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Due to low intra- and interrater reliability, perceptual voice evaluation should be supported by objective, automatic methods.
In this study, text-based, computer-aided prosodic analysis and measurements of connected speech were combined in order to
model perceptual evaluation of the German Roughness-Breathiness-Hoarseness (RBH) scheme. 58 connected speech samples (43
women and 15 men; 48.7 ± 17.8 years) containing the German version of the text “The North Wind and the Sun” were evaluated
perceptually by 19 speech and voice therapy students according to the RBH scale. For the human-machine correlation, Support
Vector Regressionwithmeasurements of the vocal fold cycle irregularities (CFx) and the closed phases of vocal fold vibration (CQx)
of the Laryngograph and 33 features from a prosodic analysis module were used to model the listeners’ ratings. The best human-
machine results for roughness were obtained from a combination of six prosodic features and CFx (𝑟 = 0.71, 𝜌 = 0.57). These
correlations were approximately the same as the interrater agreement among human raters (𝑟 = 0.65, 𝜌 = 0.61). CQx was one of
the substantial features of the hoarseness model. For hoarseness and breathiness, the human-machine agreement was substantially
lower. Nevertheless, the automatic analysis method can serve as the basis for ameaningful objective support for perceptual analysis.

1. Introduction

Voice is a perceptual phenomenon, and perceptual evaluation
is therefore regarded as a gold standard for voice assessment
[1, 2]. Hence, perception-based methods are the basis for the
evaluation of voice pathologies in clinical routine, although
they are too inconsistent among single raters to establish
a standardized and unified classification [3, 4]. With this
background of methodological shortcomings, simple rating
criteria for perceptual evaluation have been established. Five
of them have been combined to form the GRBAS scale
[5] (grade, roughness, breathiness, asthenia, and strain).
However, the choice of criteria has been criticized: asthenia
(𝐴) and breathiness (𝐵) correlated very highlywith each other

in a study by Nawka et al., and the evaluation of the strain
(𝑆) criterion showed a much higher variation than the other
criteria. For these reasons, the mentioned working group
had developed a reduced version of GRBAS, the Roughness-
Breathiness-Hoarseness (RBH) evaluation scheme [6]. It has
become an establishedmeans for perceptual voice assessment
in German-speaking countries.

Automatic, that is, computer-based, assessment may be
helpful as an objective support for the subjective evaluation,
since it omits the problem of intra- and interrater variation.
Perception experiments are often applied to spontaneous
speech, standard sentences, or standard texts. About auto-
matic analysis,Maryn et al. reported that 18 out of 25 reviewed
studies examined sustained vowels exclusively, four only
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speech, and three both vowels and speech [7]. For the analysis
of speech, mostly one sentence of the English “rainbow
passage” was used. Speech recordings have the advantage that
they contain onsets, variations of 𝐹

0
, and pauses [8]. The

impression of roughness, for instance, is influenced by the
vowel onset fragments [9]. In general, hoarseness is more
present and perceptible in long vowels, especially in open
vowels, vowels in voiced context, vowels after glottal closure,
or in strained vowels [10]. Hence, perceptual evaluation of a
vowel and speech can only be adequately compared when the
entire vowel with onset is evaluated [11, 12]. For automatic
evaluation, some researchers recommend examining only
the stable part of an isolated vowel [13], but following
these recommendations means that a substantial portion
of persons whose phonation is highly irregular cannot be
evaluated at all. In particular, the rapid movements of the
articulatory organs that are essential for the production of
efficient speech require methods of analysis that go beyond
the sole use of sustained vowels [14]. In order to diminish
this problem, the Laryngograph has been designed to allow
vocal fold closure to bemonitored,most notably giving a basis
for the measurement of aspects of vocal fold vibration which
occur during voiced sounds [15].

In order to achieve a more global analysis of speech, the
analysis of speech samples should be extended to methods
that do not only evaluate voiced sounds. Also unvoiced
sounds, words, the speaking rate, the duration and position
of pauses within spoken phrases, the fundamental frequency
and loudness, and their variations contribute to the complex
phenomenon of speech. The analysis of these aspects has
been subject of our working group in the field of automatic
speech processing and understanding (identification of what
was said and what it means) and also in automatic evaluation
of voice and speech disorders (computer-based analysis of
voice quality and speech properties, such as intelligibility).
This analysis is achieved by a program package called the
prosody module [16–18]. The goal of this work is to identify
a computer-based equivalent for the subjective ratings of
roughness, breathiness, and hoarseness from speech record-
ings, which are representative for communication by voice.
This is achieved by means of the Laryngograph and prosodic
analysis. Both systems of measurement are completely inde-
pendent from each other.

Binary classification in the two classes “normal speech”
and “pathologic speech” was not the goal of this study.
Instead, the continuum of degrees of pathology and the
continuum of human ratings were supposed to be modeled.

The questions addressed are the following.
How does the combination of prosodic analysis and

Laryngograph measurements correspond with the percep-
tion-based RBH evaluation by “trained” listeners?

How do the results change when the Laryngograph
measurements are left out or used as the only features for
modeling the listeners’ ratings?

2. Materials and Methods

2.1. Samples. 58 speech samples (43 samples of female and 15
samples of male voices) were used in this study.The age of the
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Figure 1: Age distribution of the speaker group (𝑛 = 58).

persons was between 12.2 and 81.9 years and the average age
was 48.7 years with a standard deviation of 17.8 years.The age
distribution is shown in Figure 1. The speech samples were
recorded at the Medical University Hannover, Department
of Phoniatrics and Pedaudiology, within an interval of three
months. Only the set of recordings that was acquired during
the first visit at the clinics was used of each person. The
collection of samples was supposed to be representative, so
no further selection was made. For this reason, the database
contained deviated voices and also “normal” voices (Table 1).
The most frequent pathology was dysphagia (𝑛 = 16).
The subjects were examined by experienced laryngologists
and phoniatricians following the standard protocol of the
European Laryngological Society [19].

The speech samples contained connected speech, namely,
the standard text “Der Nordwind und die Sonne” (“The
North Wind and the Sun”) [20] which is frequently used
in medical speech evaluation in German-speaking countries.
The version used for this study consisted of 109 words. The
recordings were made with components of the Laryngograph
system [21].Theheadset of the systemwas placed at a distance
of 10 cm in front of the reader’s mouth. The speech data
were recorded with a sampling frequency of 44.1 kHz and a
16 bit amplitude resolution. For automatic speech analysis,
the data were resampled with a 16 kHz sampling frequency.
In order to obtain the other Laryngograph measurements,
two electrodes were placed superficially on either side of the
neck of the subject at the level of the larynx, and a constant
amplitude high-frequency voltage (3MHz) was applied. This
setup was chosen in order to ensure conditions which are
usual in clinical applications.

The study has respected the principles of theWorld Med-
ical Association (WMA) Declaration of Helsinki on ethical
principles for medical research involving human subjects. All
patients had given written consent to the anonymized use of
their data for research purposes before the recordings.

2.2. Perceptual Evaluation. The perceptual evaluation of the
text recordings according to clinical standards was done by 19
speech and voice therapy students (3rd year female students,
study course on speech therapy at the Fresenius University
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Table 1: Diagnoses within the speaker group (𝑛 = 58).

Edema
Reinke’s edema (bilateral) 3
Edge edema 1

Pareses
Vocal fold paresis (right) 8
Vocal fold paresis (left) 3
Vocal fold paresis (bilateral) 2

Benign tumors, pseudotumors
Hyperplasia vocal fold (right) 1
Vocal fold polyp (right) 4
Vocal fold polyp (left) 1
Vocal fold cyst (right) 1
Vocal fold nodules 3
Vocal fold granuloma 1
Larynx papillomatosis 1

Inflammations
Laryngitis 3

Central movement disorders
Spasmodic dysphonia 3
Balbuties 1
Other central disorders 1

Functional dysphonia
Psychogenic dysphonia 1
Dysphagia 16
Normal laryngeal findings 4

of Applied Sciences, Idstein, Germany) using the RBH scale
[6]. The students had learned about the RBH scheme from
the beginning of their education. In the third year, they have
sufficient theoretical and practical knowledge about voice
evaluation, the ability to interpret larynx-related diagnoses,
and practical experience, since they have also undergone
practical training including therapy lessons by themselves
under supervision.

Before the listening task, detailed instructionwas given to
the students by the study tutors. During the task, no further
information was given, however. The raters listened to each
speech sample once. This was sufficient since the duration of
one recoding was 46 seconds on the average. Between two
samples, there was a pause to note down the results. The
students were not allowed to discuss their impression with
the other raters.

For one speech sample, each of the RBH criteria, that is,
roughness, breathiness, and hoarseness, can be evaluated on a
4-point scale where “0” means “absent” and “3” means “high
degree.” Originally it was believed that hoarseness is distinct
of the other two categories, roughness and breathiness [22].
The RBH instead assumes that hoarseness is a superclass of
them [23]. In order to capture the fact that hoarseness is the
superclass, the𝐻 rating value must usually be at least as high
as 𝑅 and 𝐵. For this study, however, this latter rule was not
applied, and the students were told to evaluate hoarseness
on the 4-point scale just by their impression of the replayed

speech.This procedure has already been performed in several
other studies in Germany [24–26].

2.3. Laryngograph Measurements. The Laryngograph mea-
sures the time and degree of contact between the vocal folds
by the application of two electrodes which are placed on the
neck. The electroglottogram serves as the basis for the com-
putation of several measures. Two of them have been used in
this study and will be explained below. Although the voiced
excitation of the vocal tract is a complex activity, it has two
main time-dependent characteristics. The first one is derived
from the duration of excitation of the vocal tract, when the
closure of the vocal folds produces its main acoustic signal;
the second one relates to the period during which the vocal
folds are effectively closed [21]. The fundamental frequency
(𝐹
0
) is usually estimated from short-time windows and based

on average values from several vocal fold cycles, which may
also be fragmented at the boundaries of the analysis window.
A period-synchronous analysis is more exact since it takes
into account only full cycles and can also consider period-
to-period variations that are often of perceptual importance.
These variations of the period frequency values Fx are
denoted as CFx in the Laryngograph software. Another mea-
suring factor, which provides information about perceived
voice quality, is the changes CQx of the contact phase Qx.
The latter is directly related to the ratio of the closed phase
of vocal fold vibration to the total period of time between
two successive epochs of excitation [21]. In this study, CFx
and CQx were used in combination with prosodic features to
describe voice quality. Both values are given in percent.

2.4. Prosodic Features. The computation of the prosodic
features is independent from the Laryngograph. A speech
recognition system [27] detects the spoken words and their
positions in the speech recordings.Then the prosodic analysis
module [16] computes a vector of prosodic features for each
word. There are three basic groups of features. Duration
features represent word and pause durations. Energy features
contain information about maximum and minimum energy,
their respective positions in the word, the energy regres-
sion coefficient, and the mean square error. Similarly, the
𝐹
0
features, based on the detected fundamental frequency,

comprise information about the extreme 𝐹
0
values and their

positions, voice onset and offset with their positions, and
also the regression coefficient and the mean square error of
the 𝐹
0
trajectory. Duration, energy, and 𝐹

0
values are stored

as absolute and as normalized values. The basic features are
computed in different contexts, that is, in intervals containing
a single word or pause only or a word-pause-word interval.
In this way, 33 features were computed for each word (see
Table 2) [17, 28, 29].

Besides the 33 local features per word, 15 “global” fea-
tures were computed for intervals of 15 words length each.
They were derived from jitter (fluctuations of 𝐹

0
), shimmer

(fluctuations of intensity), and the number of detected voiced
and unvoiced sections in the speech signal [28].They covered
the means and standard deviations of jitter and shimmer, the
number, length, andmaximum length of voiced and unvoiced
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Table 2: Prosodic features and their intervals of computation; 33
prosodic features are based upon duration (“Dur”), energy (“En”),
and fundamental frequency (“F0”) measures. The context size
denotes the interval of words on which the features are computed;
W: computed on current word,WPW: computed in the interval that
contains the second and first word before the current word, and the
pause between them.

Features Context size
WPW W

Pause: before, Fill-before,
after, Fill-after ∙

En: RegCoeff, MseReg,
Abs, Norm, Mean ∙ ∙

En: Max, MaxPos ∙

Dur: Abs, Norm ∙ ∙

F0: RegCoeff, MseReg ∙ ∙

F0: Mean, Max, MaxPos,
Min, MinPos, Off, OffPos,
On, OnPos

∙

The features are abbreviated as follows.
Length of pauses “Pause”: length of silent pause before (before) and after
(after), andfilled pause before (Fill-before) and after (Fill-after) the respective
word in context.
Energy features “En”: regression coefficient (RegCoeff) and mean square
error (MseReg) of the energy curve with respect to the regression curve;
mean (Mean) and maximum energy (Max) with its position on the time axis
(MaxPos); absolute (Abs) and normalized (Norm) energy values.
Duration features “Dur”: absolute (Abs) and normalized (Norm) duration.
𝐹0 features “F0”: regression coefficient (RegCoeff) and themean square error
(MseReg) of the 𝐹0 curve with respect to its regression curve; mean (Mean),
maximum (Max), minimum (Min), voice onset (On), and offset (Off) values
as well as the position of Max (MaxPos), Min (MinPos), On (OnPos), and
Off (OffPos) on the time axis; all 𝐹0 values are normalized.

sections, the ratio of the numbers of voiced and unvoiced
sections, the ratio of the length of the voiced sections to the
length of the signal, and the same for unvoiced sections. The
last feature was the standard deviation of 𝐹

0
.

The listeners gave ratings for the entire text. In order to
receive also one single value for each feature that could be
compared to the human ratings, the average of each prosodic
feature over the entire recording served as final feature value.

2.5. Support Vector Regression. A Support Vector Machine
(SVM)performs a binary classification based on a hyperplane
separation between two class areas in a multi-dimensional
feature space. SVMs can also be used for Support Vector
Regression (SVR) [30]. The general idea of regression is to
use the element vectors of the training set to approximate
a function which tries to predict the target value of a given
vector of the test set. In this study, the sequential minimal
optimization algorithm (SMO) [30] of the Weka toolbox [31]
was applied for this purpose. The automatically computed
prosodic features and the CFx and CQx values served as the
training set for the regression, and the test set consisted of
the perceptually assessed RBH scores. For each of 𝑅, 𝐵, and
𝐻, one separate regression was computed.

In order to find the best subset of the computed features
to model the subjective ratings, a correlation-based feature

Table 3: Perceptual evaluation results (average, standard devia-
tion, and minimal and maximal values) and interrater agreement
expressed as Krippendorff ’s 𝛼 and the correlation coefficients 𝑟 and
𝜌 (𝑛 = 58).

Average Standard dev. Min Max 𝛼 𝑟 𝜌

R 0.88 0.51 0.05 2.21 0.45 0.65 0.61
B 0.59 0.47 0.00 2.16 0.33 0.58 0.50
H 0.81 0.56 0.05 1.89 0.36 0.59 0.57

Table 4: Correlation 𝑟 (𝜌) between the perceptual ratings (𝑛 = 58).

B H
R 0.13 (0.33) 0.50 (0.53)∗

B 0.53 (0.67)∗

∗ = correlation is significant on the 0.01 level.

selection method ([32], pp. 59–61) was applied in a 10-fold
cross-validation manner. The features with the highest ranks
were then used as the input for the SVR.

2.6. Human-Machine Correlation. Statistical analysis was
performedusingWeka and in-house programs.The interrater
reliability for the entire rater group was measured using
Krippendorff ’s 𝛼 [33]. Many studies use Cronbach’s 𝛼, but
this measure eliminates the influences of different tendencies
in rating since the mean values are neglected. In order to
examine human-machine correlation, the automatic mea-
surement for each rating criterion of each recording was
compared to the average value of the 19 raters’ evaluation.
The correlations between different measurements and rating
criteria were computed using Pearson’s correlation coeffi-
cient 𝑟 and Spearman’s rank-order correlation coefficient 𝜌.
Other measures, like Cohen’s 𝜅 or Krippendorff ’s 𝛼, were
not used for this purpose due to the different domains of
human and machine evaluation. This means, for instance,
that continuous intervals of the prosodic features or the
Laryngograph values would have to bemapped to the discrete
values {0, 1, 2, 3} of the RBH components, which is another
possible source of error [34].

3. Results

3.1. Perceptual Data. The average values for the perceptual
rating criteria are given in Table 3. The data showed a broad
range of persons with minimal values of 𝑅min = 0.05, 𝐵min =
0.00, and 𝐻min = 0.05, respectively, to maximum values for
𝑅, 𝐵, and𝐻 around 2. A large variety in the evaluation results
was observedwithin the rater group aswell (Figures 2–4).The
interrater values for the 19 listeners were 𝛼 = 0.45 for rough-
ness, 𝛼 = 0.33 for breathiness, and 𝛼 = 0.36 for hoarseness
(Table 3). Correlations between the rating criteria are given
in Table 4. The criteria roughness and breathiness correlate
only moderately with each other. The strongest correlation is
between breathiness and hoarseness (𝑟 = 0.53, 𝜌 = 0.67).

3.2. Human-Machine Correlation. The correlations between
the perceptual evaluation and the automatic measurements
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Table 5: Best feature sets for human-machine correlation and their weights in the regression formulae.

Feature Context Rbest,I
Rbest,I

w/o CFx Rbest,II
Rbest,II
w/o CFx Bbest Hbest,I Hbest,II Hbest,III Hbest,IV

DurNorm WPW −0.057 −0.046 0.377 0.499 0.378
DurNorm W 0.513 0.402
F0Min W −0.446 −0.458 −0.452 −0.389

F0Mean W −0.195 −0.226 −0.191 −0.172

F0Onset W 0.173
F0OffPos W 0.322 0.120 0.185 0.236
EnNorm WPW −0.151 0.343
EnNorm W −0.247 −0.315 0.155
MeanJitter 15W 0.118 0.186 0.113 0.249 0.239 0.366 0.368 0.320 0.208
MeanShimmer 15W 0.144 0.138 0.145 0.114 −0.031

StandDevShimmer 15W −0.163

#+Voiced 15W 0.321 0.347 0.334 0.324 0.094 −0.133 −0.117 0.122
RelNum+/−Voiced 15W −0.164 0.218 0.082 −0.144
CFx 0.210 0.206
CQx 0.643 0.495 −0.242 0.506
𝑟 0.71 0.66 0.71 0.67 0.36 0.53 0.47 0.45 0.49
𝜌 0.57 0.49 0.58 0.49 0.27 0.54 0.46 0.45 0.55
Significance level <0.001 <0.001 <0.001 <0.001 0.003 <0.001 <0.001 <0.001 <0.001
Contexts: W: word, WPW: word-pause-word, 15W: 15 words (“global” feature). The correlations of the respective set to the human reference are given by 𝑟
(Pearson) and 𝜌 (Spearman).
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Figure 2: Perceptual roughness (𝑅) evaluation by 19 listeners (mean
value and standard deviation).

after the SVR are given in Table 5. The best set for roughness
(𝑅best,I) achieves 𝑟 = 0.71 (𝜌 = 0.57). It contains the duration
of a word-pause-word interval (DurNormWPW), the mean
andminimum 𝐹

0
within a word (F0MeanW, F0MinW), mean

jitter and shimmer averaged on 15-word sections (MeanJitter,
MeanShimmer), the number of sections detected as voiced
(#+Voiced), and CFx. Without CFx, only 𝑟 = 0.66 (𝜌 = 0.49)
is reached (set 𝑅best,I w/o CFx). The duration feature can also
be left out without changing the correlations significantly
(sets 𝑅best,II and 𝑅best,II w/o CFx). The same feature is in the
best set for breathiness modeling (𝐵best), which, however,
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Figure 3: Perceptual breathiness (𝐵) evaluation by 19 listeners
(mean value and standard deviation).

was far less successful in modeling the reference with 𝑟 =
0.36 (𝜌 = 0.27). Still, this correlation is highly significant.
Neither CFx nor CQx are included in the breathiness model.
For hoarseness, there are four different results, denoted
𝐻best,I to 𝐻best,IV. The best correlation is 𝑟 = 0.53 (𝜌 =
0.54) for a combination of word duration (DurNormW), the
voice offset position within single words (F0OffPosW), the
normalized energy within words (EnNormW), the “global”
number of voiced sections in the recording (#+Voiced),
and the ratio between the numbers of voiced and unvoiced
sections (RelNum+/−Voiced). CQx is also essential for the
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Figure 4: Perceptual hoarseness (𝐻) evaluation by 19 listeners
(mean value and standard deviation).
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Figure 5: Perceptual roughness (𝑅) evaluation by 19 listeners, the
SVR regression values (𝑅best,I), and their best-fit line.

Table 6: Weighting factors in the regression sums when the RBH
rating is modeled by CFx and CQx only and the human-machine
correlation (𝑟, 𝜌).

Feature R B H
CFx 0.303 0.091 0.340
CQx 0.033 0.117 0.490
𝑟 0.31 −0.10 0.44
𝜌 0.43 −0.05 0.48
Significance level 0.009 0.228 <0.001

best feature set for hoarseness. Without CQx, the set 𝐻best,I
reaches only human-machine correlations of about 0.35; with
CFx instead of CQx, the highest values are below 0.5. Figures
5–7 show the perceptual evaluations, that is, the average of
the 19 raters, and the regression values of the SVR for the best
feature sets.

Table 6 shows the human-machine correlations for com-
binations of CFx and CQx only. These two measures can
model the perceptual impression of hoarseness moderately
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Figure 6: Perceptual breathiness (𝐵) evaluation by 19 listeners, the
SVR regression values (𝐵best), and their best-fit line.
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Figure 7: Perceptual hoarseness (𝐻) evaluation by 19 listeners, the
SVR regression values (𝐻best,I), and their best-fit line.

(𝑟 = 0.44, 𝜌 = 0.48), while they are only weakly correlated
with roughness and breathiness. The distribution of these
measurements is shown in Figures 8–10.

4. Discussion

TheLaryngograph is an establishedmeans of voice evaluation
[14, 35]. The main purpose of this study was to determine
the correlation between the German RBH evaluation scheme
and a combination of text-based prosodic features and mea-
surements from the Laryngograph. The best combination of
features yielded a human-machine correlation for roughness
of 𝑟 = 0.71 (𝜌 = 0.57). The interrater correlation for one
rater against the average of all others was 𝑟 = 0.65 (𝜌 =
0.61). Hence, the automatic analysis can evaluate roughness
as reliable as an “average” rater from the group of the 19
speech and voice therapy students. For hoarseness, the auto-
matic method reached almost the same correlation with
the reference as the listeners among themselves. Only the
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Figure 8: Perceptual roughness (𝑅) evaluation by 19 listeners versus
CFx and CQx, respectively.
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Figure 9: Perceptual breathiness (𝐵) evaluation by 19 listeners
versus CFx and CQx, respectively.

breathiness rating could not be modeled satisfactorily. Addi-
tionally, dropping one of the feature sets from the automatic
evaluation leads to significantly worse results.

For the modeling of roughness, the duration of a word-
pause-word interval (DurNormWPW)may contribute to the
most successful set of features because the anatomic alter-
ations, which are the reason for the deviated voice, may also
cause a greater speaking effort. This effect has been shown
for substitute voices of laryngectomized persons [17], and it
might also be valid for the data in this study. The contribu-
tion of DurNormWPW to the regression sum is, however,
very small.

The impact of the values F0MinW and F0MeanW can be
explained by the properties of the 𝐹

0
detection algorithm,

which does a voiced-unvoiced decision first. On all of the
16ms speech frames that were classified as voiced, the
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Figure 10: Perceptual hoarseness (𝐻) evaluation by 19 listeners
versus CFx and CQx, respectively.

program performed 𝐹
0
detection. The algorithm by Bagshaw

et al. [36] that was used for the task is very robust against
distortions. However, noisy speech may result in octave
errors, that is, instead of the real fundamental frequency
the double, triple, or half of the actual value is found. More
“noisy” speech influences the 𝐹

0
trajectory and thus the

correlation with the subjective results [18].
A similar case is the relevance of text-based jitter and

shimmer for themodel of the roughness evaluations. Both are
well-known detectors for voice problems, and the number of
segments in the recording which were detected as voiced cor-
responds with these findings. If a voice is very irregular, then
the number of segments detected as voiced by the prosody
module will be very low. A difficulty for the comparison of
these results with other studies, however, is that the terms
“jitter” and “shimmer” disguise a plethora of different algo-
rithms, across many different software vendors and research
groups [37]. Many studies give no algorithm details. Addi-
tionally, irregularitymeasures from sustained, isolated vowels
and running speech cannot be directly compared due to
coarticulatory effects anddifferences in voice onset and offset.

In this study, also the CFx value appeared to be essential
for the good human-machine correlation for roughness.
When it was missing, the correlation dropped down to 𝑟 =
0.66 (𝜌 = 0.49). CFx is also related to variations of 𝐹

0
, but

it is period-synchronous instead of being based on fixed-
length windows.That is on the one hand an advantage against
the traditional computation of jitter. On the other hand,
the low correlation between CFx and jitter values (Table 7)
indicates that both are containing important but independent
information.

Breathiness can be modeled only weakly by the available
features. While the human-human correlation was 𝑟 = 0.58
(𝜌 = 0.50), the maximum for the automatic analysis was 𝑟 =
0.36 (𝜌 = 0.27). Here, the duration of a word-pause-word
interval contributes very strongly.The reasonmay be that the
continuous leaking of air at the glottis leads to longer or more
frequent pauses.
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The contribution of the 𝐹
0

value at voice onset
(F0OnsetW) may be based upon octave errors by the 𝐹

0

detection algorithm again. So far, it is not clear why only the
beginning of voiced sections causes a noticeable effect. There
may be a connection to changes in the airstream between
the beginning and end of words or phrases. It may have its
reason in the high speaking effort in the dysphonic voice
which leads to more irregularities, especially in these posi-
tions, but this has to be confirmed by more detailed experi-
ments on larger and homogeneous databases.

The influence of the normalized energy in the breathiness
model was only relevant when it was measured within one
word (EnNormW) and not in a word-pause-word interval.
Hence, breathing noise in pauses does not contribute to the
result, although the duration of the pauses may be important,
as pointed out above. The sign of the weighting factor
(−0.247) is negative, so the breathier the voice is, the weaker
it is and the higher the human 𝐵 evaluation is.

Jitter is also an important factor for the evaluation of
breathiness; however, not all authors of other studies agree
[38, 39]. Shimmer shows only a very low contribution, but the
standard deviation of shimmer within longer text passages,
that is, the fluctuations of the fluctuations of energy, seems to
be characteristic for breathiness.

Neither CFx nor CQx were in the optimal set for breath-
iness evaluation.

For hoarseness, many features were in the best subsets
that were also relevant for roughness and breathiness. This
supports the assumption of Nawka et al. that hoarseness
is a superclass of the other two criteria [6], although the
students did not evaluate the data with this rule in mind
explicitly. The feature set modeling the raters’ decisions best
reached a correlation of 𝑟 = 0.53 (𝜌 = 0.54) to that refer-
ence; the interrater correlation was 𝑟 = 0.59 (𝜌 = 0.57).
Like for breathiness, the duration is important, but only on
single words, not on word-pause-word intervals. Replacing
the feature with the latter variant yields much worse correla-
tions (Table 5, column𝐻best,III), as did using the word-based
feature for modeling roughness.

The normalized energy within words (EnNormW) is,
like for breathiness, another important feature. Replacing it
with the word-pause-word variant (EnNormWPW) was not
successful (Table 5, columns𝐻best,II and𝐻best,IV).

The average of jitter contributes to the hoarseness model
even more than to the two other categories.

The position of the voice offset within a word
(F0OffPosW), which did not occur in the roughness
and breathiness modeling, is a nonnegligible factor for hoar-
seness evaluation. This has already been detected in a pre-
vious study with chronically hoarse persons who were eva-
luated by five voice experts [18]. The reason is very probably
the 𝐹
0
detection algorithm and its decisions regarding voiced

and unvoiced sections again.
Shimmer was not relevant for hoarseness at all in the

results, although it showed contributions to the regression
sum of roughness and breathiness. This supports, in contrast
to Nawka’s assumption, the hypothesis that hoarseness may
be more than just the superclass of the other categories.

As with roughness, the number of sections that are clas-
sified as voiced (#+Voiced) is important for hoarseness eval-
uation. Additionally, the ratio of the numbers of voiced and
voiceless sections (RelNum+/−Voiced) supports the results.

The high correlation of perceptual 𝐵 and 𝐻 evaluations
shows that for the evaluation of overall hoarseness the raters
were closer to the breathiness rating than to the roughness
rating.This is in contrast to another study of our group, where
roughness and hoarseness had a higher correlation (𝜌 = 0.79)
[34]. For that study, however, the restriction 𝐻 ≥ max(𝑅, 𝐵)
was applied, and only five speech therapists with several years
of experience in voice evaluation had rated the data. In this
new study, there was also a large variety of ratings among
the 19 listeners. Therapists with many years of practical
experience may show less disagreement [40], but according
to the fact that the raters of our study had undergone almost
three years of practical education before, we believe that they
already developed a rather stable personal model of voice
evaluation. The influence of these factors on our particular
data has to be examined in future work.

The automatic modeling of the hoarseness and especially
the breathiness ratings was not as successful as for roughness.
The set of available measures and prosodic features was not
sufficient to depict the various ratings of the large rater group
satisfyingly so far. Nevertheless, the method presented here
may be the basis for a meaningful objective support and an
addition to perceptual analysis in clinical practice. Another
important advantage of the presented method is that it does
not just classify voices into one of the two categories “normal”
and “pathologic.” For quantification of a communication
disorder in clinical use, this is not sufficient. Instead, the
experiments provided regression formulae which can be used
to translate the obtained measures onto the whole range of
perceptual ratings.

A complete match of subjective and automatic evaluation
was not expected. On the one hand, disagreement on which
acoustic properties or measures represent which perceptual
impression may still be present; on the other hand the
automatic assessment can only be based on a stimulus which
for perceptual evaluation is further processed within the
listener. Hence, the sources of information for both methods
are different.The process of perception may evaluate more or
different information than the automatic methods. Addition-
ally, there is also some possible improvement for the technical
methods which is part of future work. As an example, the
speech recognitionmodule, which is supposed to provide the
word hypotheses graph for the computation of the prosodic
features, can be improved by adaptivemethods to enhance the
phonememodels for distorted speech [41]. For these reasons,
we regard this study as a pilot study. Furthermore, the
automatic evaluation is not supposed to be a full replacement
for the subjective assessment, but an additional source of
information which yields reproducible results.

5. Conclusions

Combined prosodic and Laryngograph-based analysis corre-
sponds as well with the average perception-based roughness
evaluation as a group of professional raters themselves on
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a clinical representative group of patients with a broad dis-
tribution of voice pathology. It can serve as an additional
source of knowledge or an objective guideline in the clinics
where perceptual evaluations are usually performed by a
single person only.
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