
Hindawi Publishing Corporation
Evidence-Based Complementary and Alternative Medicine
Volume 2013, Article ID 584604, 13 pages
http://dx.doi.org/10.1155/2013/584604

Research Article
Gene Expression Profile of the A549 Human Non-Small Cell
Lung Carcinoma Cell Line following Treatment with the Seeds of
Descurainia sophia, a Potential Anticancer Drug

Bu-Yeo Kim, Jun Lee, Sung Joon Park, Ok-Sun Bang, and No Soo Kim

KM-Based Herbal Drug Research Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine,
Daejeon 305-811, Republic of Korea

Correspondence should be addressed to No Soo Kim; nosookim@kiom.re.kr

Received 3 April 2013; Revised 27 May 2013; Accepted 5 June 2013

Academic Editor: Bo-Hyoung Jang

Copyright © 2013 Bu-Yeo Kim et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Descurainia sophia has been traditionally used in Korean medicine for treatment of diverse diseases and their symptoms, such as
cough, asthma, and edema. Our previous results showed that ethanol extract of the seeds ofD. sophia (EEDS) has a potent cytotoxic
effect on human cancer cells. In this study, we reveal the molecular events that are induced by EEDS treatment in A549 human lung
cancer cells. The dose-dependent effect of EEDS on gene expression was measured via a microarray analysis. Gene ontology and
pathway analyses were performed to identify functional involvement of genes regulated by EEDS. From gene expression analyses,
two major dose-dependent patterns were observed after EEDS treatment. One pattern consisted of 1,680 downregulated genes
primarily involved inmetabolic processes (FDR< 0.01).The second pattern consisted of 1,673 upregulated genes primarily involved
in signaling processes (FDR < 0.01). Pathway activity analyses revealed that the metabolism-related pathways and signaling-related
pathways were regulated by the EEDS in dose-dependent and reciprocal manners. In conclusion, the identified biphasic regulatory
mechanism involving activation of signaling pathways may provide molecular evidence to explain the inhibitory effect of EEDS on
A549 cell growth.

1. Introduction

Public health statistics indicate that neoplastic disease (com-
monly referred to as cancer) is a leading cause of death in the
Republic of Korea, wheremore than 142 cancer-related deaths
per 100,000 people occurred in 2011 (http://kostat.go.kr).
Although awide-range of anticancer drugs that target cancer-
related molecules have been developed, the five-year relative
survival rate of cancer patients, especially those with
lung cancer, has not improved significantly (http://www.can-
cerresearchuk.org/cancer-info/cancerstats/survival/common-
cancers/). This disappointing clinical outcome may be a
consequence of the multifactorial nature of cancer and the
acquisition of drug resistance by tumor cells [1, 2]. For these
reasons, anticancer chemotherapy is now shifting from
mono-substance therapy to combination therapy [3–5].
Extracts of medicinal herbs represent promising sources of
novel multi-substance anticancer drugs [3].

Descurainia sophia (L.) Webb ex Prantl (Flixweed) is
widely distributed in northeastern China and belongs to
the family Brassicaceae (Cruciferae). In traditional Korean
medicine (KM), the seeds of D. sophia have been used for
the treatment of diverse diseases and their symptoms, such
as cough, asthma, and edema [6]. According to the results
of previous studies, D. sophia possesses biologically active
secondary metabolites, such as cardiac glycosides [7], sulfur
glycoside [8], nor-lignan [9], and lactones [10]. In our in
vitro cytotoxic pre-screening system, the ethanol extract of
D. sophia seeds (EEDS) displayed potent cytotoxicity against
diverse human cancer cells. In addition, cytotoxic (helvetico-
side) and anti-inflammatory (quercetin and syringaresinol)
active constituents were isolated from the EEDS [6].

Although the therapeutic constituents we identified in the
EEDS have been well-characterized, the diverse composition
of herbal extracts makes it difficult to elucidate their exact
molecularmechanisms.Moreover, considering that a number
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of genes regulated by herbal extracts exert combined effects
on various biological pathways, it is important to study the
effects of herbal extracts at the genomic and molecular levels
rather than at the individual gene level. Recent advances in
the multi-target/multi-substance therapeutic approach have
underscored the importance of using high-throughput analy-
ses to identify the therapeutic mechanisms of complex drugs,
such as herbal extracts [11]. Therefore, in the present study,
wemeasured the in vitro anti-proliferative effects of the EEDS
on human lung cancer cells and developed a gene expression
profile using a microarray analysis. Dose-dependent analyses
of the microarray data revealed that biological functions
associated with signal transduction, such as apoptosis, were
significantly elevated after EEDS treatment.

2. Materials and Methods

2.1. Plant Materials. The dried seeds of D. sophia were pur-
chased from the Kwangmyungdang Medicinal Herbs Co.
(Ulsan, Republic of Korea) and identified by Dr. Go Ya Choi,
Basic Herbal Medicine Research Group, Herbal Medicine
Research Division, Korea Institute of Oriental Medicine,
Republic of Korea. A voucher specimen (KIOM-CRC-5) was
deposited at the Cancer Research Center, Herbal Medicine
Research Division, Korea Institute of Oriental Medicine,
Republic of Korea.

2.2. Preparation of EEDS. The dried seeds (9.0 kg) of D.
sophiawere ground and extracted bymaceration (40 L of 80%
EtOH for 48 h, 3 times) at room temperature. The combined
extracts were filtered through Whatman filter paper (No. 2,
Whatman International, Maidstone, UK) and concentrated
using an EYELA rotary evaporation system (20 L, Tokyo
Rikakikai, Tokyo, Japan) at 40∘C to yield a two-phase extract
(766.1 g), which consisted of an upper oil phase and a lower
solid phase. The oil phase did not affect the proliferation
of A549 cells. Therefore, we did not test the oil phase for
further studies. The solid lower extract (535.7 g) was dried in
aWiseVen vacuum oven (WOW-70, Daihan Scientific, Seoul,
Republic of Korea) at 40∘C for 24 h prior to use. The dried
solid ethanol extract, that is EEDS, was dissolved in 100%
dimethylsulfoxide (DMSO, Sigma, St Louis, MO, USA) at a
concentration of 20mg/mL and stored at −80∘C.

2.3. Cell Lines andCulture Conditions. All human lung cancer
cell lines, including the A549 cells, and the IMR-90 normal
lung fibroblast cells used in this study were obtained from the
American Type Culture Collection (ATCC, Manassas, VA,
USA). All cells, with the exception of IMR-90 (DMEM), were
grown in RPMI1640 (Invitrogen, Carlsbad, CA, USA) that
had been supplemented with 10% (v/v) fetal bovine serum
(FBS) (Invitrogen), 100U/mL of penicillin, and 100𝜇g/mL of
streptomycin (Invitrogen) in 5% CO

2
humidified air at 37∘C.

2.4. Cell Proliferation Assays. Cell viability was quantified
in a 96-well tissue culture plate using the Ez-Cytox cell
proliferation assay kit (Daeil Lab Service, Seoul, Republic
of Korea), as previously described [12]. Briefly, 5 × 103

cells were seeded on culture plates containing 100𝜇L/well of
culture medium. After 24 h, the cells were exposed to various
concentrations of the EEDS andmaintained for the indicated
time periods.Themaximum concentration of DMSO vehicle
was 0.5% (v/v). Following drug treatment, the cells were
washed with phosphate-buffered saline (PBS) to minimize
the interference of the EEDS with the Ez-Cytox reaction.
Color development in the Ez-Cytox solution by live cells
was monitored at 450 nm using the Emax microplate reader
(Molecular Devices, Sunnyvale, CA, USA).

2.5. Colony Forming Assays. A549 cells were seeded on 6-
well culture plates at a density of 200 cells/well and grown for
24 h. The cells were exposed to various concentrations of the
EEDS or the vehicle control for 72 h.The culturemediumwas
removed, and after a briefwashwith PBS, the cells were grown
for 10 days in fresh medium that did not contain the EEDS.
After a brief washwith ice-cold PBS, the cells were fixed using
an ice-cold neutralized 4% (w/v) paraformaldehyde solution
(Biosesang, Seongnam, Republic of Korea) for 10min. After
removing the fixation solution, the colonies were stainedwith
a 0.05% (w/v) crystal violet (Sigma) cell staining solution
for 30min. The free crystal violet solution was removed, and
the cells were washed two times with tap water. The stained
colonies were photographed, and the number of colonies was
manually counted.

2.6. FACS Analysis. Apoptotic cell death was determined
using the fluorescein isothiocyanate (FITC)-Annexin V
apoptosis detection kit (BD Biosciences, San Jose, CA, USA)
according to the manufacturer’s instruction. In brief, A549
cells were seeded on 6-well culture plates at a density of
2 × 10

5 cells/well. After 24 h, cells were exposed to EEDS
(0 or 20𝜇g/mL) for the indicated time periods. Cells were
harvested, washed two times with ice-cold PBS, and resus-
pended in 100 𝜇L of 1x binding buffer. Then, 5𝜇L of FITC-
Annexin V and 5 𝜇L of propidium iodide (PI) solution were
added to the cells, and the mixture was incubated at room
temperature for 15min in the dark. After addition of 400𝜇L
of 1x binding buffer, the cells were analyzed by flow cytometry
(FACSCalibur, BD Biosciences).

2.7. Microarray Experiment. Total RNA from A549 cells
that had been treated with either the EEDS or the vehi-
cle control was prepared using the Easy-Spin total RNA
extraction kit (iNtRON Biotechnology, Seoul, Republic of
Korea) in accordance with the manufacturer’s instructions.
Before performing the microarray experiment, the quality of
the isolated total RNA was confirmed by electropherogram.
RNA integrity number (RIN) = 9.8–10.0, OD

260/280
(>2.0),

and OD
260/230

(>2.2) were determined (see Supplementary
Figure 1 and Supplementary Table 1 of the Supplementary
Material online at http://dx.doi.org/10.1155/2013/584604), as
previously described [13], by Genomictree, Inc. (Daejeon,
Republic of Korea). Total RNA was amplified and labeled
using the Low RNA Input Linear Amplification kit PLUS
(Agilent Technologies, Santa Clara, CA, USA) and then
hybridized to a microarray (Agilent Human whole genome
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44K,Agilent Technologies) containing approximately 44,000
probes (∼21,600 unique genes), in accordance with the
manufacturer’s instructions. The arrays were scanned using
an Agilent DNAMicroarray Scanner.

2.8. Semiquantitative PCR (qPCR). Single-stranded cDNA
was synthesized from 1𝜇g of total RNA using the SuperScript
III first-strand synthesis system (Invitrogen) according to the
manufacturer’s instruction. The concentration of cDNA was
quantified using the ND-1000 NanoDrop spectrophotometer
(Thermo Scientific, Wilmington, DE, USA), and 100 ng of
cDNA was used as a template for semi-qPCR reaction.
The PCR products were analyzed by 1.5% agarose gel elec-
trophoresis. The information of primer sequences and PCR
reaction conditions are summarized in the Supplementary
Table 3.

2.9. Dose-Dependent Microarray Analyses. The raw signal
intensities were obtained using Agilent Feature Extraction
Software (Agilent Technologies). Array elements with signal
intensities below 1.4-fold of the local background were elim-
inated, and then the remaining elements were normalized
using the quantile method [14]. After averaging the ratio of
duplicated spots, the expression ratios were hierarchically
clustered using the CLUSTER program (http://rana.lbl.gov/).
The short time series expression miner (STEM) program,
which was originally developed for the temporal analysis of
gene expression [15], was used to identify dose-dependently
expressed genes. The statistical significance of the resultant
expression pattern was calculated as a false discovery rate
(FDR) using 1,000 random permutations.

2.10. Public Microarray Dataset. The publically available
microarray dataset with accession number of GSE4573,
archived in the Gene Expression Omnibus (http://www.ncbi
.nlm.nih.gov/geo), was used in the present study [16]. The
dataset was composed of 130 squamous lung carcinoma
tissues with survival information. We normalized the probe
intensities of each array using the quantile method [14].
After averaging multiple probes, genes that were associated
with survival were selected using BRB ArrayTools (version
4.2.1, http://linus.nci.nih.gov/BRB-ArrayTools.html), which
compute a statistical significance for each gene using a
Cox proportional hazard regression model with a univariate
permutation test number of 10,000.

2.11. Gene Ontology (GO) Analyses. The Functional Annota-
tion Tool of DAVID [17] and the High-Throughput GoMiner
algorithm [18] were used for simple and dose-dependent
GO analyses, respectively. Only the list of genes was used
for DAVID, while both the list of genes and the expression
ratios were applied as inputs for the GoMiner. In both
cases, the 𝑃 value of each GO-term was calculated using
Fisher’s exact test. For adjustments of multiple comparisons,
the Benjamini-Hochberg procedure was used for DAVID
[17]. For the GoMiner analysis, a random sampling-based
FDR was calculated from 1,000 iterations. The resultant
significant GO-terms from the GO analysis were entered

into the REVIGO program to construct a network structure
composed of nonredundant subsets of GO terms, where the
distance between GO terms was measured based on the
semantic similarity [19].

2.12. Pathway Analyses. A pathway enrichment analysis
based on Fisher’s exact test was performed using DAVID
[17]. As with GO analysis, significantly enriched pathways
were identified from an input list of genes and statistically
adjusted using FDR. For a more systematic pathway analysis,
we conducted a Signaling Pathway Impact Analysis (SPIA)
[20], which identifies pathways relevant to the experimental
conditions using a list of differentially expressed genes and
their expression ratios combined with signaling pathway
topology. By randomly bootstrapping the pathway topology
(𝑛 = 3,000), two statistical measurements, 𝑃NDE and 𝑃PERT,
were calculated, which measure the overrepresentation of
input genes in a pathway and the abnormal perturbation
of a specific pathway, respectively. The global 𝑃 value (𝑃G)
calculated from 𝑃NDE and 𝑃PERT was used as the selection
criteria for significant pathways.

The pathway analysis methods outlined above primarily
focused on the identification of enriched pathways using
differentially expressed genes. We then measured dose-
dependent changes in pathway activity by calculating a linear
combination of the logarithmic value of the expression of all
of the genes in each pathway, with a weight of 1. When the
genes acted as repressors, the weight was multiplied by −1.
The measured activities were normalized and hierarchically
clustered. The statistical significance for each pathway was
estimated using the random permutation-basedmethod (𝑛 =
1, 000) [21] in which the FDR was determined by comparing
the activity values with randomly permutated values. Only
pathways with an FDR below 0.05 were included in the
clustering analysis. The pathway information used in the
present study was obtained from the Kyoto Encyclopedia of
Genes and Genomes (KEGG, http://www.genome.jp/kegg/)
database.

2.13. Pathway SimilarityMatrix. Pathway similarity wasmea-
sured based on the number of common genes between
pathways. Briefly, amatrix of the number of common genes in
distinct pathways was constructed and the relative similarity
was measured using the Jaccard algorithm [22] in which the
fraction of common genes between two pathways was used
to calculate similarity. Therefore, the absence of a common
gene in two pathways was not considered in measuring simi-
larity. Finally, the relative similarity matrix was hierarchically
clustered, and the pathway activity values obtained by linear
combinations of the expression ratio, as described above,
were merged into a similarity matrix.

3. Results

3.1. Cytotoxic Effects of the EEDS onHumanLungCancer Cells.
To determine the cytotoxic effects of the EEDS, A549 human
lung cancer cells were exposed to increasing concentrations
of the EEDS or the vehicle control for indicated time periods.

http://rana.lbl.gov/
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Figure 1: Cytotoxic effect of EEDS on A549 human lung cancer cells. (a) A549 was exposed to increasing concentrations (0–100𝜇g/mL) of
EEDS for various time periods (24–96 h). Cell viability was determined based onmitochondrial enzyme activity as described in theMaterials
and Methods section. The relative cell growth at each drug dose was calculated by comparison with the vehicle control (0𝜇g/mL of EEDS,
0.5% DMSO) treatment. (b) A549 cells were exposed to increasing concentrations (0–20 𝜇g/mL) of EEDS for 72 h and then incubated for an
additional 10 days in the absence of EEDS (upper panel). Colonies stained with crystal violet were counted and expressed as relative survival
(%) compared to the vehicle control (0.5%DMSO) treatment (lower panel). All data are presented as themean± S.D. of triplicate experiments.
The differences between the vehicle control and treated groups were determined using Student’s t-test. ∗∗∗𝑃 < 0.001. (c) Representative FITC-
Annexin V/PI scatter plots for A549 cells following the EEDS treatment. A549 cells were exposed to EEDS (0 or 20𝜇g/mL) for 12 h or 24 h,
and then subjected to FACS analysis of FITC-Annexin V and PI.
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Table 1: IC50 of EEDS in human lung cancer cell lines.

Cell lines NCI60 panel Disease Drug expose (h) IC50

EEDS (𝜇g/mL) Dox (𝜇M)a

A549 Yes Lung cancer

24 3.72 ± 1.12 n.d.
48 2.81 ± 0.19 0.04 ± 0.00
72 2.15 ± 0.01 n.d.
96 2.59 ± 0.16 n.d.

NCI-H23 Yes Lung cancer 48 6.60 ± 0.18 0.22 ± 0.04
NCI-H226 Yes Lung cancer 48 13.18 ± 0.77 0.33 ± 0.04
NCI-H460 Yes Lung cancer 48 8.08 ± 0.01 0.31 ± 0.04
IMR-90 — Normal lung 48 10.54 ± 0.79 0.40 ± 0.04
aDox, doxorubicin, was included as a reference anticancer drug [12].

As shown in Figure 1(a), the EEDS efficiently inhibited A549
cell growth in a dose-dependent manner.Three other human
lung cancer cell lines (NCI-H23, NCI-H226, and NCI-H460)
and the IMR-90 normal human lung fibroblast cell line were
also exposed to increasing concentrations of the EEDS for
48 h. The half maximal inhibitory concentrations (IC50s) of
the EEDS against different cells lines were calculated and are
summarized in Table 1. Among the tested cell lines, A549
(2.81 ± 0.19 𝜇g/mL) cells were the most sensitive, while NCI-
H226 (13.18±0.77 𝜇g/mL) and IMR-90 (10.54±0.79 𝜇g/mL)
were relatively resistant to EEDS. We also performed colony
forming assays to determine whether the EEDS could affect
the tumorigenic ability of A549 cells. The results indicated
that treatment with 5 and 20𝜇g/mL of the EEDS for 72 h
completely inhibited colony formation from single cells,
whereas cells treated with the vehicle control (0 𝜇g/mL of
EEDS, 0.5% DMSO) were able to form colonies (Figure 1(b),
upper panel). Relatively lower colony numbers were observed
in A549 cells treated with a low concentration of the EEDS
(1.25 𝜇g/mL) (Figure 1(b), lower panel). In order to eluci-
date how EEDS can inhibit cell proliferation, we assessed
apoptotic cell death of A549 cells following EEDS treatment.
Relative to the vehicle control, the percentage of A549 cells
undergoing early (Annexin V positive and PI negative) and
late (Annexin V positive and PI positive) apoptotic cell death
was increased after 24 h treatment of 20 𝜇g/mL of EEDS.
Taken together, these data suggest that the EEDS can inhibit
cell proliferation and reduce the tumorigenicity of A549 cells
through induction of apoptotic cell death. We selected A549
cells that had been treated with the EEDS for further analyses
of gene expression profiling.

3.2. Gene Expression Profiles. The overall pattern of gene
expression in A549 cells after EEDS treatment is shown
in Figure 2(a). Two subgroups of genes that were upregu-
lated and downregulated in dose-dependent manners were
identified. To obtain more quantitative analysis, we applied
a dose-dependency analysis to the gene expression values.
In accordance with the clustering profile of the genes, two
significantly different patterns (Down- and Up-patterns)
were observed (FDR < 0.001). The Down-pattern consisted
of 1,680 genes that were downregulated in a dose-dependent
manner, and the Up-pattern consisted of 1,673 genes that
were upregulated in a dose-dependent manner. Expression

plots of the two patterns are presented in Figure 2(b). The
top 20 genes that displayed the greatest amount of varia-
tions in each pattern are listed in Table 2. In addition, the
expression ratios for all of the genes included in Figure 2(a)
are indicated in Supplementary Table 2. The results of the
expression chip analysis were validated using semi-qPCR
reactions of 10 selected genes displaying UP- and Down-
patterns (Figure 2(c)).

3.3. Prognostic Implications. We investigated whether dose-
dependent alteration in gene expression is implicated in
clinical outcomes of lung cancer. First, using publically
available lung cancer data (GSE4573), we identified survival-
related genes (log-rank 𝑃 value < 0.05). We then examined
the relationship between these prognostic genes and UP-
or Down-pattern genes. As shown in Table 3, 48 Down-
pattern and 50 Up-pattern genes were among the survival-
related genes identified from lung cancer patients. Among
the 48Down-pattern genes, 32Down-pattern genes displayed
high-hazard ratios (>1), and 16 genes displayed low-hazard
ratios (<1). However, there were a greater number of Up-
pattern genes with low-hazard ratios (26 genes) than those
with high-hazard ratios (24 genes). Although this reciprocal
distribution of genes was marginally significant (𝑃 value of
0.069 in Fisher Exact test), considering that genes with high-
hazard ratios were downregulated, while genes with low-
hazard ratios were upregulated, we hypothesized that EEDS
treatment may enhance antitumorigenic effects.

3.4. GO Analysis. To identify the biological function of the
two patterns, a GO analysis was performed. The Down-
pattern gene set was enriched with metabolic GO terms,
including cofactor biosynthesis, heterocycle biosynthesis,
and nitrogen compound biosynthesis. In contrast, signaling-
related GO terms, including transcription regulation, protein
kinase regulation, and apoptosis regulation, were enriched in
the Up-pattern gene set. The top 10 statistically significant
categories of GO terms (FDR < 0.01) are shown in
Table 4 (for the full list of enriched GO terms, please see
Supplementary Table 4).

3.5. Profiling of GO Terms. The simple GO analysis con-
sidered only genes included in the Down- or Up-pattern
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Table 2: Top 20 list of genes mostly down-regulated or up-regulated by EEDS.

Down-pattern Up-pattern

Symbol EEDS (𝜇g/mL) Symbol EEDS (𝜇g/mL)
1.25 5 20 1.25 5 20

CSRP2BP −1.35
∗

−3.05 −6.16 HBEGF 0.86 1.58 4.44
SCARA5 −0.28 −2.58 −5.71 C7orf53 2.86 2.73 4.46
HOXB13 −0.66 −2.42 −5.06 SERPINE1 1.54 3.50 4.59
FOXS1 0.12 −2.40 −4.92 CD274 2.59 3.23 4.60
SNORA12 −2.24 −4.44 −4.91 NOG 1.16 3.91 4.67
RIMBP3 −2.00 −2.74 −4.89 PER1 2.22 1.52 4.68
ST6GAL1 −1.82 −2.20 −4.88 ARC 0.78 1.69 4.79
DACT2 −2.47 −4.08 −4.87 GADD45B 1.23 1.95 4.82
TMEM37 −1.42 −4.37 −4.85 LTB 1.37 4.06 4.85
EEF2K −1.55 −2.50 −4.84 FOS 1.25 0.52 4.87
GPRIN2 −2.57 −3.41 −4.79 DDIT3 1.66 2.78 4.90
SALL2 −2.08 −4.10 −4.76 C3orf52 1.04 2.26 4.96
CBR3 −1.56 −3.26 −4.57 MAFF 1.62 2.70 5.07
FANCF −1.30 −1.88 −4.56 IL8 2.94 4.52 5.55
CCR7 −0.58 −1.72 −4.47 PPP1R15A 1.42 2.61 5.59
C5orf58 −0.90 −1.72 −4.38 LOC387763 3.52 4.33 5.67
VAV3 −0.91 −3.48 −4.36 ATF3 1.02 2.49 5.69
C14orf93 −0.64 −2.00 −4.31 EGR2 0.11 0.72 6.46
NTHL1 −0.57 −2.05 −4.31 FOSB 1.36 3.75 7.85
VASH1 −1.31 −3.69 −4.28 EGR1 1.44 4.10 10.02
∗Fold induction represents log

2

expression ratio of gene compared with that of control.

gene sets. To identify dose-dependent changes in GO terms,
all differentially expressed genes were considered in the
analysis. As shown in Figure 3(a), most GO terms were
altered by treatment with the highest EEDS concentration
tested (20𝜇g/mL; FDR < 0.01). Consistent with the results
of the simple GO analysis, the major functions altered were
associated with apoptosis and signaling processes.

The enriched GO categories included redundant terms,
however, and it was therefore necessary to remove duplicate
terms. We used the REVIGO program to obtain nonre-
dundant GO terms (FDR < 0.01) that were altered by
EEDS treatment and to measure the functional relationship
of these terms in the network structure. Figure 3(b) shows
that signaling-related GO terms, including apoptosis, the
MAPK cascade, protein kinase regulation, and phosphoryla-
tion regulation, were connected with each other as a cluster,
suggesting an interrelationship of biological processes after
EEDS treatment in A549 cells.

3.6. PathwayAnalyses. In addition to theGOanalysis, we also
examined the functional changes induced by EEDS treatment
by performing pathway analyses. Enriched pathways (FDR <
0.01) identified from the Down- and the Up-pattern gene sets
are listed in Table 5. Although only the base excision repair
pathway (KEGG 03410) and pentose phosphate pathway
(KEGG 00030) were significantly enriched in the Down-
pattern gene set, signaling-related pathways, including the
MAPKpathway (KEGG4010), the apoptosis pathway (KEGG

4210), the p53 pathway (KEGG 4155), and the TGF-beta
pathway, were enriched in the Up-pattern gene set. The list
and positions of the Up- or Down-pattern genes in the
pathways are depicted in Supplementary Figure 2. For more
systematic analyses of the pathways, we conducted SPIA
pathway analyses, which calculate a 𝑃 value for a pathway
based on random perturbations to the pathway network
topology. In the Down-pattern gene set (Figure 4(a)), only
the sulfur relay system pathway (KEGG 4211) was significant
(𝑃G < 0.01), whereas in theUp-pattern gene set (Figure 4(b)),
the MAPK pathway (KEGG 4010), the apoptosis pathway
(KEGG 4210), the p53 pathway (KEGG 4155), and the TGF-
beta pathway were significant (𝑃G < 0.01). These results
are consistent with those of the simple pathway enrichment
analysis (Table 5). We also obtained similarly enriched path-
ways using the combined Down- and Up-pattern gene sets
(Figure 4(c)).

3.7. Pathway Activity Analyses. Sequential changes in path-
way activities based on the EEDS treatment dose were mea-
sured using a linear combination of the expression values of
all genes in each pathway. Twomajor subclusters of pathways
were grouped based on the statistically significant (FDR <
0.01) similarity of pathway activities (Figure 5(a)). Sub-
cluster 1, which is composed of pathways with activities that
decreased in a dose-dependent manner, is associated with
several metabolism-related pathways. Sub-cluster 2, which
is composed of pathways with activities that increased in a
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Table 3: Clinical association of Down- or Up-pattern genes regulated by the EEDS with survival from lung cancer.

Down-pattern Up-pattern
Symbol Fold induction∗ 𝑃 value∗∗ Hazard ratio∗∗ Symbol Fold induction 𝑃 value Hazard ratio
HMBS −2.06 0.00225 1.41 YPEL5 1.99 0.000577 0.62
GMPPA −2.80 0.00283 1.46 MNT 1.56 0.00344 1.42
CD79A −1.27 0.00431 0.72 GGA3 1.11 0.00421 1.40
HSPA12A −1.18 0.00759 1.43 MGC29506 1.00 0.00471 0.72
RUNX3 −1.19 0.00818 0.71 CHD7 1.63 0.00763 1.49
RBKS −1.17 0.0123 1.47 ERCC6 1.52 0.00887 1.37
LRRC20 −2.88 0.0132 1.47 SSBP2 1.61 0.0122 0.72
RNF144A −1.37 0.0136 0.75 NUFIP1 1.41 0.0129 1.33
C11orf60 −1.30 0.0148 1.36 CLK3 1.04 0.0159 1.37
BCS1L −1.12 0.0149 1.32 PPP1R13L 2.74 0.0160 1.35
CHST12 −2.05 0.0155 0.75 TNFSF9 1.92 0.0162 1.34
CRYBB2P1 −1.09 0.0172 0.75 DDX52 1.80 0.0163 1.36
APITD1 −2.35 0.0176 1.35 FAM108B1 1.33 0.0192 0.73
AP1G2 −1.62 0.0177 1.39 ZMYM5 1.23 0.0203 1.32
ALDH3B1 −1.77 0.0185 1.36 PTPRH 1.89 0.0217 1.34
AUTS2 −1.89 0.0210 0.74 BTG2 3.33 0.0231 0.74
NIPSNAP1 −1.64 0.0229 1.29 ARHGEF15 1.52 0.0233 1.3
LCMT1 −1.69 0.0240 1.29 SPATA2L 1.68 0.0244 1.30
HERC6 −1.18 0.0250 0.75 PRKRIP1 1.56 0.0245 0.76
DYRK4 −1.21 0.0261 0.77 KIFC1 1.47 0.0247 1.32
TPD52L1 −1.30 0.0262 1.35 RUNX1 2.83 0.0247 1.32
VPS33B −1.05 0.0274 1.32 GOLGA8A 2.02 0.0249 0.72
DHRS1 −1.83 0.0280 1.28 ABL1 1.15 0.0254 0.76
WDR61 −1.26 0.0292 1.32 CRABP2 2.34 0.0258 0.75
PYGL −1.62 0.0314 1.31 DDIT3 4.91 0.0260 1.34
MKS1 −1.08 0.0316 1.29 IP6K2 2.19 0.0273 0.76
VASH1 −4.29 0.0336 0.77 LOC729806 1.2 0.0275 1.36
MRPL46 −1.52 0.0338 1.29 ELL 2.63 0.0284 0.79
APBA2 −2.56 0.0340 0.75 TRAF4 1.00 0.0294 1.39
LARGE −2.96 0.0341 0.76 SEMA7A 1.16 0.0297 1.31
IMP3 −1.40 0.0354 1.28 PRNP 1.51 0.0303 0.75
AAAS −1.55 0.0354 0.78 GADD45A 4.03 0.0314 0.76
TGIF1 −1.41 0.0359 1.26 GLIPR1 1.94 0.0330 0.77
C11orf80 −1.03 0.0363 1.32 PAPOLG 1.93 0.0331 0.75
AGAP11 −1.51 0.0387 1.33 ZNF484 2.81 0.0336 1.36
CCR7 −4.47 0.0390 0.78 RAP2C 1.46 0.0336 0.76
RRBP1 −1.05 0.0395 0.77 MED1 1.25 0.0389 1.24
CDC123 −1.09 0.0422 1.29 HERPUD1 1.01 0.0392 0.79
REEP4 −1.48 0.0433 1.28 DDR2 1.11 0.0404 0.79
PFKFB1 −1.40 0.0433 0.78 PLK4 1.59 0.0417 1.30
ZNF839 −2.28 0.0440 1.3 CDC42SE1 2.29 0.0417 0.76
CCDC53 −1.88 0.0460 0.80 AOC2 1.09 0.0430 1.29
RDX −1.22 0.0466 1.29 RUNX2 1.80 0.0438 1.29
EIF2B3 −2.05 0.0470 1.27 SFRS12IP1 1.81 0.0451 0.76
PAAF1 −1.81 0.0471 1.35 INPP1 1.40 0.0456 0.76
PITPNC1 −1.39 0.0483 1.29 MCAM 1.57 0.0458 0.79
ATIC −1.31 0.0492 1.27 LTB 4.85 0.0470 0.77
DDX28 −1.63 0.0498 1.28 ZCCHC10 1.13 0.0480 0.79

SP2 1.59 0.0489 0.79
PTHLH 2.81 0.0499 0.79

∗Fold induction represents log
2

expression ratio of gene at treatment with 20𝜇g/mL of EEDS.
∗∗Log-rank 𝑃 value and hazard ratio were measured in Cox-proportional hazard regression model performed in public lung cancer data [16].
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Figure 2: Dose-dependent gene expression by EEDS treatment in A549 cells. (a) Approximately 5,400 differentially expressed genes with a
fold ratio greater than 2 or less than 0.5 (for up- and down-regulation, resp.) compared to the vehicle control group in at least one sample were
clustered hierarchically. Columns and rows represent individual samples and genes, respectively.The expression ratio color scale ranges from
red (high) to green (low), as indicated by the scale bar. Genes exhibiting statistically significant dose-dependent alterations were identified
via the STEM program (FDR < 0.001). (b)The Down-pattern is composed of 1,680 genes and the Up-pattern is composed of 1,673 genes. (c)
Data acquired from expression chip analysis was confirmed by semi-qPCR. Ten selected genes displaying Up- (↑) and Down- (↓) patterns
were amplified using gene specific primers. 𝛽-actin and GAPDH were used as loading controls.

dose-dependent manner, is associated with signaling-related
pathways as well as immune- and disease-related pathways.
To identify the relationship between the statistically signifi-
cant pathways, we constructed a similaritymatrix of pathways
based on component genes and pathway activities. As shown
in Figure 5(b), subgroups of pathways were clustered based
on the similarities of their component genes. Among them,
one large subgroupwas composed of signaling- and immune-
related pathways. The full list of pathways is presented in
Supplementary Figure 3. The pathway activities, depicted
on a diagonal line or “Activity” on the right panel, indicate
that pathways clustered in a subgroup have common levels
of activity. For example, the signaling- and immune-related
pathways that clustered in the same subgroup show similarly
increased activities, suggesting that the interconnection of
these diverse pathways may be involved in the response
mechanism of A549 cells to EEDS treatment.

4. Discussion

Our previous study demonstrated that the EEDS is cytotoxic
to human cancer cell lines and that a cardiac glycoside (hel-
veticoside) is an active cytotoxic constituent of the EEDS [6].
In accordance with our previous work, the EEDS significantly
inhibited cell growth and tumorigenicity in A549 human
non-small cell lung carcinoma cells through induction of
apoptotic cell death (Figure 1). Although the major cyto-
toxic constituent (helveticoside) of the EEDS was previously
identified, the cellularmechanism underlying the therapeutic
effects of the EEDS was not. One of the main limitations
in elucidating the therapeutic mechanism of whole extracts
is the complexity of the biological processes affected by
the diverse components of extracts. Therefore, it is difficult
to reveal the biological pathways associated with herbal
drug treatment using a conventional approach based on the
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0.010

FDR
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GO: 0090066 regulation of anatomical structure size
GO: 0042310 vasoconstriction
GO: 0043069 negative regulation of programmed cell death
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GO: 0002237 response to molecule of bacterial origin
GO: 0060548 negative regulation of cell death
GO: 0071900 regulation of protein serine threonine kinase activity 
GO: 0010212 response to ionizing radiation
GO: 0000165 MAPKKK cascade
GO: 0016481 negative regulation of transcription
GO: 0051172 negative regulation of nitrogen metabolic process 
GO: 0045934 negative regulation of nucleic acid metabolic process
GO: 0001558 regulation of cell growth
GO: 0045859 regulation of protein kinase activity
GO: 0043549 regulation of kinase activity
GO: 0042325 regulation of phosphorylation
GO: 0019220 regulation of phosphate metabolic process
GO: 0051338 regulation of transferase activity
GO: 0051174 regulation of phosphorus metabolic process
GO: 2000113 negative regulation of cellular macromolecule biosynthetic process
GO: 0010558 negative regulation of macromolecule biosynthetic process
GO: 0031327 negative regulation of cellular biosynthetic process
GO: 0009890 negative regulation of biosynthetic process
GO: 0010629 negative regulation of gene expression
GO: 0030178 negative regulation of  Wnt receptor signaling pathway
GO: 0006284 base-excision repair
GO: 0000122 negative regulation of transcription from RNA polymerase II promoter
GO: 0000079 regulation of cyclin-dependent protein kinase activity 
GO: 0023014 signal transmission via phosphorylation event
GO: 0007243 intracellular protein kinase cascade
GO: 0042558 pteridine-containing compound metabolic process 
GO: 0090090 negative regulation of canonical Wnt receptor signaling pathway 
GO: 0035468 positive regulation of signaling pathway
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Figure 3: Distribution of GO terms altered by EEDS treatment in A549 cells. (a) GO terms associated with differentially expressed genes
that had a fold ratio greater than 2 or less than 0.5 (for up- and down-regulation, resp.) were analyzed at each dose of EEDS using the High-
Throughput GoMiner tool. Columns represent individual samples, and rows represents statistically significant GO terms (FDR < 0.01). The
positions of signaling-related pathways are colored red. Statistical significance is represented by a gray color gradient, as indicated by the
scale bar. (b) A network composed of all nonredundant statistically significant GO terms (FDR < 0.01) after EEDS treatment (20𝜇g/mL) was
constructed using the REVIGO program.The size and color density of each GO term are proportional to its statistical significance, and edge
thickness represents the relatedness between two nodes.

analysis of a handful of genes. In general, administration of
herbal drugs induces or represses a large number of genes
across the whole genome. In the present study, roughly 5,400
genes (approximately 25% of all genes) were found to be
differentially expressed following EEDS treatment, as shown
in Figure 2(a). Given that treatment with 20𝜇g/mL of the
EEDS significant inhibited cell growth, we also investigated
whether the genes regulated by the EEDS are involved in cell
growth signaling functions.

Among the differentially expressed genes, two statisti-
cally significant patterns of gene expression were observed
(Figure 2(b)). The functional segregation of the two gene
expression patterns was then validated in two manners.
First, we investigated the clinical associations of the two
patterns by comparing the gene sets with survival-related
genes that were obtained from a public lung cancer dataset.
Interestingly, there was a tendency for high-risk genes in
lung cancer to be more heavily distributed in the Down-
pattern gene set (32 versus 16), while low-risk genes were
more heavily distributed in the Up-pattern gene set (26
versus 24), with marginal statistical significance (𝑃 value of

0.069). Although the number of genes that were common
to the Up- or Down-pattern gene sets and survival-related
genes was small, our results suggest that the EEDS could
be effective in prolonging survival by inhibiting high-risk
genes and activating low-risk genes. Second, differences in
functional involvement between the Down-pattern and Up-
pattern gene sets weremeasured using GO and pathway anal-
yses. For example, genes grouped in the Down-pattern gene
set, which exhibited dose-dependent decrease in expression,
were involved in heterogeneous functions, such as metabolic
processes or the base excision repair pathway, while genes
in the Up-pattern gene set were predominately associated
with cell growth signaling functions (Figure 4 and Table 5).
Previous reports indicated that energy metabolism involving
the pentose phosphate pathway can regulate lung cancer
cells [23] and polymorphisms in the base excision repair
pathway are related to lung cancer risk [24] and canmodulate
the effectiveness of chemotherapy in lung cancer patients
[25]. Cell growth-related pathways including the MAPK
pathway (KEGG 4010), the apoptosis pathway (KEGG 4210),
the p53 pathway (KEGG 4155), and the TGF-beta pathway
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Table 4: Top 10 GO terms associated with Up- and Down-patterns by EEDS treatment.

GO ID GO terms 𝑃 value∗ FDR∗∗

Down-pattern
GO:0051188 Cofactor biosynthetic process 9.26𝐸 − 08 2.57𝐸 − 04

GO:0051186 Cofactor metabolic process 1.79𝐸 − 07 2.49𝐸 − 04

GO:0018130 Heterocycle biosynthetic process 8.03𝐸 − 07 7.42𝐸 − 04

GO:0044271 Nitrogen compound biosynthetic process 6.15𝐸 − 06 4.25𝐸 − 03

GO:0006399 tRNA metabolic process 1.65𝐸 − 05 9.12𝐸 − 03

Up-pattern
GO:0045449 Regulation of transcription 4.21𝐸 − 26 1.55𝐸 − 22

GO:0006350 Transcription 3.75𝐸 − 21 6.91𝐸 − 18

GO:0006355 Regulation of transcription, DNA-dependent 3.11𝐸 − 14 3.82𝐸 − 11

GO:0051252 Regulation of RNA metabolic process 3.78𝐸 − 14 3.49𝐸 − 11

GO:0006357 Regulation of transcription from RNA polymerase II promoter 2.05𝐸 − 13 1.51𝐸 − 10

GO:0042325 Regulation of phosphorylation 2.03𝐸 − 11 1.25𝐸 − 08

GO:0051173 Positive regulation of nitrogen compound metabolic process 2.39𝐸 − 11 1.26𝐸 − 08

GO:0045859 Regulation of protein kinase activity 2.44𝐸 − 11 1.12𝐸 − 08

GO:0019220 Regulation of phosphate metabolic process 2.68𝐸 − 11 1.10𝐸 − 08

GO:0051174 Regulation of phosphorus metabolic process 2.68𝐸 − 11 1.10𝐸 − 08

∗

𝑃 values were calculated using Fischer’s test.
∗∗FDR corrections were calculated using the Benjamini-Hochberg procedure in DAVID program [17].
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Figure 4: Pathways altered by EEDS treatment in A549 cells. Statistically significant pathways in (a) the Down-pattern, (b) the Up-pattern,
and (c) the combined Down- and Up-patterns were analyzed by implementing the SPIA program. The horizontal or vertical axis represents
the overrepresentation of a pathway (𝑃NDE) or the perturbation of a pathway (𝑃PERT), respectively. Red or blue dotted lines represent the
Bonferroni- or FDR- corrected thresholds of significance (1%), respectively, for each axis value. Red and blue circles are significant pathways
after Bonferroni and FDR correction (1%) of the global 𝑃 values (𝑃G), respectively. A list of pathways consisting of red circles (Bonferroni
corrected 𝑃G < 0.01) is shown below.
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Figure 5: Pathway activities altered by EEDS treatment in A549 cells. (a)The dose-dependent change in pathway activities was measured and
clustered hierarchically. Columns represent individual samples, and rows represent activities of pathways. The pathway activity color scale
ranges from red (high) to green (low), as indicated by scale bars with arbitrary units. The pathway positions are colored green to indicate
metabolic pathways and red to indicate signaling-related pathways. (b) After measurement of the similarity between pathways, the matrix of
similarity was clustered hierarchically and merged with activities of pathways. The level of similarity is represented in red with a scale bar.
The color in the box of a diagonal line or “Activity” on the right panel represents the activity of the pathway.The positions of signaling-related
pathways are colored red and the metabolism-related pathways are colored blue.
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Table 5: Pathways associatedwithUp- andDown-patterns by EEDS
treatment.

KEGG ID Pathway 𝑃 value∗ FDR∗∗

Down-pattern
03410 Base excision repair 3.90𝐸−04 6.66𝐸−03

00030 Pentose phosphate pathway 1.47𝐸−04 1.22𝐸−03
Up-pattern

04010 MAPK signaling pathway 1.16𝐸−07 1.83𝐸−05

04210 Apoptosis 4.99𝐸−06 3.94𝐸−04

04115 p53 signaling pathway 2.46𝐸−05 1.29𝐸−03

04350 TGF-beta signaling pathway 5.36𝐸−05 2.11𝐸−03

04060 Cytokine-cytokine receptor
interaction 1.14𝐸−04 3.60𝐸−03

04710 Circadian rhythm 3.20𝐸−04 8.38𝐸−03

04621 NOD-like receptor signaling
pathway 3.39𝐸−04 7.61𝐸−03

∗

𝑃 values were calculated using Fischer’s test.
∗∗FDR corrections were calculated using the Benjamini-Hochberg proce-
dure [17].

were also significantly enriched in the Up-pattern gene set
(𝑃G < 0.01), raising the possibility that the EEDS stimulates
functionally related biological pathways (Figure 4(b)). The
MAPK pathway has been widely reported to be involved in
the growth and invasion of lung cancer, and this pathway has
been used for the development of anti-lung cancer drugs [26–
28]. Activation of the apoptosis and p53 pathways is also one
of themain targets of anti-lung cancer drugs, including herbal
extracts [29–31]. Other functionally related pathways iden-
tified in the Up-pattern gene set included immune system-
or infectious disease-related pathways, including cytokine-
cytokine receptor interaction (KEGG 04060), NOD-like
receptor signaling pathway (KEGG 04621), Helicobacter
pylori infection (KEGG 05120), and Salmonella infection
(KEGG 05132). Interestingly, immune-system regulation has
been reported to improve lung cancer patient outcomes [32,
33]. Similar functional involvement was also observed when
we performed a pathway analysis using all of the differentially
expressed genes contained in the Down- or the Up-pattern
gene sets (Figure 4(c)).

In addition to the Down- and Up-pattern gene sets,
we used the expression values from all genes to measure
changes in pathway activities. Intriguingly, the results of
this analysis clearly demonstrated that metabolism-related
pathways and signaling-related pathways were regulated in
dose-dependent and reciprocal manners (Figure 5(a)). The
activities of a group of metabolism-related pathways were
significantly diminished, whereas a group of signaling path-
ways, including apoptosis and immune-related pathways,
were significantly activated in a dose-dependent manner.The
regulatory pattern observed in our system is in agreement
with the postulated anti-carcinogenic effects of the EEDS, as
previously proposed by many reports in which the inhibition
of metabolic pathways and the activation of apoptosis or
immune-related pathways were the main targets of lung
cancer drug development [23, 26, 29, 31, 32].The observation

that the activities of diverse signaling andmetabolic pathways
appeared in separate clusters implies the existence of a
common reciprocal regulatory mechanism. Therefore, we
also measured the relationships between pathways based on
the similarities of pathway component genes and integrated
pathway activities. The results of this analysis indicate that
signaling pathways with increased activity are grouped in
a large cluster, suggesting that diverse signaling pathways
are similarly affected by EEDS treatment (Figure 5(b)). In
contrast, the results show that metabolic pathways with
decreased activity are grouped in a small cluster. Our results
show that the signaling and metabolic pathways were inter-
connected through the complex network structure.

Despite these data, the growth inhibitory effect of the
EEDS is difficult to explain. To fully elucidate the molecular
mechanism underlying the activity of the EEDS, the biologi-
cal implication of the reciprocal regulation of two biologically
distinct groups of pathways must be determined and the
exact relationships between the diverse pathways should be
verified in more detail. Moreover, further rigorous studies
should be done to determinewhether the observed reciprocal
regulation of biological functions is a general mechanism
of herbal extracts. Nonetheless, our present results provide
evidence in support of the importance of usingwhole genome
approaches to elucidate pharmaceutical mechanisms.

5. Conclusion

In conclusion, the results of the present study indicate that
EEDS treatment induces dose-dependent responses in A549
human non-small cell lung carcinoma cells that involve the
up-regulation of a large group of genes associated with cell
growth-related signaling pathways and the downregulation
of genes associated with metabolic function. This reciprocal
regulatory mechanism may provide clues to further our
understanding of the mechanism driving growth inhibition
in human cancer cells treated with the EEDS, especially in
A549 human lung cancer cells.
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