical analyses - The comparisons of allele, geno-
type, and carrier frequencies were performed using an 
univariate logistic regression model, with and without 
adjustment for the sex, as previously described.(49) For the 
start population, we also used the molecular ancestry as 
a covariate in the regression model. From the indels data, 
we have employed ADMIXTURE software to estimate 
European, African, and Native American ancestries.(38) 
So, we used these data for a continuous adjustment since 
there is not a consensus on the use of these continuous 
variables to classify ethnicity as a categorical variable. All 
analyses were performed using the statistical software R 
for Windows, version 2.5.1, and the package Genetics.
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In order to avoid the multiple comparisons effect, 
Bonferroni correction was adopted before testing the 
markers in the replication population.

To evaluate signal independence for markers at 
IL2RA, we measured linkage disequilibrium (LD) us-
ing the Haploview software, version 4.2.(50) We used the 
Solid Spine of LD algorithm to define the blocks, using 
a D-value cut-off of 0.8.

The call rate > 0.95 was adopted as the quality control 
parameter, and all the polymorphisms met these criteria.

RESULTS

3.1. SNP rs2386841 of the IL2RA gene is associated 
with PB leprosy - Eleven markers at the IL2RA gene 
were tested in the start population, and rs2386841 and 
rs6602392 markers presented positive signal (Table II, 
Supplementary data).

The LD plot for these eleven IL2RA markers revealed 
four blocks of LD and two singleton SNPs (Figure). To 
test SNPs in the replication population, we applied the 
Bonferroni correction as described by Duggal and col-
leagues,(51) since SNPs at the same block are not consid-
ered independent. Thus, considering four models (two 
genotypic, one allelic and one carrier of minor allele) 
and six hypotheses (four haplotype blocks and two inde-
pendent markers), the p-value threshold for IL2RA gene 
was found to be 0.002.

The adjusted data for the AA genotype of the 
rs2386841 [Odds ratio (OR): 5.45, Confidence interval 
(CI) 95%: 1.93-15.3, p-value: 0.0013] marker remained 
significantly associated with the PB leprosy after correc-
tion. Further, it was tested in the replication population, 
according to the step-wise strategy. However, this asso-
ciation was not replicated in the replication population, 
as described in Table II.

For the carriers of allele A at the rs6602392 marker, 
the p-value of 0.0271 did not reach significance after cor-
rection, and it was not tested in the replication population.

SNP rs1800470 of the TGFB1 gene is associated with 
MB leprosy - For the start population, the rs1800470 
marker in the TGFB1 gene was tested. The adjusted data 
demonstrated an association of the AA genotype (OR: 
2.81, CI95%: 1.27-6.24, p-value: 0.0107) with the MB 
form of the disease. This association persisted even af-
ter applying Bonferroni correction, following the same 
strategy as for IL2RA gene (p-value < 0.0125), and this 

TABLE I
Characteristics of multibacillary leprosy (MB) and paucibacillary leprosy (PB) groups in the start and replication populations

Variable Category
Start population

(n = 406)
Replication population

(n = 479)

Clinical form (WHO, 1982) Paucibacillary
Multibacillary

96 (24%)
310 (76%)

99 (21%)
380 (79%)

Clinical form (Ridley & Jopling, 1966) LL
BL
BB
BT
TT
IL

21 (5.1%)
63 (15.3%)
79 (19.2%)
156 (38.7%)
60 (14.6%)
27 (6.6%)

102 (21.2%)
131 (27.3%)
132 (27.5%)
49 (10.2%)
62 (12.9%)
3 (0.6%)

Age (mean ± SD) MB
Age (mean ± SD) PB

42.9 ± 16.1
39.1 ± 16.1

37.9 ± 18.01
40.2 ± 18.01

Sex MB Male
Female

201 (65%)
109 (35%)

271 (71%)
109(29%)

Sex PB Male
Female

45 (47%)
51 (53%)

63 (64%)
36 (36%)

BB: bordeline bordeline leprosy; BL: borderline lepromatous leprosy; BT: borderline tuberculoid leprosy; IL: indeterminate 
leprosy; LL: polar lepromatous leprosy; SD: standard deviation; TT: polar tuberculoid  leprosy.

Linkage disequilibrium (LD) map for eleven SNPs at IL2RA gene 
genotyped for the start population. The number within boxes repre-
sents D-values calculated by Haploview software (4.2). The blocks 
were defined by Solid Spine of LD algorithm.
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data was replicated in the replication population. In ad-
dition, the carriers of the A allele showed associations 
with the MB form in the replication population, as de-
scribed in Table III.

A combined analysis of both the populations, with 
adjustment for sex and origin covariates, was conducted. 
From this analysis, the association of the AA genotype 
with the MB form was confirmed (OR: 2.23, CI95%: 
1.35-3.66, p-value: 0.0016). In addition, the A allele, 
and A carriers were associated with the MB form, as 
described in Table III.

DISCUSSION

Following tests of 11 polymorphisms covering the IL-
2RA gene, we found that the AA genotype of rs2386841 
was associated with susceptibility to the PB form in the 
start population. This is the second loci near the 10p13 
region, associated with the PB form, which is supported 
by the findings from two linkage studies.(24,25) Notably, 
the first associated gene, MRC1, had markers associated 
with PB leprosy in China, while it was associated with 
the MB form in Brazil and Vietnam.(10,13) Moreover, the 
other associations described in this region, at NEBL and 

CUBN genes, were also related to the MB form.(52) Thus, 
our data inserted a new candidate gene at this region, as-
sociated with the polarisation phenotype outcome.

Polymorphisms at the IL2RA gene are associated 
with lesion development in cutaneous leishmaniasis in 
Brazilian populations.(53) In addition, the authors dem-
onstrated a functional role for the associated alleles by 
decreasing the IFN-γ response and the Treg cell activi-
ties, which are closely related to the leprosy manifesta-
tions. Our results, coupled with Oliveira and colleagues, 
provide strong evidence of the importance of the IL2RA 
gene for the severity of infectious diseases caused by 
intracellular parasites.(53) In order to reinforce this role, 
a relevant meta-analysis confirmed IL2RA as a suscep-
tibility gene for Crohn’s Disease, which shares genetic 
risk factors with leprosy.(54,55)

When testing the TGFB1 gene, we found an asso-
ciation between the AA genotype of the polymorphism 
rs1800470 to the risk of MB leprosy in both populations. 
The combined analysis with adjustments reinforced this 
association effect. This variant, also known as +29C> T, 
is located at the hydrophobic core of the signal peptide 
sequence; however, both alleles encode non-polar amino 

TABLE II
Frequency data in paucibacillary leprosy (PB) and multibacillary leprosy (MB) groups  

and association data for the markers rs2386841 and rs6602392 at the IL2RA gene

Population/marker
Alelles  

or genotypes PB MB OR (95%CI) p-value OR (95%CI) p-valuea

Start population
rs2386841

C
A

CC

0.76
0.24

59 (0.62)

0.83
0.17

214 (0.70)

*
1.57 (0.89-2.75) 0.1150

*

*
1.80 (0.98-3.27) 0.0546

*
AC 27 (0.28) 83 (0.27) 1.17 (1.37-9.54) 0.5338 1.23 (0.70-2.17) 0.4613
AA 9 (0.09) 9 (0.03) 3.62 (1.37-9.54) 0.0091 5.45 (1.93-15.3) 0.0013

Carrier A 1.41 (0.87-2.29) 0.1538 1.57 (0.93-2.64) 0.0860

n = 95 n = 306

Start population 
rs6602392

C
A

CC
AC
AA

Carrier A

0.89
0.11

74(0.78)
21(0.22)

0

0.82
0.18

209(0.68)
86(0.28)
11(0.04)

*
0.55 (0.26-1.16) 0.1189

*
0.66 (0.37-1.17)0.1626

-
0.58(0.33-1.03)0.0643

*
0.49 (0.23-1.05) 0.0669

*
0.60(0.33-1.07)0.0873

-
0.52(0.29-0.92)0.0271

n = 95 n = 306

Replication population
rs2386841

C
A

CC

0.76
0.24

44 (0.59)

0.74
0.26

175 (0.58)

*
0.91 (0.50-1.65) 0.7683

*

*
0.90 (0.49-1.62) 0.7322

*
AC 24 (0.32) 97 (0.32) 0.98 (0.56-1.71) 0.9548 0.96 (0.54-1.67) 0.8889
AA 6 (0.08) 30 (0.10) 0.79 (0.31-2.02) 0.6321 0.78 (0.30-2.00) 0.6133

Carrier A 0.93 (0.56-1.57) 0.8131 0.91 (0.54-1.54) 0.7517

n = 74 n = 302

Bold values denote statistically significant results.*: indicates the baseline for comparison; a: Odds ratio (OR) e p-value adjusted 
for covariates sex and individual ancestry for start population and sex for replication population; CI: confidence interval. Global 
p-values (general test): rs2386841 - start population (p = 0.02), rs6602392 - start population (p = 0.02).
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acids.(47) Our findings are in conflict with the functional 
data, suggesting that the G allele is associated with higher 
production of TGF-β1(47) since MB patients have higher 
levels of this cytokine.(34,35) In vitro studies using different 
infection ratios as stimuli and considering the different 
genotypes for rs1800470 may be an interesting strategy 
to better explain this genetic data in leprosy polarisation.

According to the 2016 WHO data, 72% of new Bra-
zilian leprosy cases were MB.(56) Therefore, 76% of MB 
cases in our both study populations reflect the leprosy 
epidemiology in Brazil. Despite similar distributions, 
we observed major representation of the BL and LL cat-
egories in the replication population and overrepresen-
tation by the BT form in the start population. This is a 
limitation of our study, but it can help explain the repli-
cation of the TGFB1 association with the MB form and 
the non-replication of the IL2RA association with the PB 
form. This also reinforces the necessity for more investi-
gations focusing on the IL2RA gene.

Classical variables influencing the outcome of clini-
cal forms of leprosy are sex, endemicity, geography, age, 
and BCG vaccination.(6) To control for biases, we adopt-

ed selection criteria and analysis parameters to account 
for the effects of these covariates. Although ethnicity 
is not a classical risk factor influencing clinical forms 
of leprosy, human genetic factors influence the effect 
associated to the geography and endemicity. Thus, we 
considered ethnicity in our analysis due to the diverse 
admixture of races in Brazil, relative to the region of 
the country. Although the ancestry data revealed no sub-
stantial distortion between cases and controls, they were 
used to adjust the analysis in order to control some bias 
due to this variable in our study. Data from the literature 
indicated a higher incidence of the MB form in men than 
in women, with a ratio of 1.5-2.(6) The number of MB in-
dividuals is also higher in Brazilian men than women.(56) 
Our population samples followed this observation since 
the male: female ratios in the MB groups were 1.84 for 
the start population and 2.48 for the replication popula-
tion. When adjusting our analysis using sex and ancestry 
data as covariates, we observed a stronger association 
effect for rs2386841 at IL2RA. This confirms the impor-
tance of considering these covariates when studying lep-
rosy polarisation outcome.

TABLE III
Frequency data in paucibacillary leprosy (PB) and multibacillary leprosy (MB) groups  

and association data for the marker rs1800470 at the TGFB1 gene

Population
Alelles  

or genotypes PB MB OR (95%CI) p-value OR (95%CI) p-valuea

Start population G
A

GG

0.55
0.45

24 (0.27)

0.45
0.55

54 (0.19)

*
1.49 (0.92-2.41) 0.0999

*

*
1.57 (0.94-2.63) 0.0796

*
AG 50 (0.56) 146 (0.52) 1.29 (0.72-2.31) 0.3770 1.32 (0.72-2.43) 0.3545
AA 15 (0.17) 83 (0.29) 2.45 (1.18-5.10) 0.0158 2.81 (1.27-6.24) 0.0107

Carrier A 1.56 (0.89-2.72) 0.1127 1.63 (0.91-2.93) 0.0963

n = 89 n = 283

Replication population G
A

GG

0.53
0.47

25 (0.30)

0.45
0.55

68 (0.20)

*
1.40 (0.87-2.26) 0.1650

*

*
1.40 (0.87-2.27) 0.1637

*
AG 39 (0.46) 174 (0.50) 1.64 (0.92-2.91) 0.0917 1.66 (0.93-2.96) 0.0845
AA 20 (0.24) 106 (0.30) 1.94 (1.00-3.77) 0.0483 1.96 (1.00-3.81) 0.0472

Carrier A 1.74 (1.01-2.98) 0.0424 1.76 (1.02-3.03) 0.0394

n = 84 n = 348

Combined populations G
A

GG
AG
AA

Carrier A

0.54
0.46

49 (0.28)
89 (0.51)
35 (0.20)

0.45
0.55

122 (0.19)
320 (0.51)
189 (0.30)

*
1.45 (1.03-2.04) 0.0294

*
1.44 (0.96-2.16) 0.0763
2.16 (1.32-3.53) 0.0020
1.64 (1.12-2.42) 0.0110

*
1.45 (1.03-2.04) 0.0306

*
1.47 (0.97-2.22) 0.0636
2.17 (1.32-3.57) 0.0020
1.67 (1.13-2.47) 0.0095

n = 173 n = 631

Bold values denote statistically significant results.*: indicates the baseline for comparison; a: Odds ratio (OR) e p-value adjusted for 
covariates sex and individual ancestry for start population; sex for replication population; sex and origin for combined populations; 
CI: confidence interval. Global p-values (general test): rs1800470 - start population (p = 0.02), rs1800470 - replication population 
(0.12), combined populations (p = 0.01).
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A higher mean age of MB, relative to PB patients has 
also been reported, which is likely due to the long in-
cubation time of the bacillus.(56,57,58) Although the influ-
ence of age is higher in men than in women, the effect of 
these covariates (age and sex) are independent in leprosy 
polarisation.(58) In our study, the mean age of illness for 
both populations is consistent with observations from 
the Brazilian population, which has a predominance of 
adult cases.(56) Moreover, we did not observe relevant 
differences in age between PB and MB cases.

Leprosy is a complex trait and factors related to the 
host, environment, and pathogen act in the development 
of the disease per se and its clinical forms.(7) However, 
there is no evidence that different strains of M. leprae in-
terfere in the leprosy outcome; also, studies suggest low 
genetic variability of the bacillus.(59) Therefore, consid-
ering the broad clinical spectrum of leprosy, the human 
genetic component seems to play a more relevant role 
in the outcome of the disease.(7) From the epidemiologi-
cal perspective, clarifying which host genetic factors are 
involved in leprosy polarisation may help predict clini-
cal forms with higher potential to transmit disease, thus 
helping interrupt the transmission chain. As a result, our 
data points to IL2RA and TGFB1 associations with lep-
rosy polarisation and help to construct the genetic archi-
tecture of this neglected phenotype.
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