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Sensitivity of mRNA Translation
Gilad Poker1, Michael Margaliot1 & Tamir Tuller2

Using the dynamic mean-field approximation of the totally asymmetric simple exclusion process 
(TASEP), we investigate the effect of small changes in the initiation, elongation, and termination 
rates along the mRNA strand on the steady-state protein translation rate. We show that the 
sensitivity of mRNA translation is equal to the sensitivity of the maximal eigenvalue of a 
symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads to new analytical results 
as well as efficient numerical schemes that are applicable for large-scale models. Our results show 
that in the usual endogenous case, when initiation is more rate-limiting than elongation, the 
sensitivity of the translation rate to small mutations rapidly increases towards the 5′ end of the 
ORF. When the initiation rate is high, as may be the case for highly expressed and/or heterologous 
optimized genes, the maximal sensitivity is with respect to the elongation rates at the middle of 
the mRNA strand. We also show that the maximal possible effect of a small increase/decrease in 
any of the rates along the mRNA is an increase/decrease of the same magnitude in the translation 
rate. These results are in agreement with previous molecular evolutionary and synthetic biology 
experimental studies.

During mRNA translation, complex molecular machines called ribosomes attach to the 5′  end of the 
messenger RNA (mRNA) and then scan it in a sequential manner. At each elongation step, a nucle-
otide triplet (codon) is read and the ribosome waits until a freely diffusing transfer RNA (tRNA), 
carrying the corresponding amino-acid, binds to the ribosome. The process ends when the ribosome 
reaches the 3′  end of the mRNA, detaches, and releases the chain of amino-acids that folds into a 
functioning protein1.

Translation is a crucial step in gene expression, and it is becoming increasingly clear that under-
standing this process is vital in order to reveal how biological systems develop, evolve, and function. 
Indeed, mRNA translation is the most extensively regulated step in mammals2, and a 100-fold range 
of translational efficiency was detected between different genes3,4. This clearly has a strong effect on 
the protein abundance that cannot be predicted by measuring mRNA abundances alone. In particular, 
two important dynamical aspects of the translation process are: (1) certain codons are “slower” than 
others due to factors such as low abundance of tRNA molecules with the corresponding anti-codon, 
folding of the mRNA, and interactions of the translated protein and the ribosome5; and (2) many 
ribosomes scan along the same mRNA chain in parallel and “traffic jams” can form behind a slowly 
moving ribosome.

TASEP is the standard mathematical model for translation6–8. In this model, particles move along a 
chain of n consecutive sites. Each site can be either occupied by a particle or free. A particle attaches 
to the first site with probability α (but only if this site is free), hops from site i to site i +  1 with 
probability γi (but only if site i +  1 is free), and hops from the last site of the chain with probability 
β. In the homogeneous TASEP, all the transitions rates γi are assumed to be equal and, without loss 
of generality, scaled to one. In the context of translation, the particles [chain] model the ribosomes 
[mRNA molecule].

The dynamic mean-field approximation of TASEP9, sometimes called the ribosome flow model 
(RFM)10, is a set of n ordinary differential equations:
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Here x t [0 1]i( ) ∈ ,  is the normalized occupancy level at site i at time t, and λ i >  0 is a parameter that 
controls the transition rate from site i to the consecutive site i +  1. To explain this model, consider for 
example the equation

x x x x1 11 0 1 1 1 2= λ ( − ) − λ ( − ).

The term λ 0(1 −  x1) is the rate at which ribosomes attach to the beginning of the chain. This is given 
by the product of the initiation rate λ 0 and the term (1 −  x1). This means that as x1 increases, i.e., as site 
1 becomes fuller, the effective binding rate decreases. In particular, when x1(t) =  1 the site is completely 
full and the effective binding rate is zero. The term (1 −  x1) thus reflects a “soft version” of the simple 
exclusion principle of TASEP. The term λ 1x1(1 −  x2) is the rate in which ribosomes move from site 1 
to site 2. This is proportional to the occupancy level at site 1, and to (1 −  x2) representing again the 
simple exclusion principle. The symmetry between the xi and (1 −  xi) terms also preserves the so called 
particle-hole symmetry of TASEP11. The term R(t): =  λ nxn(t) ia the rate of ribosomes exiting from the 
last site, that is, the protein translation rate at time t.

Unlike TASEP, the RFM is a deterministic, synchronous, and continuous-time model. Nevertheless, 
it has been shown that for the range of parameters that are relevant for translation RFM and TASEP 
provide highly correlated predictions10.

The state-space of the RFM is the unit cube C x x i n: { : [0 1]: 1 }n n
i= ∈ ∈ , = , …, . For a Cn∈ , 

let x(t, a) denote the solution at time t of the RFM emanating from x(0) =  a. For a set S, let int(S) denote 
the interior of S. It is known12,13 that the RFM admits a unique equilibrium e e Cintn

n
0= (λ , …, λ ) ∈ ( ), 

and that every trajectory of the RFM converges to e, that is, limt→∞x(t, a) =  e for all a ∈  Cn. In particular, 
R(t) converges to the steady-state protein translation rate R: =  λ nen. In other words, the ribosomal densi-
ties and thus the translation rate always converge to steady-state values that depend on the rates, but not 
on the initial conditions.

Substituting e for x in (1) yields
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and this gives

R e e i n1 0 1 3i i i 1= λ ( − ), = , , …, , ( )+

where we define e : 10 =  and e : 0n 1 =+ . From this it is possible to obtain an elegant continued fraction 
(CF) equation for R. For example, for n =  2, (3) yields

R
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R
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Solving the CF equation for R provides a mapping Rn0(λ , …, λ ) →  (note that since e ∈  Cn is unique, 
there is a single feasible solution R).

It has been recently shown14 that the (n +  2) ×  (n +  2) matrix:
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has real and distinct eigenvalues: n1 2 2ζ ζ ζ< < … < ,+  with

R 5n 2
1 2ζ = . ( )+
− /

Furthermore, if we let qi, i n{0 }∈ , …, , denote the (i +  1) ×  (i +  1) principal minor of (ζn+2I −  A) 
then

q R e e e 6i
i

i i
1 2

1 1= … . ( )
−( + )/

−

Equation  (5) provides a spectral representation of the mapping from the λ i’s to R. As we will show 
below, this provides a useful framework for studying the dependence of the steady-state translation rate 
R in the RFM on the (generally inhomogeneous) initiation, elongation, and termination rates. Note that 
since A is a (componentwise) nonnegative matrix, ζn+2 is also the Perron root15 of A, denoted ρ(A).

Note that the matrix A should not be confused with the transition matrix used in the stochastic anal-
ysis of TASEP, as that matrix decodes the transitions between all possible particle configurations and is 
thus of dimensions 2n ×  2n. This limits its use to very short TASEPs only.

Let  x x i k: { : 0 1 }
k k

i= ∈ > , = , …,++ . Recently, Eq.  (5) has been applied14 to prove that the 
mapping Rn0λ λ( , …, ) →  is strictly concave on n 1

++
+ . This means that the problem of maximizing R, 

subject to an affine constraint on the rates, is a convex optimization problem. Maximizing R, given the 
limited bimolecular budget, is important because it is known that translation is one of the most energy 
consuming processes in the cell1. Thus, it is natural to assume that evolution optimized this process. Also, 
maximizing the translation rate is a major challenge in synthetic biology and specifically in heterologous 
gene expression16. Several other tools from the field of systems and control theory have been used to 
analyze the RFM13,17,18.

Results
A number of interesting papers studied the effect of slow codon configurations on the steady-state trans-
lation rate using simulations and various approximations of TASEP19–22. The spectral representation of R 
provides a new, exact, and computationally efficient approach for studying this issue in the RFM using 
algorithms that compute the largest eigenvalue of a symmetric and tridiagonal matrix. For example, 
Fig. 1 shows R, computed via (5), for various slow rate configurations in an RFM with n =  1000.

Here, however, we use (5) to analyze a different (albeit related) notion, namely, the sensitivities:

s R i n: 0 1i n
i

n0 0(λ , …, λ ) =
∂
∂λ

(λ , …, λ ), = , , …, .

A relatively large value of sk indicates that a small change in the rate λ k will have a strong effect on 
the translation rate R. In other words, the sensitivities can be used to determine which rates are the most 
important in terms of their effect on the translation rate. The advantage of the spectral representation of 
R is that determining si becomes the classical eigenvalue sensitivity problem. Indeed, since A is (compo-
nentwise) nonnegative and irreducible15, there exists an eigenvector v n 2∈ ++

+  (that is unique up to scal-
ing) such that Av =  ζn+2v. By known results from linear algebra23,
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This provides a way to compute, in an efficient and numerically stable way, the sensitivities for 
large-scale inhomogeneous RFMs using standard algorithms for computing the eigenvalues and eigen-
vectors of symmetric tridiagonal matrices.
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Figure  2 depicts ln(si) as a function of i for three homogeneous RFMs (HRFMs) (i.e., λ i =  1 for all 
i n{1 1}∈ , …, − ), with size n =  200. The left sub-figure shows the case where λ 0 =  0.4 and λ 200 =  1, so 
λ 0 is the rate limiting factor. The sensitivity s0 is maximal and the sensitivities decrease as i increases. 
This regime describes the typical case in endogenous genes where initiation is the rate limiting factor24. 
Such genes indeed demonstrate selection for increased robustness to transcription errors in ORF features 
that affect the translation rate (e.g. mRNA folding and adaptation to the tRNA pool)5. Similarly, our 
results may also explain the evolutionary selection for unusual codon usage bias at the ORF 5′  end25.

The right sub-figure shows the symmetric case where λ 0 =  1 and λ 200 =  0.4. The middle sub-figure 
depicts the case where all the λ is are one. The plot demonstrates what is known in the TASEP literature as 
the edge effect26: the maximal sensitivity is in the center of the chain, and it decreases as we move toward 
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Figure 1. Steady state translation rate R in a RFM with n = 1000 and rates λi = 1, except for a 
configuration of slow rates with rate q. Solid line: λ 500 =  q; Dotted line: λ 500 =  λ 501 =  q; Dashed line: 
λ 499 =  λ 500 =  λ 501 =  q. As expected, R is an increasing function of q. Note that a cluster of consecutive slow 
sites considerably reduces R.

0 50 100 150 200
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

ln
(s

i)

i
0 50 100 150 200

−14

−13

−12

−11

−10

−9

−8

−7

−6

ln
(s

i)

i
0 50 100 150 200

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

ln
(s

i)

i

Figure 2. ln(si) as a function of i in three HRFMs with length n = 200. Left: λ0 = 0.4 and λ200 = 1. Here 
λ 0 is rate limiting and thus the sensitivities of sites close to site 1 are larger. Note that ln(si) decays linearly 
with i. Middle: λ 0 =  λ 200 =  1. Here the maximal sensitivity is with respect to λ n/2 and it decreases as we move 
towards the edges of the chain. Right: λ 0 =  1 and λ 200 =  0.4.
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the edges. This suggests that in order to maximize the translation rate in heterologous gene expression16, 
more attention should be devoted to tuning the codons in the middle of the coding sequence.

The spectral approach provides an upper bound on the sensitivities, namely,

s i n1 for all {0 1 } 9i ≤ , ∈ , , …, ( )

(see the Methods section for details). This means that the maximal possible effect of a small increase/
decrease in any of the rates is an increase/decrease of the same magnitude in the translation rate. This 
agrees with a recent experimental study on the change in protein abundance resulting from perturbing 
the codons of heterologous genes 27. In this study, 25 variants of the viral gene HRSVgp04 were generated 
and the corresponding protein levels were measured in S. cerevisiae. In each variant only codons 41–80 
of the ORF were perturbed, without changing the encoded protein; thus, mRNA levels and translation 
initiation were expected to be identical in all variants. For each variant, the predicted change in the cor-
responding λ is (i.e. transition rates) was computed28. An average change of 33.3% in the transition rate 
led to a 27.5% change in the protein levels.

We now focus on two special cases where it is possible to obtain exact closed-form expressions for 
the sensitivities.

Totally homogeneous ribosome flow model (THRFM). Suppose that λ i =  λ c for all i n{0 }∈ , …, . 
In other words, the initiation, termination, and all transition rates are equal, with λ c denoting their 
common value. We refer to this case as the THRFM. In this case (see the Methods section)
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This provides a closed-form expression for the graph shown in the middle plot of Fig. 2.
Equation (5) implies that for any c >  0, R c c cR 0n n0 0( λ , …, λ ) = ( , …, λ ). By Euler’s homogeneous 

function theorem, R si
n

i i0= ∑ λ= , and for the THRFM this gives s cosi
n

i n0
1
4

2
3( )∑ = π

=
−

+
. Thus, 

slim 1 4n i
n

i0∑ = /→∞ = .
Figure  3 compares the analytical formula (11) to simulations of the corresponding TASEP (see the 

methods section for details). It may be seen that the results agree reasonably well.
An exact measure of the edge effect in the THRFM is given by the ratio n :

s

s
n 2

0
Δ( ) = / . Substituting 

(11) and simplifying yields
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Figure 3. ln(si) as a function of i for a THRFM with n = 10. The analytical results for the RFM (ο ) are 
compared to TASEP sensitivity (x) calculated using Monte Carlo simulations.
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(see Fig.  4). Note that limn→∞Δ (n) =  ∞. In other words, although all the sensitivities decrease with n 
(see (11)) the edge effect actually becomes more prominent. One explanation for this edge effect is that 
a site at the center of the chain has more “close” neighbors than a site located towards one of the edges 
of the chain. Thus, when all the rates are equal the protein translation rate is more sensitive to the rates 
at the center of the chain.

Homogeneous and symmetric ribosome flow model (HSRFM). Another case where closed-form 
expressions for the sensitivities can be derived is when all the elongation rates are equal: 

:n c1 2 1λ = λ = = λ = λ−
, and also

12n c 0λ = λ − λ . ( )

We refer to this case as the HSRFM. Here (see the Methods section for the details)
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where : n0μ = λ /λ . This can be explained as follows. If λ 0 <  λ n (so α <  1/2 and μ <  1) then s
s
i

i

1 μ=+ , so 
ln(si+1) −  ln(si) =  ln(μ), for all i n{1 2}∈ , …, − . In other words, inside the chain the sensitivity strictly 
decreases with i, with ln(si) decaying linearly with i. This is reasonable, as in this case the initiation rate 
is the limiting factor. Note that sn <  0. This is due to (12), as increasing λ n means decreasing λ 0, and since 
this is the rate limiting factor, this decreases R. The case λ 0 >  λ n is symmetric.

Figure  5 depicts ln(si) in (15) for an HSRFM with n =  10, λ c =  1, and λ 0 =  0.3. The results are also 
compared to TASEP simulations (see the Methods section for details). It may be seen that the results agree 
with these simulations, except for large values of i, that probably require a larger number of simulations 
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to obtain reliable averages. However, the sensitivity results for TASEP, obtained via Monte Carlo simula-
tions, are problematic because the small change in the steady-state current, resulting from a small change 
in one of the transition rates, is masked by the inherent stochasticity of the process. Comparing Fig. 5 
to Fig. 2 shows that the explicit equations for the HSRFM actually provide reasonable approximations to 
the general behavior of the HRFM in the case where the initiation rate is the limiting factor (and thus 
also in the symmetric case where termination rate is the limiting factor).

For a more reliable comparison between the sensitivity of RFM and that of TASEP, we used the 
closed-form formula for the steady-state current in the homogenous TASEP with N sites given by 
J =  Z(N −  1)/Z(N), where

Z k
j k j

k k j
:

2 1

j

k j j

1

1 1

1 1∑ α β
α β

( ) =
( − − )!

! ( − )!
−

−=

− − − −

− −

(see e.g. the survey paper9). Here α [β] is the entry [exit] probability and all the internal hopping rates 
γi are equal and normalized to one. We numerically calculated the sensitivity of J with respect to small 
changes in α, and compared this to the sensitivity of the corresponding RFM, i.e. the RFM with n =  N, 
λ 0 =  α, λ i =  1 ,i n1= , …, , and λ n =  β. Figure 6 depicts J

α
Δ
Δ

 and dR
d 0λ

 for the case N =  n =  30, β =  0.3, and 
various values of α. It may be seen that the sensitivities agree well when 0 3α .  and when 0 3α . . 
The value α =  0.3 corresponds to a phase transition in TASEP and then the sensitivity of the RFM, that 
is based on a mean-field approximation, differs from that of TASEP. In particular, it seems that the sen-
sitivity near α =  0.3 in TASEP changes more smoothly than the sensitivity in the corresponding RFM.

Discussion
Steady-state properties of the dynamic mean-field approximation of TASEP can be represented in a 
spectral form. Using this, we studied the sensitivity of the steady-state translation rate to perturbations 
in the initiation, transition, and termination rates. In this context, the problem reduces to the sensitivity 
analysis of the Perron root of a symmetric, nonnegative, tridiagonal, and irreducible matrix. This leads 
to: (1) highly efficient numerical computation of the sensitivities that is thus applicable for large-scale 
inhomogeneous RFMs; and (2) exact, closed-form expressions for the sensitivities in some special, yet 
important, cases.

Our results are based on analyzing the RFM which is the dynamic mean-field approximation of 
TASEP. However, simulations suggest that these results agree with the sensitivities in TASEP, which is 
the standard model for mRNA translation. The correspondence between the two models breaks down 
at parameter values that correspond to a phase transition in TASEP. In the remainder of this section, we 
discuss the relationship between the analytical results for the RFM sensitivity and known experimental 
findings, and suggest some future research directions.

First, a typical regime in the case of endogenous genes is when the initiation rate is the bottleneck 
rate1. The analytical results imply that in this case mutations at the 5′  end of the ORF will have a higher 
effect on the translation rate than mutations downstream of this region. The error rate in the process 
of gene transcription is estimated to be 1 in every 104 nucleotides1. Thus, on average, one in every 67 
windows with a length of 50 codons includes an error. Considering the fact that there are thousands of 
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Figure 5. ln(si) as a function of i for an HSRFM with n = 10, λc = 1 and λ0 = 0.3. The last value is not 
shown, as s10 =  − s0 <  0. The analytical results for the RFM (ο ) are compared to TASEP sensitivity (x) 
calculated using Monte Carlo simulations.
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copies of mRNA molecules in the cell (for example, the number of mRNA molecules in S. cerevisiae [E. 
coli] is around 6000029 [1380]30), and that genes are transcribed and translated continuously suggests that 
the probability of an error that reduces the organism’s fitness is non-negligible. Thus, evolution should 
shape this region such that transcriptional mutations will have a lower effect on translation rates than in 
the rest of the ORF. Indeed, a recent study has shown that this may be the case5. This study included a 
computational analysis of all 40 nucleotide windows in endogenous ORFs in two model organisms: the 
prokaryote E. coli and the eukaryote S. cerevisiae. For each window, and for each coding sequence the 
effect of all possible point transcriptional mutations on features known to affect translation elongation 
rate (e.g. adaptation of codons to the tRNA pool28 and local strength of mRNA folding5,25) was computed; 
such a profile of each gene is actually a prediction of the mean effect of mutations on the local nominal 
translation rate (i.e. the different λ i for all the sites i in our model) for that gene. At the next step, the 
mean of this profile over all the coding sequences of the organisms was computed to obtain the genomic 
profile of robustness of nominal translation rate to mutations (transcription errors). It was found that 
the robustness to mutations is higher at the beginning of the coding sequences (i.e. mutations at the 
beginning of the ORF tend to have a lower effect on the nominal translation rate). This suggests that 
there an increased selection for robustness to the effect of mutations on translation rate at the beginning 
of genes. This result agrees with the current study: if sensitivity of mRNA translation to small changes in 
λ i is higher at the beginning of the coding sequence it makes sense that evolution shaped these regions 
such that the effect of mutations on λ i will be lower.

Second, another study supports our analytical results which imply that mutations (small changes in 
λ i) at the 5′  end of the ORF will have a higher effect on the translation rate than mutations downstream 
of this region. A recent synthetic biology experiment (under review) estimated the distinct and causal 
effects of different parts of the transcript in the eukaryote S. cerevisiae. Reporter libraries of the viral 
HRSVgp04 gene have been generated for studying the effect of mutations in codons 2–41 and codons 
42–81 of the ORF on translation rate and thus protein levels. The first library, named L2–41, measured 
the protein levels of various variants of different codons in positions 2–41 (i.e. different λ i) but with the 
same codons elsewhere. The second library, L42–81, measured the protein levels of various variants of 
different codons in positions 42–81 but with the same codons elsewhere. It is important to mention that 
the size of these regions is close to the typical chunk corresponding to a single state-variable in the RFM10 
(around 25 codons). It was found that the variability in protein levels is higher in the first library than 
in the second one; this suggests that the λ is in the first codons have a higher effect on translation rate, 
supporting the analysis reported here.

Third, we show that in the RFM the maximal possible effect of a small increase/decrease in any of 
the elongation rates along the mRNA is an increase/decrease of the same magnitude in the translation 
rate. Using library L42–81 described above, it was possible to estimate the expected effect on translation 
elongation rate via applying a novel measure of per codon elongation rate28 (corresponding to the λ is in 
the RFM) which is based on local ribosome density measurements using ribo-seq experiments31. Average 
changes of 33% in the rate led to an actual 27% average effect on the measured protein levels. This agrees 
well with our bound si ≤  1, suggesting that si can be helpful for designing synthetic genes, as it provides 
an estimate of the effect of synonymous mutations on the resulting protein levels.
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Figure 6. Sensitivity of the steady-state current J in the homogeneous TASEP (*) and of the 
corresponding homogenous RFM (☐) as a function of α. 
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Finally, we show that when all the rates are more or less equal, as may be the case for highly expressed 
and/or heterologous optimized genes, the maximal sensitivity is at the middle of the mRNA sequence. A 
common biotechnological approach for protein production is heterologous gene expression16,32 in which 
a target protein is expressed in a host cell. Often, the corresponding gene and host cell are optimized in 
order to maximize the protein levels of the target protein. In such cases, it makes sense to maximize all 
gene expression steps, and to make all of them uniformly efficient such that there are no bottlenecks. 
Furthermore, it also makes sense to design the heterologous gene such that these features will be main-
tained under different perturbations of the intracellular gene expression machinery. Our results suggest 
that perturbations near the middle of the ORF are expected to have a more prominent effect on the 
translation rate; this fact should be taken into consideration when designing heterologous genes.

It is important to mention that the conclusions reported here may also be relevant for other intracel-
lular processes such as transcription of RNA, DNA replication, or intracellular trafficking over micro-
tubule1 that involve macro-molecules movement over a polymer. For example, transcription has been 
modeled using a mathematical model that is similar to the RFM33 (in this case, the model describes the 
movement of RNA polymerase instead of ribosomes), and TASEP has posed the grounds for the devel-
opment of theoretical tools describing molecular motors, with a good qualitative agreement when com-
pared to state of the art experiments34. We believe that the approach reported here should have practical 
contributions to the study of gene expression in various biomedical disciplines including evolutionary 
biology, functional genomics, and synthetic biology.

An interesting research topic is based on further validating and studying the results reported here both 
computationally and experimentally. Experiments similar to the ones described above where genes with 
different initiation rate and (constant) elongation rate should be engineered and the effect on translation 
rate (or protein levels) of small changes in the decoding rates in different parts of the coding sequence 
should be measured. Comprehensive computational models of gene expression that may include addi-
tional aspects that are not included in the RFM (e.g. mRNA degradation, the stochastic nature of the 
process, the fact that it may not converge to a steady state, the size of ribosomes, frame shifts) can be 
employed to understand the effect of small changes in the elongation rates on the translation rate and 
protein levels in vivo.

Methods
Derivation of Eq. (9). Pick i n{0 1 }∈ , , …, . Since vk >  0 for all k n{1 2}∈ , …, + , Eq. (8) implies 
that si >  0, i.e. an increase in any of the rates increases the steady-state translation rate. To determine an 
upper bound on si, perturb λ i to λ = λ + :i i , with 0 > . This yields a perturbed matrix 

∼A that is 
identical to A except for entries (i +  1, i +  2) and (i +  2, i +  1) that are:

  λ = (λ + ) = λ − λ / + ( ).
− / − / − / − /
 o2i i i i

1 2 1 2 1 2 3 2 2

Thus, = +
∼A A E, where E is a matrix with zero entries except for entries (i +  1, i +  2) and (i +  2, 

i +  1) that are o2i
3 2 2 − λ / + ( )− / . By Weyl’s inequality15,  ρ ρ( ) ≥ ( ) − λ / + ( ).

∼ − /A A o2i
3 2 2  This 

yields 2d A
d i

3 2
i
≥ −λ /

ρ ( )
λ

− / , so si
R

3 2

i
( )≤
λ

/
. Since R ≤  λ i for all i10, this yields (9).

Derivation of the sensitivities in the THRFM. For the THRFM, the matrix A in (4) becomes 
A Bc

1 2= λ− / , where B n n2 2∈ ( + )×( + ) is a tridiagonal Toeplitz matrix with zeros on the main diagonal, 
and ones on the super- and sub-diagonal. It is well-known35 that the Perron root and Perron eigenvector 
of B are B 2 cos

n 3( )ρ ( ) = π
+

, and ( ) ( ) ( )( ) = 


… 

′π π π

+ +
( + )
+

v B sin sin sin
n n

n
n3

2
3

2
3

. Therefore, 

A 2 cosc n
1 2

3( )ρ ( ) = λ π− /
+

, and using R =  ρ−2(A) yields (10). Substituting these values in (8) and using 

the fact that nsin 3 2i
n i

n1
2 2

3( )∑ = ( + )/π
=
+

+
 yields (11).

Derivation of the sensitivities in the HSRFM. In the HSRFM, the matrix A in (4) becomes 
A Cc

1 2= λ− / , where

C:

0 0 0 0
0 1 0 0

0 1 0 0 0

0 0 1 0 1

0 0 0 1 0

1 2

1 2

1 2

1 2

α
α

α

α

=
















…
…
…

… ( − )

… ( − )
















,

− /

− /

− /

− /



with : c0α = λ /λ . For α <  1, ρ(C) =  (α(1 −  α))−1/2, and v(C) is given by
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v

i

i n

i n

1 1

2 1

2 16
i

i

n

1 2 1 2

2

μ α

μ

=










, = ,

, ≤ ≤ + ,

, = + , ( )

( − )/ − /

/

where : 1 n0μ α α= /( − ) = λ /λ . Indeed, a calculation shows that Cv =  ρv. Thus, v is an eigenvector 
corresponding to the eigenvalue ρ, and since v n 2∈ ++

+ , this eigenvalue is the spectral radius. Note that 
if α =  1/2 then v v n2 1′ = ( + ), and otherwise v v 2 1

1

n 1

′ =
μ
μ

( − )
−

+

. Thus, R =  ρ−2(A) =  λ cα(1 −  α). The sen-
sitivities in the HSRFM can now be determined. Here si, 1 ≤  i ≤  n −  1, were calculated using (8). Due to 
the additional coupling in (12), s0 and sn cannot be computed using (8), so we used (7). This yields (14) 
and (15).

TASEP Simulation. Every site i, i n1= , …, , in the TASEP chain is associated with “hopping-times”, 
where the time between two consecutive hopping times is exponentially distributed with rate λ i. Hopping 
times into the first site are distributed with rate λ 0. A simulation begins with an empty chain, and con-
tinues for 108 time steps. At each step all sites are scanned. If site i's hopping time is equal to the simu-
lation time, then the next hopping time is calculated. Also, if site i is occupied and site i +  1 is free, the 
particle hops from site i to site i +  1. The steady-state average occupancy of each site is the number of 
time steps it was occupied divided by the total simulation time, with the first 106 steps excluded from 
the calculation. For sensitivity simulations, TASEP with n =  10 sites is simulated 11 times. At each sim-
ulation, a different rate λ i is perturbed by 0 01 = . , while the rest of the rates are left unchanged. 
Sensitivity for this iteration is then calculated as Δ J/Δ λ i where 

J J Ji n i n0 0Δ = (λ , …, λ + , …, λ ) − (λ , …, λ , …, λ ) is the change in the average steady-state cur-
rent, and i Δλ = . Results are averaged over 1000 iterations. As noted above, these results must be taken 
with care, as the small change in J corresponding to the  perturbation may be masked by the inherent 
stochasticity of the process. This is why we also added a comparison to the analytic closed-form for J 
available for the homogeneous TASEP. The MATALB code for the simulations is available in the supple-
mentary material accompanying this paper (and can be downloaded from: http://www.cs.tau.ac.il/:tamir-
tul/supp_material_code.zip).

References
1. Alberts, B. et al. Molecular Biology of the Cell. 4th edn (Garland Science, 2002).
2. Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–42 (2011).
3. Vasquez, J.-J., Hon, C.-C., Vanselow, J. T., Schlosser, A. & Siegel, T. N. Comparative ribosome profiling reveals extensive 

translational complexity in different Trypanosoma brucei life cycle stages. Nucleic Acids Res. 42, 3623–3637 (2014).
4. Rojas-Duran, M. F. & Gilbert, W. V. Alternative transcription start site selection leads to large differences in translation activity 

in yeast. RNA 18, 2299–2305 (2012).
5. Tuller, T. et al. Composite effects of gene determinants on the translation speed and density of ribosomes. Genome Biol. 12, R110 

(2011).
6. Schadschneider, A., Chowdhury, D. & Nishinari, K. Stochastic Transport in Complex Systems: From Molecules to Vehicles 1st edn 

(Elsevier, 2011).
7. Zia, R. K. P., Dong, J. & Schmittmann, B. Modeling translation in protein synthesis with TASEP: A tutorial and recent 

developments. J. Statistical Physics 144, 405–428 (2011).
8. MacDonald, C. T., Gibbs, J. H. & Pipkin, A. C. Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6, 1–25 

(1968).
9. Blythe, R. A. & Evans, M. R. Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A: Math. Gen. 40, 

R333–R441 (2007).
10. Reuveni, S., Meilijson, I., Kupiec, M., Ruppin, E. & Tuller, T. Genome-scale analysis of translation elongation with a ribosome 

flow model. PLoS Comput Biol. 7, e1002127; doi: 10.1371/journal.pcbi.1002127 (2011).
11. Lakatos, G., Chou, T. & Kolomeisky, A. Steady-state properties of a totally asymmetric exclusion process with periodic structure. 

Phys. Rev. E 71, 011103 (2005).
12. Margaliot, M. & Tuller, T. Stability analysis of the ribosome flow model. IEEE/ACM Trans Comput Biol Bioinform. 9, 1545–1552 

(2012).
13. Margaliot, M., Sontag, E. D. & Tuller, T. Entrainment to periodic initiation and transition rates in a computational model for 

gene translation. PLoS One 9, e96039; doi: 10.1371/journal.pone.0096039 (2014).
14. Poker, G., Zarai, Y., Margaliot, M. & Tuller, T. Maximizing protein translation rate in the nonhomogeneous ribosome flow model: 

A convex optimization approach. J. R. Soc. Interface 11, 20140713 (2014).
15. Horn, R. A. & Johnson, C. R. Matrix Analysis 2 edn. (Cambridge University Press, 2013).
16. Gustafsson, C., Govindarajan, S. & Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 22, 346–353 

(2004).
17. Margaliot, M. & Tuller, T. Ribosome flow model with positive feedback. J. R. Soc. Interface 10, 20130267 (2013).
18. Zarai, Y., Margaliot, M. & Tuller, T. Explicit expression for the steady-state translation rate in the infinite-dimensional 

homogeneous ribosome flow model. IEEE/ACM Trans. Comput. Biol. Bioinform 10, 1322–1328 (2013).
19. Chou, T. & Lakatos, G. Clustered bottlenecks in mRNA translation and protein synthesis. Phys. Rev. Lett. 93, 198101 (2004).
20. Pierobon, P., Mobilia, M., Kouyos, R. & Frey, E. Bottleneck-induced transitions in a minimal model for intracellular transport. 

Phys. Rev. E 74, 031906 (2006).
21. Dong, J. J., Schmittmann, B. & Zia, R. K. P. Inhomogeneous exclusion processes with extended objects: The effect of defect 

locations. Phys. Rev. E 76, 051113 (2007).
22. Kolomeisky, A. B. Asymmetric simple exclusion model with local inhomogeneity. J. Phys. A: Math. Gen. 31, 1153–1164 (1998).
23. Magnus, J. R. On differentiating eigenvalues and eigenvectors. Econometr. Theor. 1, 179–191 (1985).

http://www.cs.tau.ac.il/tamirtul/supp_material_code.zip
http://www.cs.tau.ac.il/tamirtul/supp_material_code.zip


www.nature.com/scientificreports/

1 1Scientific RepoRts | 5:12795 | DOi: 10.1038/srep12795

24. Malys, N. & McCarthy, J. Translation initiation: variations in the mechanism can be anticipated. Cell Mol. Life Sci. 68, 991–1003 
(2011).

25. Tuller, T. & Zur, H. Multiple roles of the coding sequence 5ʹ end in gene expression regulation Nucleic Acids Res. 43, 13–28 
(2015).

26. Dong, J. J., Zia, R. K. P. & Schmittmann, B. Understanding the edge effect in TASEP with mean-field theoretic approaches.  
J. Phys. A: Math. Gen. 42, 015002 (2009).

27. Ben-Yehezkel, T., Atar, S., Zur, H., Diament, A., Goz, E., Marx, T., Cohen, R., Dana, A., Feldman, A., Shapiro, E., & Tuller, T. 
Rationally designed, heterologous S. cerevisiaetranscripts expose novel expression determinants. RNA Biol. (2015) Jul 15:0. 
(PMID: 26176266) [Epub ahead of print].

28. Dana, A. & Tuller, T. The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res. 42, 9171–81 (2014).
29. Zenklusen, D., Larson, D. R. & Singer, R. H. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. 

Struct. Mol. Biol. 15, 1263–1271 (2008).
30. Neidhardt, F. C. et al. Escherichia coli and Salmonella typhimurium - Cellular and Molecular Biology 1st edn, vol. 1 (ASM Press, 

1996).
31. Ingolia, N. T. Ribosome profiling: new views of translation, from single codons to genome scale. Nat. Rev. Genet. 15, 205–213 

(2014).
32. Binnie, C., Cossar, J. D. & Stewart, D. I. Heterologous biopharmaceutical protein expression in Streptomyces. Trends Biotechnol. 

15, 315–20 (1997).
33. Edri, S., Gazit, E., Cohen, E. & Tuller, T. The RNA polymerase flow model of gene transcription. IEEE Trans Biomed Circuits Syst. 

8, 54–64 (2014).
34. Ciandrini, L., Romano, M. C. & Parmeggiani, A. Stepping and crowding of molecular motors: Statistical kinetics from an 

exclusion process perspective. Biophysical J. 107, 1176–1184 (2014).
35. Noschese, S., Pasquini, L. & Reichel, L. Tridiagonal Toeplitz matrices: properties and novel applications. Numer. Linear Algebra 

Appl. 20, 302–326 (2013).

Acknowledgements
This work was supported by a research grant from the Israeli Ministry of Science, Technology, and Space. 
We also thank Yoram Zarai for helpful comments.

Author Contributions
G.P., M.M. and T.T. performed the research and wrote the paper.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Poker, G. et al. Sensitivity of mRNA Translation. Sci. Rep. 5, 12795; doi: 
10.1038/srep12795 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/

	Sensitivity of mRNA Translation
	Results
	Totally homogeneous ribosome flow model (THRFM). 
	Homogeneous and symmetric ribosome flow model (HSRFM). 

	Discussion
	Methods
	Derivation of Eq. (9). 
	Derivation of the sensitivities in the THRFM. 
	Derivation of the sensitivities in the HSRFM. 
	TASEP Simulation. 

	Acknowledgements
	Author Contributions
	Figure 1.  Steady state translation rate R in a RFM with n = 1000 and rates λi = 1, except for a configuration of slow rates with rate q.
	Figure 2.  ln(si) as a function of i in three HRFMs with length n = 200.
	Figure 3.  ln(si) as a function of i for a THRFM with n = 10.
	Figure 4.  The function that measures the edge effect as a function of n.
	Figure 5.  ln(si) as a function of i for an HSRFM with n = 10, λc = 1 and λ0 = 0.
	Figure 6.  Sensitivity of the steady-state current J in the homogeneous TASEP (*) and of the corresponding homogenous RFM (☐) as a function of α.



 
    
       
          application/pdf
          
             
                Sensitivity of mRNA Translation
            
         
          
             
                srep ,  (2015). doi:10.1038/srep12795
            
         
          
             
                Gilad Poker
                Michael Margaliot
                Tamir Tuller
            
         
          doi:10.1038/srep12795
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep12795
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep12795
            
         
      
       
          
          
          
             
                doi:10.1038/srep12795
            
         
          
             
                srep ,  (2015). doi:10.1038/srep12795
            
         
          
          
      
       
       
          True
      
   




