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Abstract

Clinical trials generate a large amount of data that have been underutilized due to obstacles that 

prevent data sharing including risking patient privacy, data misrepresentation, and invalid 

secondary analyses. In order to address these obstacles, we developed a novel data sharing method 

which ensures patient privacy while also protecting the interests of clinical trial investigators. Our 

flexible and robust approach involves two components: (1) an advanced cloud-based querying 

language that allows users to test hypotheses without direct access to the real clinical trial data and 

(2) corresponding synthetic data for the query of interest that allows for exploratory research and 

model development. Both components can be modified by the clinical trial investigator depending 

on factors such as the type of trial or number of patients enrolled. To test the effectiveness of our 

system, we first implement a simple and robust permutation based synthetic data generator. We 

then use the synthetic data generator coupled with our querying language to identify significant 

relationships among variables in a realistic clinical trial dataset.
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1. Introduction

Clinical trials are used to evaluate the safety and efficacy of new medical technologies or 

treatments. Despite the fundamental role that clinical trials play in advancing medicine, 

access to a majority of clinical trial data has been restricted. Data sharing can improve 

clinical care as well as lead to new developments in administering clinical trials, 

personalized treatment strategies, and improved modifications to the technologies or 

treatments currently being evaluated. In addition to increasing scientific knowledge, sharing 

clinical data can improve the timeliness of data analysis, spark new research ideas, and 

decrease expenditures by avoiding unnecessary duplicate trials.1,2 Clinical trials produce a 

large amount of data including patient demographics, lab reports, and drug exposure, which 

are currently being underutilized due to the difficulty in ensuring patient privacy.3,4

Open Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons 
Attribution Non-Commercial (CC BY-NC) 4.0 License.

gluthria@g.harvard.edu.
*These authors contributed equally to this work.

HHS Public Access
Author manuscript
Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 10.

Published in final edited form as:
Pac Symp Biocomput. 2020 ; 25: 647–658.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition to the primary concern of protecting patient privacy, some secondary concerns of 

data sharing include other investigators taking false ownership of clinical trial discoveries or 

invalid secondary analyses.5,6 The current solution for clinical trial data sharing that 

addresses the concerns mentioned above often involves detailed data request proposals and 

lengthy proposal approval times, hindering exploratory data analysis.7 To date, there has 

been no well known implemented computational system that addresses these concerns while 

providing public access to clinical trial data.

There are currently two mechanisms in place that allow for protecting patient privacy during 

data sharing: (1) explicit patient consent and (2) de-identification. Patient consent for post-

hoc research studies is often impractical because it involves tracking a large number of 

patients that may result in bias between consenter and non-consenter populations.8 De-

identification involves perturbing the data via statistical models or by removing identifying 

information.9–11 For example, electronic health records (EHR) in the United States are de-

identified in accordance with the Health Insurance Portability and Accountability Act 

(HIPAA). HIPAA requires 18 different fields representing “unique identifying 

characteristics” such as patient name, date of birth, and date of visit be removed prior to data 

sharing. Despite the extraction of such fields, patients are still susceptible to re-identification 

attacks.12 Protecting patient privacy is essential for maintaining trust between patients and 

healthcare professionals as well as preventing potential stigmatization or discrimination 

based on patient health.13

Automated de-identification models can be subdivided into three categories: (1) rule based 

models (2) machine learning models, and (3) hybrid models.14 Rule based models involve 

applying a set of curated rules, often developed by healthcare professionals, to perturb the 

real clinical data. Machine learning models apply probabilistic or off-the-shelf machine 

learning methods such as markov random fields, support vector machines, decision trees, 

and regression based models.15 Recently, deep learning has also been used to generate 

synthetic datasets.16 Hybrid models use a combination of rule based and machine learning 

models. Despite recent success in generating synthetic datasets, each method has inherent 

disadvantages. They may be application specific, dependent on curation or verification by 

medical professionals, difficult to implement, or produce inconsistent results compared to 

the real data in downstream analysis. These problems are further exacerbated when dealing 

with data from patients with rare diseases, as clinical data on these patients is much more 

specific and limited.

Simulating real-life clinical data is an extremely diffcult, if not an impossible task. To solve 

this inherent problem of balancing data sharing while ensuring that patient privacy is 

protected, we propose a platform where researchers can integrate features from both 

synthetically generated and real clinical datasets to conduct both exploratory and hypothesis 

driven research. Furthermore, we aim to address additional non-privacy related concerns of 

data sharing by developing a flexible, compartmentalized system that can be modified by 

clinical trial investigators. The specific contributions of our work are as follows:
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• an integratable multicomponent system for researchers to access advanced 

statistics for real patient data while also providing the corresponding synthetic 

data for the query of interest

• a querying language for obtaining advanced summary statistics from the real 

patient dataset

• a simple, robust, and easily implementable permutation based algorithm for 

synthetic data generation

We first describe how each of these components are developed and how they can be 

integrated together while maintaining patient privacy and providing the most power to 

researchers. We next evaluate our system’s querying language and compare the generated 

synthetic data to the real data. We finally demonstrate how our system can be used for 

research. We envision that the following system will enable public online sharing of clinical 

data without restricted access.

2. Methods

2.1. Storing clinical trial data in the cloud

Our system does not have a centralized storage unit. Clinical trial investigators can store 

their data in their own bucket without risking privacy violations. In other words, there is no 

need to upload the data to a certain platform. Instead, investigators only need to change the 

read-access of their clinical trial data so our execution system can access this data.

Though access to the real clinical trial data is restricted, we provide a highly flexible query 

language that enables all users to submit a job from a personal computer that runs on the 

execution system in the cloud (Figure 1A). Using this query language, users can investigate 

clinical data submitted by different investigators in a flexible way, such as performing 

statistical tests or visualizing distributions. Summary level data is also downloadable. The 

risk of privacy-sensitive information being identified or original data being reconstructed 

from the combination of summary data is minimized by restricting the type of queries users 

can make and by setting a minimum threshold for the query to be valid. For example, the 

maximum and minimum of a particular feature in the data can only be obtained when the 

sample size is greater than five individuals. Additionally, our query language allows users to 

download the corresponding synthetic data that closely mimics the original clinical trial 

dataset (Figure 1B). In methods 2 and 3, respectively, we will further describe our query 

language and how synthetic data was generated.

2.2 Flexible query language for advanced statistical analysis

Our query language uses Hail (https://hail.is), an open-source, Python-based data analysis 

tool that is utilized for cloud computation. Hail was originally built for genetics analysis, but 

the Table/MatrixTable/DataFrame structure and the built-in statistical analysis methods are 

applicable to a broader range of structured data. Our query language functions as a Python 

wrapper for various Hail commands. By running our query language, users send jobs to our 

execution system that is described in methods 1. Since the information exchange between 

users’ local environment and our execution system is done only for the summary statistics 
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data, there is no risk of privacy violation. The method can be parallelized and is highly 

scalable and flexible (Table 1).

2.3. Realistic synthetic data generation from the query

To generate realistic synthetic (Algorithm 1) data, we first projected the real data into a low 

dimensional space using principal component analysis (PCA). After projecting the real data 

onto a four dimensional PC space, we randomly selected one sample (S1) and computed the 

pairwise distance between S1 and all other samples using the following distance metric:

Λ =

λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

xi =

PC1i
PC2i
PC3i
PC4i

Di, j = Λ ⋅ xi − xj 𝓁1

Here Λ is the diagonal vector of the eigenvalues obtained from PCA, and xi is the projection 

of sample i onto each principal component (PC). The number of PCs for low-dimension 

projection was determined based on the variance explained by each PCs (Figure S1), and 

this parameters can be modified depending on the properties of the original dataset. We 

obtained the K nearest neighbors (we initialized K=5) to S1 and aggregated S1 and its 

neighbors to construct a single synthetic data sample. Aggregation was performed by 

randomly sampling each feature from S1 and the nearest neighbors. This aggregation 

strategy can handle missing data and ensured that the data-types remained consistent without 

the requirement of manual curation. This process was repeated to construct a final synthetic 

dataset of 773 individuals, matching the sample size of the original “real” data.

Algorithm 1 Synthetic Data Generation

Use PCA to generate proj data from real_data

for i ∈ [0, num_synthetic_samples] do

 sample i ← CreateSyntheticIndividual (proj_data, real_data)

 store sample_i in Dataframe

function CreateSyntheticIndividual(proj_data, real_data)

 proj_sample ← Randomly sample one point from proj data

 proj_neighbors ← Obtain K-NN from proj_sample

 real_sample ← Find real samples (from real data) corresponding to the proj_sample

 real_neighbors ← Find real samples corresponding to the set of proj_neighbors

 synthetic_vector ← none

 for each feature j ∈ real_sample do

  f eature_vals ← Feature j from real_sample and real_neighbors
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Algorithm 1 Synthetic Data Generation

  synthetic vector.append(random sample from f eature_vals)

 return synthetic_vector

3. Results

3.1 Test data preparation

To demonstrate the performance of our proposed model, we used a realistic clinical trial 

dataset for a study testing the effect of Imatinib, an FDA approved protein-tyrosine kinase 

inhibitor17,18 on gastrointestinal stromal tumors (GIST).19 Specifically, the data records 

the results of a phase III, double blinded placebo-controlled clinical trial that was designed 

to test the efficacy and the optimal dosage of imatinib for GIST treatment. The dataset 

contains information such as drug exposure level, patient demographics (e.g. age, gender, 

region), baseline disease status (e.g. tumor size, location), laboratory measurements (e.g. 

creatinine level, white blood cell count), treatment status (e.g. start/end of treatment / 

placebo or drug treated), and records of recurrence or other adverse events. We labelled this 

dataset as real data and stored it in the cloud to simulate a realistic situation where public 

users cannot directly access the data contents, but can use our method to answer research 

questions. For the remainder of this manuscript, we never store the real data locally. Only 

the summary statistics obtained via our query language and the synthetic data are locally 

stored.

3.2. Synthetic data evaluation

Here we show that our synthetic data, while anonymized, preserves the basic properties of 

the real data (Figure 2A). In order to quantitatively understand the overall similarity between 

synthetic and real data, we performed the Kolmogorov-Smirnov test20 (KS test) for thirteen 

continuous features (e.g. BMI, drug exposure duration, creatinine level). KS test uses a 

distance metric (KS distance) determined by the the supremum-distance between two 

empirical distributions. The largest KS distance obtained was 0.044 indicating that the 

synthetic data distributions closely mimic the real data distributions. Furthermore, the lowest 

p-value obtained was 0.42 and therefore, we fail to reject the null hypothesis that the real 

and synthetic data are drawn from the same distribution. We also calculated the fraction of 

positively labeled samples in the real and synthetic data, for 45 binary features (e.g. gender, 

disease recurrence, patient death), each with more than 100 non-missing values (In other 

words, there are at least 100 patients who have that feature available in their clinical data 

record). There was a nearly perfect correlation between the fraction of positively labeled 

samples in the real and synthetic data (pearson’s r = 0.997, p < 10−57; Figure 2B). We also 

compared our method with two additional synthetic data generation methods.21,22 While 

different methods displayed variable accuracy results for different features (Figure S2), our 

method produced the lowest KS distance for > 50% of the features we measured (Table S1), 

best matching the distribution of the original, real dataset. These results suggest that our 

method constantly produces a high-quality proxy of the real data.
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3.3. Querying language efficiency evaluation

Here we show that our querying language is scalable. Our method returns the summary 

statistics from a large synthetic dataset in a reasonable amount of time (less than 10 seconds 

for nearly 1 GiB), an order of magnitude faster than running the same analysis locally 

without cloud computation (more than 2 minutes for less than 1 GiB). The runtime 

difference becomes larger as the data size increases, reflecting the effectiveness of cloud-

based parallel computing23,24 (Figure 3).

3.4. Clinical inference using synthetic and real data

Here we describe how our model can be used for biological discovery without directly 

viewing real clinical data, and therefore maintaining patient privacy. Specifically, we 

reconfirm that treatment of Imatinib is significantly associated with reduced risk of GIST 

recurrence17 (p =0.05). We also validate that the designed dosage level (400 mg/day) was 

safe for most patients on the basis of adverse events.

As a first step, we generated synthetic data and performed a two-sided Fisher exact test on 

this data to compare the GIST recurrence rate between the Imatinib treated (N = 273) and 

placebo treated (N = 331) patient populations. The Fisher exact test returned a significant p-

value (p = 0.01, odds ratio (OR)= 0.54 for treated population; Table 2). To assess whether 

Imatinib dosage is safe for patients, we also compared the adverse event occurrence rate. We 

confirmed that there is no significant increase in the occurrence rate between the drug-

treated population and placebo population (p = 0.33, OR = 1.32 for treated population; Table 

3).

To confirm that these results obtained by analyzing the synthetic data are not due to artifacts, 

we queried the real data, performed the same analyses, and downloaded the resulting 

summary statistics. As shown in Table 2 and Table 3, the results of the statistical tests were 

consistent with the synthetic data. In summary, we demonstrated an example of using 

synthetic data to generate a hypothesis, and confirming this hypothesis by querying the real 

data summary statisticswithout accessing the individual level data.

4. Conclusion

While having the same concerns as sharing EHR and genomic data, sharing clinical trial 

data presents an additional set of challenges. A majority of patients enrolled in clinical trials 

have exhausted all approved treatment options. Since these individuals represent outliers in 

the general patient population, they are more susceptible to reidentification as well as 

discrimination because of their serious health conditions. Releasing such data can also spark 

debates about the parameters used during clinical trials, even though they have been 

carefully approved by ethics boards.

We have implemented a novel model for sharing clinical trial patient data while ensuring 

that patient privacy is protected. As our system is compartmentalized, investigators can omit 

specific fields in the synthetic dataset or use another synthetic data generation algorithm.
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Incorporating an advanced querying language and providing corresponding synthetic data 

allows for both exploratory and hypothesis driven research. Synthetic data can directly be 

used to train machine learning and probabilistic models that aim to understand the 

underlying structure of the data. Once researchers have developed a new model or made a 

potential discovery, they can request access to the real data through a variety of clinical trial 

data sharing platforms such as Vivli.25,26 In addition to its flexibility, this model allows 

users to perform statistical tests directly on the real data via our querying language without 

having a locally downloaded copy. This model is also scalable and can quickly run statistical 

calculations on large sample sizes via parallel processing in the cloud.

We demonstrate how users can employ both real data summary statistics and synthetic data 

to analyze clinical trial datasets. Our synthetic data algorithm generates samples from nearly 

an identical distribution as the real data. Despite our success, synthetic data generation, in 

general, can never fully recapitulate real datasets, especially those with outlier cases. There 

is also variability in the synthetic data generator accuracy within and across datasets (Figure 

S2; Table S1). Therefore, the described system also enables clinical trial investigators to 

choose their own application specific synthetic data generator. For further improvements, we 

aim to expand the flexibility of the query system to detect potential abuse (i.e. user 

submitting a large volume of queries to infer concealed information) or providing users with 

feedback on how to improve query searches. We also envision making our model more 

accessible (e.g. through different cloud-computing platforms) and creating a user-friendly 

interactive web browser to submit queries.

We acknowledge that stakeholders, particularly owners of clinical trial data, may be 

reluctant to share their data, even under restricted “read only” access because of general risk 

aversion and potential misuse of data. We hope that current and future work on increasing 

the flexibility of our system, providing stakeholders with control to omit specific fields or 

query conditions or change access depending on the constituent (i.e. clinicians, researchers, 

the public, etc.), will alleviate their reluctance to share data. Followup key informant surveys 

is an essential future step to assess the willingness of healthcare professionals, stakeholders, 

and institutions to work with such a system. In summary, we hope the following dual system 

can spark new advances in medicine and increase the usefulness of clinical trial datasets by 

enabling public data-sharing while protecting patient privacy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Graphical overview of the data sharing model. (A) Real data is stored securely on the cloud 

and can be accessed by user queries. Synthetic data matching the specified query is also 

generated and returned to the user for downstream analysis. (B) Synthetic data for the model 

presented in panel A was obtained by first performing PCA to reduce the dimensionality of 

real data(a). One sample from the projected data was randomly obtained and the nearest k-

neighbors for that sample was determined using a PC weighted distance metric(b). 

Aggregating data from the sample and its nearest neighbors was used to construct a synthetic 

sample(c). This process was repeated to generate 773 synthetic patients.
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Figure 2. 
Comparing the real clinical trial dataset and the corresponding synthetically generated 

dataset. (A) Real data distribution (orange) and synthetic data distribution (green) of six 

clinical features. Distributions were obtained from the empiricle data via kernel density 

estimation (B) Comparison of the fraction of positively labeled data between the real and 

synthetic datasets, for 45 binary features with more than 100 non-missing values.
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Figure 3. 
The runtime comparison between our cloud based model versus running computation 

locally. The runtime is measured as the number seconds required for aggregating the data 

and creating a contingency table
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Table 1.

Querying language examples

operation example

view available features df.describe()

filtering df.filter(feature A >10)

grouping df.groupby(feature B)

aggregation df.groupby(feature B).aggregate(feature C).summarize(max, min, mean, median, sd)

correlation df.pearson corr(feature A, feature B) statistical tests df.t test(feature A, feature B) visualization df.hist(feature A)

combination of above df.filter(feature A>10).groupby(feature B).t_test(feature C, feature D)
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