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Abstract

Multi-scale computational modeling is a major branch of computational biology as evi-

denced by the US federal interagency Multi-Scale Modeling Consortium and major interna-

tional projects. It invariably involves specific and detailed sequences of data analysis and

simulation, often with multiple tools and datasets, and the community recognizes improved

modularity, reuse, reproducibility, portability and scalability as critical unmet needs in this

area. Scientific workflows are a well-recognized strategy for addressing these needs in sci-

entific computing. While there are good examples if the use of scientific workflows in bioin-

formatics, medical informatics, biomedical imaging and data analysis, there are fewer

examples in multi-scale computational modeling in general and cardiac electrophysiology in

particular. Cardiac electrophysiology simulation is a mature area of multi-scale computa-

tional biology that serves as an excellent use case for developing and testing new scientific

workflows. In this article, we develop, describe and test a computational workflow that

serves as a proof of concept of a platform for the robust integration and implementation of a

reusable and reproducible multi-scale cardiac cell and tissue model that is expandable,

modular and portable. The workflow described leverages Python and Kepler-Python actor

for plotting and pre/post-processing. During all stages of the workflow design, we rely on

freely available open-source tools, to make our workflow freely usable by scientists.
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Author summary

We present a computational workflow as a proof of concept for integration and imple-

mentation of a reusable and reproducible cardiac multi-scale electrophysiology model

that is expandable, modular and portable. This framework enables scientists to create

intuitive, user-friendly and flexible end-to-end automated scientific workflows using a

graphical user interface. Kepler is an advanced open-source platform that supports multi-

ple models of computation. The underlying workflow engine handles scalability, prove-

nance, reproducibility aspects of the code, performs orchestration of data flow, and

automates execution on heterogeneous computing resources. One of the main advantages

of workflow utilization is the integration of code written in multiple languages Standardi-

zation occurs at the interfaces of the workflow elements and allows for general applica-

tions and easy comparison and integration of code from different research groups or even

multiple programmers coding in different languages for various purposes from the same

group. A workflow driven problem-solving approach enables domain scientists to focus

on resolving the core science questions, and delegates the computational and process

management burden to the underlying Workflow. The workflow driven approach allows

scaling the computational experiment with distributed data-parallel execution on multiple

computing platforms, such as, HPC resources, GPU clusters, Cloud etc. The workflow

framework tracks software version information along with hardware information to allow

users an opportunity to trace any variation in workflow outcome to the system

configurations.

Introduction

Computational modeling and simulation has proven to be a powerful approach to reveal fun-

damental mechanisms of the cardiac rhythm in both normal and pathological conditions.

Recent studies have expanded modeling approaches to the domain of predictive pharmacol-

ogy, utilizing functional in silico approaches to predict drug efficacy, screen for drug toxicity,

as well as suggest disease-specific therapies [1–11]. Modeling and simulation as an approach

has distinct advantages over classical experimental methods, including the potential for high

throughput prediction, choice of model complexity best suited for a given problem, and inves-

tigation of a range of physiological, pathophysiological and pharmacological parameters. Fur-

thermore, computational modeling and simulation allows for the prediction of overall

emergent effects of specific parameter perturbations on the simulated system.

As computational cardiac models have become increasingly accepted as predictive tools,

there has been a recent movement towards utilizing them in applied venues, especially in the

domain of safety pharmacology [12, 13]. This transition has required a deep and objective

assessment of the need for well-defined criteria to allow for the verification, validation, and

uncertainty quantification (VVUQ) of models and model predictions [13–15]. In the VVUQ

paradigm, verification ensures the computational model accurately solves the equations under-

lying the mathematical model, and that model reproducibility is ensured regardless of imple-

mentation environment (i.e. different computing hardware, compilers, and code libraries),

validation serves as a measure of the extent, to which the model is accurate in representing the

quantities of interest (that may be experimental data), and uncertainty quantification deter-

mines the extent to which the model output is sensitive (or uncertain in response) to variation,

error and uncertainty in the model input. In concert with VVUQ considerations, there has

been a determined effort to address the overlapping issues of reproducibility, repeatability and
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replicability across a variety of computational disciplines via the application of standards [16–

19] [14, 15, 20, 21].

CellML and related markup languages like SBML have been utilized to provide a standard,

software- and programing language-independent description of the model, which can improve

consistency and reproducibility of model description and sharing [22]. No single markup lan-

guage can represent a full cardiac multi-scale model, although the combination of CellML to

describe the ionic model, FieldML (http://physiomeproject.org/software/fieldml/about) for

describing the field equations and geometry, and SEDML (https://sed-ml.github.io) [23–26]

for describing the protocol of the numerical experiment, could in principle be combined to

allow a full description.

Other tools have also been developed, such as CellML API or OpenCor that can automati-

cally implement model representations in markup languages [27, 28]. In this way, it is possible

to generate whole cell ODE model equations from a language independent CellML description

of the model. There are some examples of integrated frameworks (OpenCMISS [29, 30],

Chaste [31–34], CARP [35]) that can solve multi-scale models that are derived from standard-

ized model descriptions and indeed, Chaste and CARP can both be integrated and utilized in

Kepler workflows [36]. Some multi-scale simulations do, however, require the use of a variety

of solvers and data sets.

Moreover, reproducibility also requires development of standards for simulation and

model implementation [20, 23, 25, 26, 37, 38]. SED-ML is a community effort to standardize

modeling protocols, but standardized protocols that integrate or connect multiple models rep-

resented in standardized model descriptions either requires customized software or a work-

flow framework [24, 25, 39, 40]. To date, there are a few tools that support SED-ML

(Tellurium, JWS Online, SBW Simulation Tool, CellDesigner, COPASI, iBioSim, bioUML,

SED-ED) for a limited number of application domains. We tested here whether a workflow

platform such as Kepler could provide a reproducible approach for integrating multi-scale

models requiring more than one solver, a reproducible protocol for numerical experimenta-

tion and provenance tracking. Indeed, none of the tools described are mutually exclusive and

workflows such as the one described in this study can be readily expanded to allow inclusion

of code generation from CellML, FieldML and SEDML descriptions [16].

In this study, after careful analysis, we decided to utilize the Kepler scientific workflow

management system. This framework enables scientists to create intuitive, user-friendly and

flexible end-to-end automated scientific workflows using a graphical user interface. Kepler is

an advanced open-source platform that supports multiple models of computation [41, 42].

The underlying workflow engine handles scalability, provenance, reproducibility aspects of the

code, performs orchestration of data flow, and automates execution on heterogeneous com-

puting resources. A workflow driven problem-solving approach enables domain scientists to

focus on resolving the core science questions, and delegates the computational and process

management burden to the underlying Kepler Workflow system [43–46]. Further, scientists

can parameterize the workflow and perform large-scale search for optimal values in the param-

eter space. Leveraging the benefits of a workflow driven approach allows scaling the computa-

tional experiment with distributed data-parallel execution on multiple computing platforms,

such as, HPC resources, GPU clusters, Cloud etc. The framework gives users flexibility to exe-

cute the workflows from command-line or GUI. Due to its large open-source developer com-

munity, Kepler has a rich library that contains over 350 ready-to-use processing components

called ’actors’ that can be easily customized.

There have been a number of developments aimed at solving the specific problems of repro-

ducibility, repeatability and replicability. In the context of the work presented here, ‘reproduc-

ibility’ refers to zero-difference in outcome between two executions (say W1 and W2) of same
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workflow (W), when both executions of our workflow W have exact same hardware (H), same

software (S), and same initial conditions (P). The Kepler workflow system captures provenance

during each execution at multiple levels. The workflow records the workflow parameters,

workflow outputs, intermediate data tokens and extracts the hardware system (CPU Cores,

Cache, Memory etc.) profile as well. All of this information is recorded in the workflow prove-

nance database. The information includes versions of all the programs. The key components

recorded are the version information of the operating system, source code compiler, Python,

Kepler, Java and associated source code. The workflow stores this information in Kepler prov-

enance database. The detailed capture of hardware and software environment information

enables users to completely reproduce and replicate the results. Our aim is to facilitate the user

to setup same initial conditions and hardware environment (if required), and reproduce

results in similar fashion. Notably, the definition we use for reproducibility has been described

as replicability and repeatability in other descriptions, whereas reproducibility has used to

describe an independent reconstruction of the model from the model equations and initial

conditions [47–49]. Indeed, despite attempts to develop standard definitions, there is, as yet,

no full consensus on the definitions of each term [50].

One of the main advantages of utilization of workflows is that they can integrate code writ-

ten in multiple languages, allow for variation in application of compilers and can pass informa-

tion from one code to another. The standardization occurs at the interfaces of the workflow

elements (actors) and allows for very general applications and easy comparison and integra-

tion of code from different research groups or even multiple programmers coding in different

languages for various purposes from the same group.

Kepler workflow elements can be optimized to run on different platforms and compare

results (verification), switch code for different models or implementations of the same model

and compare results (validation) or run code multiple times with different initial parameters

and estimate variation (uncertainty quantification). Also for the reasons above, Kepler work-

flows are ideally suited for multi-scale modeling due to ability to integrate very different pieces

of codes into a workflow and easily parsing input and output parameters between them.

Another advantage is that Kepler workflows are easily accessible for non-experts in computa-

tional modeling as programming as a detailed knowledge of model inner workings are not

needed to run simulations and modify parameters to suit the requirements of the end user.

Here, we present a multi-scale model of cardiac electrophysiology that is executed in the

freely available Kepler scientific workflow system [41, 44]. The workflow we present here is a

first required step in VVQU by ensuring reproducibility of models through inclusion of prove-

nance information that describes the origin of the model components, referencing to the data,

information about any modifications and the associated rationale, as well as the specific com-

ponents and parameter settings used in each run. We implemented differential equation mod-

els of cardiac physiology that automate the execution of simulations with user defined options

of outputs from a single cell (0-dimensional), 1 or 2-dimensional tissue, and a pseudo-ECG

output, which can be compared to experimental or clinical data.

Many instances of models can be used with varying input parameters, and the models can

be linked in the workflows in various ways. For example, single cell models can be linked to an

idealized 1-dimensional fiber model, which allows us to compute a signal averaged pseudo

ECG that captures temporal and spatial electrical potential gradients of a propagating wave.

Another example demonstrates a thousand instances of the single cell model being linked to a

3-dimensional transmural wedge preparation for investigation of ectopic sources. In addition

to these multi-modal choices, the framework can also be reused for multispecies comparisons.

Users can control a wide range of input parameters from a simplified command-line, or GUI

Cardiac electrophysiology models using Kepler Workflows
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interface. The workflow is portable and scalable, having the flexibility to run on any platform a

user chooses: local workstations, small clusters, or remote HPC resources.

The computational workflow we present here represents a proof of concept of a platform

for the robust integration and implementation of a reusable and reproducible cardiac cell and

tissue model that is expandable, modular and portable. The detailed checkpointing of version

information along with hardware information gives users an opportunity to trace any variation

in workflow outcome to the system configurations, when the infrastructure cannot be exactly

replicated. In addition to storing in the database, the workflow generates an execution report

for each workflow execution that includes the important workflow parameters, input informa-

tion, software version and hardware system profile.

Methods

Methodological overview of the workflow

A cardiac ventricular electrophysiology modeling and simulation use case:

We present an automated computational workflow (Fig 1) that can perform simulations to

generate user defined instances and configurations of a single-cell cardiac action potential,

conduction of a cardiac action potential in a 1-dimensional (1D) or 2-dimensional (2D) tissue

representation and generation of a signal average of electrical activity in time and space to rep-

resent a pseudo-ECG.

Please access all codes and associated files and attributes via the GitHub link below. The

repository contains specific instructions for use of Kepler System with new source codes. The

user-manual provides detailed outlines of how to install Kepler, modify workflow parameters,

choose the execution platform and get results from the multi-scale cardiac workflow. The user

manual can be accessed at the root of the git repository under filename: “UserManual.docx”

https://github.com/ClancyLabUCD/Workflow_Kepler

Here we demonstrate several example scenarios including: (a) Deployment of the workflow

for a single-cell simulation to predict a cardiac action potential with a defined set of input

parameters, (b) a configuration for a 1-dimensional cardiac tissue simulation, or (c) a

2-dimensional cardiac tissue simulation.

The model formulations for ventricular cells (the Soltis-Saucerman model [51], Morotti-

Grandi model [52], or Grandi-Bers model [53] merged with the Soltis-Saucerman model)

were implemented in the Kepler workflow. The source code of simulation models has been

implemented in C++ and is compiled during the workflow execution using icc or gcc com-

piler, depending on the execution platform and compiler availability. Users can use the source

code provided by us or attach their custom developed simulation models by editing the work-

flow parameter “sourceCode.” The workflow gives users a choice to select “compilerProgram”

parameter. The workflow integrates multistep single-cell (black circle symbol), 1-dimensional

(black rectangle symbol) and 2-dimensional (black square symbol) tissue model simulations in

a single automated process (Fig 1). The SingleCell-Sim module includes a sub-workflow that

performs single-cell simulation. Likewise, OneD-Sim and TwoD-Sim modules perform

1-dimensional and 2-dimensional tissue model simulations, respectively. The workflow

includes user configuration components, simulation components with multiple execution

choices and post-processing components for each model.

User configured parameter settings and initial conditions also allow the end user to control

simulation constraints for single-cell, 1D and 2D modules (such as Na+-blocker concentration;

rapid delayed rectifier potassium channel conductance, GKr, block ratio; ligand (β-blocker iso-

proterenol) concentration, CaMKII (Ca2+/calmodulin-dependent protein kinase II) activity

levels; number of beats and others through workflow parameters. The simulation constraints
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are ported as workflow parameters, which can be modified and passed to the simulation mod-

els using the user configuration module. This workflow module is implemented using Kepler

Python actor and Python libraries. Users can seamlessly configure the simulation parameters

simply by changing workflow parameter values through command line or GUI as shown in

Fig 1 (purple arrow). Many instances of these models can be used with varying input parame-

ters, and the models can be linked in the workflows in various ways. The internal structure of

the workflow element (actor) is shown in Fig 2. User parameter configurations can also be

expanded to include more parameters by modifying a workflow actor.

Fig 1. Multiscale cardiac cell workflow. The main interface workflow contains single-cell or zero-dimension (SingleCell-Sim—black

circle symbol), one-dimension (OneD-Sim—black rectangle symbol), and two-dimension (TwoD-Sim—black square symbol) tissue

simulation modules, as well as user configuration parameters.

https://doi.org/10.1371/journal.pcbi.1006856.g001
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Multiple execution choices

The workflow incorporates flexibility for the end-user’s choice of platform depending on the

use case and resource availability. Users can run the workflow on multiple computing plat-

forms such as local, private clusters, and remote HPC clusters by configuring execution choice

parameters for individual processes. Kepler allows customization of each execution instance of

a workflow with user input parameters. In Fig 3, the Kepler’s Execution Choice actor was cre-

ated in the Core single-cell module. The Local Execution Options and the Remote execution

options are also available in the options menu at the top of the GUI. The capability of multiple

execution choice on different hardware platforms is achieved by using the Kepler workflow

system. By design, the Kepler framework is capable of automatically creating new jobs for exe-

cution. This functionality enables scientists to change execution platforms (local or remote)

without any additional user scripting.

Post-processing and visualization module

The post-processing module generates output data files from single-cell, 1D and 2D tissue sim-

ulation results. The workflow uses Python libraries and Kepler actors to post process the

Fig 2. User configuration module. The module “SingleCellUsrConf” is the User Configuration Module for single-cell

simulations (SingleCell-Sim, see Fig 1). We created the user configuration module to allow users to control simulation

constraints such as Na+ and rapid delayed rectifier K+ channel (IKr) blocker concentrations, ligand (β-blocker

isoproterenol) concentration, CaMKII activity levels, number of beats, basic cycle length (BCL) i.e. heartbeat duration

and other controls for single-cell simulation through workflow parameters.

https://doi.org/10.1371/journal.pcbi.1006856.g002
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simulation results and generate plots for simulated action potentials (AP), main ionic currents

(ICa, IKr, IK1, INCX, INa, Ito, IKs), intracellular (cytosolic) and sarcoplasmic reticulum concentra-

tions of Ca2+ and Na+ in single cells, pseudo ECG in a 1D-simulation, and snapshots of AP

propagation in 2D tissue.

Further, the Kepler workflow automates the provenance collection, execution report gener-

ation and reproducibility. For basic execution of the workflow in “as-is” condition, users do

Fig 3. Multiple execution module. The “SingleCellMod” module is the Core Simulation Module for single-cell simulations

(SingleCell-Sim, see Fig 1). The Kepler’s Execution Choice actor was created to provide user options of multiple computing platforms

based on the use case, data size and the resource availability.

https://doi.org/10.1371/journal.pcbi.1006856.g003
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not need expertise in the technologies used, and can execute the workflow using GUI and

command line.

Methods for cardiac simulations executed in this study

All simulations of three cardiac myocyte models (the Soltis-Saucerman model [54], Morotti-

Grandi model [52], or Grandi-Bers model [53] merged with the Soltis-Saucerman model)

were encoded in C/C++, and run using GCC complier on Mac Pro or Linux computers.

The numerical method used for updating the voltage was forward Euler. Single cell action

potentials (APs) and selected ionic currents were recorded. For higher dimension simulations,

we simulated a transmural fiber composed of 165 ventricular cells (Δx = Δy = 100 μm) con-

nected by resistances to simulate gap junctions [55]. The transmural fiber contains an endocar-

dial region and epicardial region with a linear decreased in APD as indicated by experimental

data [56, 57]. GKr was used as the index value of endocardium in the cell #1, and the index

value of epicardium in cell #165. We can simulate a heterogeneous 2D cardiac tissue composed

of 165 by 165 cells with Δx = Δy = 100 μm. The tissue contains an endocardial region and

epicardial region with a linear decreased in APD as indicated by experimental data [56, 57].

Channel conductance and gap-junction parameters are same as in the one-dimensional simu-

lations. Current flow is described by the following equation:

@Vðx; y; tÞ
@t

¼ Dx
@2Vðx; y; tÞ

@x2
þ Dy

@2Vðx; y; tÞ
@y2

�
Iion � Istim

Cm

Where V is the membrane potential, x and y are distances in the longitudinal and transverse

directions, respectively, Dx and Dy are diffusion coefficients in the x and y directions, Cm is

membrane capacitance (Cm = 1). Istim is 180 mA/cm2 for the first 0.5 ms. We also incorporated

anisotropic effects by setting Dx and Dy such that the ratio of conduction velocities is 1:2 [58].

Pseudo-ECG computation. Extracellular unipolar potentials (Fe) generated by the fiber

in an extensive medium of conductivity σe, were computed from the transmembrane potential

Vm using the integral expression as in Gima and Rudy [59]:

Φe x
0ð Þ ¼

a2σi

4σe

Z

ð� rVmÞ � r
1

r

� �

dx

r ¼ ½ðx � x0Þ2 þ ðy � y0Þ2�1=2

Numerical results were visualized using Matplotlib from Python. The workflow requires

users to install Kepler 2.5, bioKepler 1.2, Matplotlib, GCC version 4.2.1. Please see Action

Potential Workflow User Manual for details.

Results

Modeling and simulation in the workflow

One of the key added advantages of using Kepler Workflow system is the ability to deploy new

source code easily. To facilitate execution of new cardiac cell models, the path to C++ source

code file is parametrized in the Kepler Workflow. If a scientist wants to use their customized

cardiac cell model, she/he can edit the Kepler Workflow parameter called ’sourceCode’ under

the category of ’SharedParameters’, to point to the directory where the desired C++ source

code resides. Further, the parameters unique to a given source code can be defined in a file

called ‘stim_param.txt’. The last step in parametrization is to add a placeholder in the Kepler

user interface using the ‘Parameter’ option under the ‘Workflow Input’ menu.

Cardiac electrophysiology models using Kepler Workflows
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We first demonstrate the potential for the Kepler workflow environment to be used to run

batch simulations for a simulated human ventricular single-cell model for varying degrees of

IKr reduction (Fig 4). The workflow allows users vary rapid delayed rectifier potassium channel

conductance, GKr, in the simulations. Fig 4 illustrates single-cell APs and the time-course of

IKr through the Kepler workflow with varying GKr. In the top of panels A-D, various end user

configurations for input parameters are shown for each simulation instance. In the middle

row, simulated single-cell action potentials are shown. In the bottom row, the time-course of

Ikr during the AP is shown. The Gkr was reduced via the indicated (green arrows–top panels)

block ratios of 1 (used as control, panel A), 0.75 (B), 0.50 (C) and 0.25 (D), corresponding to

IKr block of 0, 25, 50 and 75%, respectively.

In Fig 5, we demonstrate expansion of the workflow beyond single-cell simulation to user

defined 1D and 2D-simulations. The workflow generates a single cell cardiac ventricular action

potential (Fig 5A), as well as a one-dimensional simulation and a pseudo-ECG (Fig 5B) and

then ingests steady-state results from 1D simulations to seed 2D simulations shown in Fig 5C.

In this example, the single cell was simulated at a pacing rate of 1 Hz and 10 action potentials

were generated. The last AP (10th beat) is shown in Fig 5A (bottom panel). In the tissue simu-

lations, we simulated a heterogeneous fiber (with a linear decrease in AP duration from endo-

cardial to epicardial region [57] (i.e. from the innermost to the outer layer of the cardiac

tissue) composed of 165 ventricular cells (parameter tissue length = 165 cells in Fig 5B, top)

for three beats. The pseudo-ECG is shown in Fig 5B (bottom panel). In the panel C, we

Fig 4. Simulated human ventricular single-cell model via kepler workflow with or without IKr reduction. A. User configurations are shown in the left

panels. Simulated single-cell action potential (AP–middle panel), and the time course of original IKr (control) during the AP (bottom). B—D Simulated single-

cell action potentials (middle) with reduced IKr (bottom). GKr block ratio was set to 0.75 (B), 0.5 (C) and 0.25 (D) in 0D configuration setting (green arrows–left

panels), corresponding to 25, 50 or 75% IKr block, respectively.

https://doi.org/10.1371/journal.pcbi.1006856.g004
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demonstrated 2D AP wave propagation in response to one stimulus (a planar wave). The

workflow simulated a heterogeneous 2D cardiac tissue composed of an array of 165 cells by

165 cells (1.65 cm x 1.65 cm) [57].

In the example shown in Fig 6, we tested three different species models and performed sim-

ulations to generate propagation of an action potential in one dimension using the topology

shown in Fig 6 (top). Pseudo-ECGs are shown in response to seven stimuli at 1 Hz in Human

(Fig 6A—orange), Rabbit (Fig 6B—purple) and Mouse (Fig 6C—green). This example dem-

onstrates how the workflow cyberinfrastructure can also be re-used as a multi-species simula-

tor by utilizing single cell cardiac ventricular computer models as inputs into the higher

dimensional models. The cell model of choice can be linked to an idealized one-dimensional

fiber model, which can be used to compute signal averaged pseudo ECG traces (Fig 6A–6C).

They capture temporal and spatial gradients of electric potential during a simulation that

tracks conduction and repolarization of a propagating wave.

Discussion

There has been a tremendous increase in both the number of cardiac models in existence, and

in model complexity over the last several decades, correlating with both an increase in compu-

tational power, and dramatically reduced computational cost. These developments have cre-

ated the potential for cardiac cell models and their mathematical and/or agent-based model

components to be reused and coupled with one another, creating flexible, modular, portable

and potentially scalable models that can account for a range of attributes [60]. The potential

for linking models together in new ways also suggests construction of multi-scale models from

existing models at various temporal and spatial scales.

Fig 5. The workflow integrates multistep 0D (single-cell), 1D and 2D model simulations in a single automated process. A.

Simulated results of single-cell action potential (bottom panel). B. The pseudo ECG (bottom panel), and C. Six distinct time

snapshots of 2D action potential wave propagation (bottom panel) from endocardial region (left) to epicardial region (right), with a

linear decrease in APDs.

https://doi.org/10.1371/journal.pcbi.1006856.g005
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To ideally enable model modularity, reuse, reproducibility, portability and scalability, a

model execution platform should be able to provide the reuse of code, reproduction of

reported in silico predictions, as well as a way to run simulations in an efficient, expandable,

modular and portable manner. Scientific workflow tools allow exactly these elements and can

provide a user interface and potential for automation and optimization of software and hard-

ware elements of the model execution. Workflows derive from the concept of directed graphs

with individual nodes that represent discrete computational components that can be opti-

mized to execute on distinct hardware architecture [61–64]. A scientific workflow is conceptu-

alized as a set of tasks performed on a collection of datasets. The workflow-based design

enables scientists to break large computational tasks into smaller manageable and reusable

modules (nodes). The data flows through these modules (nodes) and gets transformed. The

scientists can collaborate effectively on a large-scale problem by bringing their expertise to dif-

ferent modules in a workflow. Data and results flow between the individual nodes.

Fig 6. Simulated multispecies ventricular single-cell (0D) and 1D simulations depending on user choice. The

multiscale cardiac cell modeling workflow presents from 0-Dimension (circle) to 1-Dimension (rectangle). A—C.

Pseudo-ECGs were computed in the Human (orange), Rabbit (purple) and Mouse (green) ventricular cell models.

https://doi.org/10.1371/journal.pcbi.1006856.g006
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The computational overhead involved with workflow implementation is during the start of

the Kepler Workflow Engine, and the added cost of building the workflow graph in the Kepler

GUI. However, this is a one-time cost during a single execution. Once the Kepler Workflow

Engine is up and running, the real advantage comes from automated execution, automated

provenance collection, and parameterization driven extensibility benefits. In essence, the end

user will get these benefits at least, and these can be enhanced by creation of a wrapper mecha-

nism using the Kepler system, that enhances modularity, shareability and extensibility of their

work. Wrapping with Kepler Workflow system enhances the portability of source code—it can

work on local machine, or on a distributed cluster—so users are not required to modify or

write any script for change in execution platforms. Moreover, diversity of parameters can be

handled at two levels, when designing the wrapper workflow. The parameters common to an

application area, can be abstracted away and customized at the workflow level (indicated by

purple arrow in the Fig 1). The parameters unique to a given source code can be defined in a

file called ‘stim_param.txt’ and the user needs to add a placeholder (Fig 1 –User configuration

Parameters) in the workflow definition using the ‘Parameter’ option under the ‘Workflow

Input’ menu.

The added cost of Kepler workflow system can be hedged by exploiting potential to paralle-

lize codes across distributed systems, for problems involving large-scale computation and

large datasets. The Kepler system has inbuilt mechanisms to quickly divide and conquer large

computations in batch parallel computations. For cases involving specific cost benefit analysis,

since the computational overhead of Kepler is dependent on each workflow, we suggest per-

forming case-specific measurement of ‘Kepler + SourceCode + Parallelization Director’ against

isolated run of ‘SourceCode’. We are happy to provide support for such efforts, using our sup-

port team for open source users of Kepler.

One critical feature of the Kepler that was decisive in selecting this engine, is the “prove-

nance module”. This module archives workflow execution history, parameters, software and

hardware signatures. Workflows Provenance can help preserve evidence and data from experi-

ments to achieve reproducibility [43, 65, 66]. The Kepler reporting module generates informa-

tive and detailed summaries of the execution that include user configuration parameters used

during the execution in various simulation steps, version of respective software tools, and sys-

tem hardware information on which the workflow is executed. This “execution-signature” can

drastically reduce time required to write reports or methods and material section in scientific

publications, enabling domain experts to focus their energy on problem solving [43, 45, 65,

66]. Use of Kepler enabled us to delegate these critical components to the framework, and

allowed us to focus on the science behind the problem.

It is important to note that workflow frameworks are not an alternative to markup lan-

guages for model description or simulation experimentation or an alternative to specialized

packages that can integrate more than one kind or scale of model, but rather than efficient and

reproducible approach to multi-scale modeling using multiple component models, software

tools and data sets that facilitates usability, sharing and provenance tracking.

Here, we demonstrated the application of the freely-available Kepler scientific workflow

system to execute a multi-scale model of cardiac electrophysiology. The workflow allows for

modularity, scalability and flexibility in a deployable framework that can be configured by the

end-user for maximum flexibility. Like most computational scientists, we have long shared

concerns about the reproducibility and reuse of models. Versioning and provenance informa-

tion can be included in Kepler workflow approach as well as the origin of the model compo-

nents and user defined components and parameter settings used in each run. In this

demonstration, we utilized Kepler to develop a workflow containing differential equation

models of cardiac physiology that automate the execution of simulations with user defined
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options of outputs from a single cell (0-dimensional), 1 or 2-dimensional tissue, and a pseudo-

ECG output, which can be compared to experimental or clinical data.

The workflow as presented could be readily adopted and expanded for applied use in the

safety pharmacology domain. In both clinical and experimental settings, prolongation of the

QT interval of the ECG and related proarrhythmia have been so strongly associated, that a pro-

longed QT interval is largely accepted as surrogate marker for proarrhythmia. Here we dem-

onstrate how the workflow can be applied to an investigation of the impact of perturbation of

the key repolarizing potassium current in the heart, the rapidly activating component of the

delayed rectifier potassium current, IKr. Mutations in the potassium channel gene encoding IKr

or drug-induced inhibition of IKr can lead to inherited or acquired long QT syndrome. The

QT interval is a phase of the cardiac cycle that corresponds to action potential duration (APD)

including cellular repolarization (T-wave). Our single-cell examples demonstrate that reduc-

tion of Ikr caused AP prolongation (Fig 4). In Fig 5, the workflow can be used to predict QT

intervals in the setting of 1-dimensional tissue or further investigate repolarization phases on

2D AP propagation maps by modifying IKr. Finally, in Fig 6 our Kepler workflows allow to eas-

ily demonstrate that cardiac electrical signal propagation varies in different species used in

experimental studies. And using this approach we can relate findings from animal model stud-

ies and correlate them to clinical human studies as well.

While considerable attention has been given to the prospects of computational modelling

and simulation as a platform for prediction of cardiac drug safety, electro-toxicity and proar-

rhythmia risk assessment, less scrutiny over the choice of model and the impact of model

choice on predicted effects has been given. Here we also show how the Kepler multi-scale

workflow can be applied to multispecies to allow users to perform preliminary assessments in

models for which predetermined selections of validation experiments can be performed.

The Kepler cyberinfrastructure enables biomedical scientists to (1) understand and catalog

accuracy for assembly and linking of models through rigorous uncertainty quantification

(UQ) and sensitivity analysis, (2) define a common practice and methodology for linking

together (big) data and high-throughput, multi-spatial, multi-temporal, and complex models

through reusable workflow definitions, execution, and tools, (3) develop a user interface build-

ing toolkit, and (4) develop new methods for deployment and distribution of highly scalable,

portable, expandable and robust software and platforms. An additional benefit of this

approach is that it allows for individual workflow elements to be optimized for hardware to

maximize efficient parallel computing. Various processes of the workflow can be distributed to

execute on optimized systems and then pass data though linkage between the workflow

elements.

In the near future, our next steps will include the development of an online training course

package with lecture material, videos and hands-on on this Multi-scale Cardiac Workflow tool

on the e-learning platform called Biomedical Big Data Training and Collaborative (BBDTC) as

our educational and community outreach efforts. The BBDTC (https://biobigdata.ucsd.edu) is

a community-oriented platform that encourages collaborative efforts on training and educa-

tion to ensure high-quality knowledge dissemination to biomedical big data scientific commu-

nity. The BBDTC provides easy and intuitive interface to create, launch and share open

training materials and tools for biomedical community [42, 67].

Future plans also include goals to integrate this workflow with our Machine Learning based

performance prediction module to efficiently schedule different components of the workflow

on available computing hardware in a way to gain performance and resource optimization

[68–70]. We will couple the workflow with our provenance-based fault tolerance framework to

automatically detect failure point and re-start the execution of the workflow from point of fail-

ure to save time and resources [71].
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In summary, we have developed a Kepler based workflow for multi-scale cardiac electro-

physiology that can be utilized and expanded for any number of predictions as defined by the

end user. The approach brings us closer to the increasingly shared goal of computational scien-

tists to enable model modularity, reuse, reproducibility, portability and scalability. The work-

flow concept also allows a model execution platform that allows the reuse of code,

reproduction of reported in silico predictions, as well as a way to run simulations in an effi-

cient, expandable, modular and portable manner. We have demonstrated an application of the

approach by linking models together for construction of multispecies multiscale models from

existing models at various temporal and spatial scales.
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