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Abstract 
An increasing number of epidemiological studies have suggested that birth weight (BW) may be a determinant of bone health 
later in life, although the underlying genetic mechanism remains unclear. Here, we applied a pleiotropic conditional false 
discovery rate (cFDR) approach to the genome-wide association study (GWAS) summary statistics for lumbar spine bone 
mineral density (LS BMD) and BW, aiming to identify novel susceptibility variants shared between these two traits. We 
detected 5 novel potential pleiotropic loci which are located at or near 7 different genes (NTAN1, PDXDC1, CACNA1G, JAG1, 
FAT1P1, CCDC170, ESR1), among which PDXDC1 and FAT1P1 have not previously been linked to these phenotypes. To 
partially validate the findings, we demonstrated that the expression of PDXDC1 was dramatically reduced in ovariectomized 
(OVX) mice in comparison with sham-operated (SHAM) mice in both the growth plate and trabecula bone. Furthermore, 
immunohistochemistry assay with serial sections showed that both osteoclasts and osteoblasts express PDXDC1, support-
ing its potential role in bone metabolism. In conclusion, our study provides insights into some shared genetic mechanisms 
for BMD and BW as well as a novel potential therapeutic target for the prevention of OP in the early stages of the disease 
development.
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Key messages 
•We investigated pleiotropy-informed enrichment between LS BMD and BW.
•We identified genetic variants related to both LS BMD and BW by utilizing a cFDR approach.
•PDXDC1 is a novel pleiotropic gene which may be related to both LS BMD and BW.
•Elevated expression of PDXDC1 is related to higher BMD and lower ratio n-6/n-3 PUFA indicating a bone protective  
  effect of PDXDC1.
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Introduction

The prevalence of osteoporosis (OP) in the USA was projected 
to increase by 17.2 million between 2010 and 2030 [1]. The 
lifetime fracture risk of patients with OP is estimated to be 
as high as 40% [2], and the economic burden associated with 
fractures is predicted to exceed $25 billion by 2050 without 
effective intervention of OP risk [3].

In recent decades, growing epidemiological evidence has 
shown that birth weight (BW) may be an important determinant 
of adult bone health. For instance, a previous study in British 
twins (n = 4008, 100% women) found that elevated BW has a 
protective effect on both bone mass and bone mineral content 
[4]. Similarly, research from The Gambia (n = 120, 57% men 
and 43% women) indicated that BW is positively correlated  
with the cross-sectional bone area at cortical sites in men and at 
trabecular sites in women [5]. Additionally, several studies have 
suggested that the intrauterine environment may program the 
embryogenesis genome with a skeletal growth trajectory that 
persists post-partum independent of post-natal factors [6, 7]. 
Given the close relationship between BW and bone health, and 
the high heritability of BW (87%) [8] and bone mineral density 
(BMD) (75–83%) [9], we hypothesized that there may be shared 
genetic determinants contributing to these two phenotypes.

Previous genome-wide association studies (GWAS) have 
identified at least 90 lumbar spine (LS) BMD-related loci and 
87 BW-related loci, yet collectively these can only explain 
12% and 15% of the individual trait variations, respectively 
[10, 11]. Here, we jointly analyzed GWAS summary statis-
tics for BW and LS BMD using a pleiotropic conditional 
false discovery rate (cFDR) approach to identify novel trait-
associated loci for the individual traits as well as those that 
may overlap [12]. The cFDR technique augments the effec-
tive sample size by efficiently combining existing datasets 
and has been successfully utilized by our team and others for 
exploring common pleiotropic loci for two related complex 
traits, such as coronary artery disease (CAD) and BMD [9], 
CAD and body mass index [13], or height and BMD [14].

The aim of this study was to identify potential novel pleio-
tropic susceptibility variants common to both BW and LS 
BMD using the cFDR method. Furthermore, to partially vali-
date the reliability of the method and the genes identified by 
cFDR, we selected a novel pleiotropic gene to perform func-
tional validation experiments in mice.

Materials and methods

GWAS datasets

BMD measured by dual-energy X-ray absorptiom-
etry (DXA) is the gold standard for OP diagnosis as 

recommended by the WHO. Since LS BMD is estimated 
to have the highest heritability among commonly meas-
ured skeletal sites [15], it was thus chosen for studying the  
relationship between BMD and BW in this genetic associa-
tion analysis.

The LS BMD GWAS summary-statistic dataset was 
acquired from the Genetic Factors for Osteoporosis Consor-
tium (GEFOS) and included 53,236 individuals [16]. At the 
present time, it is the largest GWAS for DXA-derived BMD 
measurements. The BW summary statistics were downloaded 
from the Early Growth Genetics (EGG) Consortium and 
included 143,677 subjects [11]. To confirm that the variance 
estimated for each single-nucleotide polymorphism (SNP) 
was not inflated due to population stratification, standard 
genomic control procedures were applied to the two original 
GWAS studies. The two datasets have no overlapping sub-
jects, and both include subjects of European ancestry.

SNP pruning and merging

We performed linkage disequilibrium (LD)-based pruning 
for each dataset using PLINK version 1.9 software. Firstly, 
the LD was computed for each pair of SNPs in a window 
containing 50 SNPs. For pairs with an r2 > 0.2, the SNP with  
the smaller minor allele frequency was removed. The window 
was moved 5 SNPs forward, and the procedure was repeated 
until no pairs of SNPs across the genome had r2 > 0.2. The 
pruning was based on the LD structure of the CEU HapMap 
3 genotypes. After the pruning process was completed, there 
were 121,848 SNPs which overlapped between BMD and 
BW which were retained for the subsequent analysis.

Estimation of pleiotropic enrichment

Stratified quantile–quantile plots (Q-Q plots) were con-
structed to visualize the pleiotropic enrichment between 
LS BMD and BW when conditioning on successively more 
stringent p value thresholds of the conditional trait: p < 1 
(all SNPs), p < 0.1, p < 0.01, and p < 0.001. The observed p 
values of the principal trait, denoted as “nominal -log10 (p),” 
were plotted on the y-axis against the empirical conditional 
p values, denoted as “empirical −  log10 (q)”. The line x = y 
indicates the null hypothesis of no pleiotropic enrichment, 
and plots that deviate leftward from the null line indicate that 
a pleiotropic effect exists between the traits [12].

Calculation of cFDR and ccFDR

The calculation of the cFDR extends from the single phe-
notype case, where the unconditional false discovery rate 
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(FDR) for a set of SNPs is characterized as the probability 
of a false positive association. The cFDR expands this idea 
to the two-phenotype case and is defined as the probability 
of a false positive association with the principal trait given 
that the association p-values with both the principal and con-
ditional traits are at least as small as the observed p values. 
Using the GWAS summary statistics, the cFDR for each 
SNP was separately computed for both orderings of the traits 
(BMD|BW and BW|BMD, where “|” indicates conditional 
upon). The SNPs were regarded as significantly related to 
the principal trait when cFDR < 0.05. More details are pro-
vided in Online Resource 1. The conjunction cFDR (ccFDR) 
value was defined as the maximum cFDR value of two trait 
orderings, and SNPs with ccFDR < 0.05 were interpreted as 
pleiotropic loci associated with both traits [12]. Manhattan 
plots were constructed using R to graphically display the 
genomic locations of significant variants.

Annotation of novel SNPs and genes

The significant cFDR SNPs (cFDR < 0.05) were queried 
using the SNPinfo web server (https:// snpin fo. niehs. nih. gov) 
to ascertain all corresponding SNPs with high LD (r2 > 0.8). 
All SNPs (including those with cFDR < 0.05 and those with 
high LD) were then compared to previous GWAS findings (p 
value < 5 ×  10−8) on the European Bioinformatics Institute 
website. SNPs with a GWAS p value > 5 ×  10−8 that have not 
been reported as having an association with BMD or/and 
BW were considered to be potential novel SNPs. We utilized 
both the SNP and CNV Annotation Database (SCAN, http:// 
scandb. org/ newin terfa ce/ about. html) and PubMed (https:// 
www. ncbi. nlm. nih. gov/ snp) to map the significant cFDR 
SNPs to nearby genes. Genes that were not previously identi-
fied in BMD or/and BW-related studies were deemed novel.

Functional enrichment analysis and protein–protein 
interaction analysis of identified genes

To establish the physiological role of genes of interest, we 
performed functional enrichment analysis using the Data-
base for Annotation, Visualization and Integrated Discovery 
(DAVID, https:// david. ncifc rf. gov/ summa ry. jsp). To explore 
the functional interactions between proteins produced by 
cFDR-significant pleiotropic susceptibility genes, we per-
formed protein–protein interaction analysis by the online 
tool STRING 10.0 (http:// string- db. org/).

Fine‑mapping

To discover putative pleiotropic causal SNPs and prior-
itize genes for the subsequent functional experiments, we 
performed multi-trait fine mapping analysis using PAIN-
TOR [17]. In particular, we focused on a potential OP 

susceptibility locus located on chromosome 16 (14800000-
16280000) which includes the gene PDXDC1.

Postmenopausal OP mouse models

Female C57BL/6 mice were obtained from the Animal 
Center of Southern Medical University, which either 
received sham-operated (SHAM) surgery or ovariectomy 
(OVX) under 1.2% tribromoethanol anesthesia at 8 weeks 
of age. The OVX group had bilateral ovary removal, while 
the SHAM group had a similar volume of adipose tissue 
removed from around the ovaries. The mice were sacrificed 
sixteen weeks post-surgery and hind-limb specimens were 
harvested for subsequent analyses. Four mice were randomly 
selected from each experimental group.

Micro‑computed tomography analysis

The hindlimbs were fixed in 4% paraformaldehyde for 48 h 
then scanned in a micro-computed tomography (micro-CT) 
scanner (Viva CT40, Scanco Medical AG, Bassersdorf, 
Switzerland). Morphological analysis was conducted on tra-
becular bone. The region of interest in the trabecular bone 
began at a position 20 spongiosa slices (9 µm thick) from 
the lower growth plate of the femur and finished 160 slices 
later. Bone volume/total volume (BV/TV), trabecular thick-
ness (Tb. Th), trabecular number (Tb. N), and trabecular 
separation (Tb. Sp) were computed using standard three-
dimensional microstructural analysis.

Immunohistochemistry

The hindlimbs were fixed in 4% paraformaldehyde in phosphate- 
buffered saline (PBS) for 48 h at 4 °C, then decalcified in 10% 
ethylenediaminetetraacetic acid (EDTA; pH 7.4) for 21 days 
at room temperature prior to dehydration in a rising gradient 
of ethanol and embedded in paraffin. The tissues were sliced 
into 3 or 4 micron thick sections for histological analysis. Tis-
sue sections were incubated overnight at 4 °C with PDXDC1 
primary antibody (Proteintech, 21,021–1-AP, 1:200) then for 
1 h at room temperature with a secondary antibody (Arigo, 
ARG65351, 1:200). Diaminobenzidine (DAB, KGP1045/
KGP1045-20/KGP1045-100, 1:1:1:20) was conjugated to the 
secondary antibody.

Both PDXDC1-positive and the total number of cells 
were enumerated (at 400 × magnification) at the growth plate 
and within the trabecula bone in the femur or tibia. Four 
views from these regions picked at random were counted on 
each section, and three consecutive sections were selected 
for each mouse.

To distinguish whether the PDXDC1-positive cells were 
osteoclasts or osteoblasts, we conducted immunohistochem-
istry assay with three-micrometer-thick serial sections in the 
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SHAM group. Tartrate-resistant acid phosphatase (TRAP) is  
a specific marker of osteoclasts and osteocalcin (OCN) is a 
specific marker of osteoblasts. The specific procedures of the 
immunohistochemistry assay with serial sections were as fol-
lows: (1) there were two thin and consecutive tissue sections 
on each glass slide labeled A and B in advance; (2) A-labeled 
sections were incubated with PDXDC1 primary antibody (Pro-
teintech, 21,021–1-AP, 1:200), and B-labeled sections were 
incubated with anti-OCN primary antibody (abcam, ab93876, 
1:500) or subjected to TRAP staining (Sigma-Aldrich); (3) 
sections not used for TRAP staining were incubated with suit-
able secondary antibody (Arigo, ARG65351, 1:200).

Fat‑1 TG mouse model

To preliminarily verify the mechanism of PDXDC1 affect-
ing BW and BMD, a fat-1 transgenic (TG) mouse model  
was adopted. Male fat-1 TG mice were matched with wild-
type (WT) female C57BL/6 mice to breed fat-1 gene-positive  
mice. The fat-1 gene-positive mice were identified using 
genomic DNA extracted from tail biopsies. Primer sequences 
were as follows: 5′-GGA CCT GGT GAA GAG CAT CCG-3′ 
and reverse, 5′-GCC GTC GCA GAA GCC AAA C-3′. We fed 
the mice until 16 months old when they were sacrificed and 
hind-limb specimens were harvested for subsequent analysis. 
We performed the immunohistochemical assay on both fat-
1 TG mice and WT mice with PDXDC1 primary antibody 
(Proteintech, 21,021–1-AP, 1:200).

Sections were imaged using a Zeiss microscope (Carl 
Zeiss, New York, USA). All experiments were performed 
three times or more for reproducibility.

Statistics

Data shown are means ± standard deviation (SD). Two sam-
ple t-tests were performed for comparison of experimental 
groups. Statistical significance was set at p value < 0.05.

MR analysis

To investigate the potential causal relationship between 
BW and LS BMD, we performed two-sample Mendelian 
randomization (MR) analysis using the BW-associated 
SNPs as instrumental variables [18]. We first selected inde-
pendent genetic variants (r2 ≤ 0.01) associated with BW 
(p value < 5 ×  10−8) as the instrumental variables. We then 
obtained the corresponding effect estimates of these instru-
mental variable SNPs from both the BW and BMD GWAS 
analyses. The causal effects from multiple instruments were 
combined using several meta-analysis approaches includ-
ing maximum likelihood estimation and inverse-variance 
weighting (IVW).

Results

Pleiotropy between LS BMD and BW

The conditional Q-Q plots for LS BMD at various nominal p 
values of association with BW demonstrate enrichment over 
the null hypothesis line (i.e., leftward shift) at each stratified 
level of significance for BW (Fig. 1a), and vice versa for BW 
SNPs conditioned on LS BMD (Fig. 1b).

Fig. 1  Q-Q plots. Stratified QQ plots of nominal versus empiri-
cal − log10 p values for a LS BMD as a function of significance of 
the association with BW, and b BW as a function of significance of 

the association with LS BMD. The level of − log10(p) > 0, − log10(p) 
> 1, − log10(p) > 2, − log10(p) > 3, − log10(p) > 4 correspond to p < 1, 
p < 0.1, p < 0.01, p < 0.001, p < 0.0001, respectively
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LS BMD variants identified by cFDR

Twenty-two LS BMD-associated SNPs conditioned on BW,  
mapping to 10 different chromosomes, were identified 
using the cFDR method (Fig. 2a). Among these 22 SNPs, 
10 had a p-value less than 5 ×  10−8 in the original LS BMD 
GWAS [16], and 1 SNP (rs2741856) was previously asso-
ciated with BMD in another GWAS [19]. These 11 SNPs 
had therefore successfully replicated previous GWAS, 
partially demonstrating the reliability and robustness of 
the cFDR method. The remaining 11 novel SNPs with a 
p value > 5 ×  10−8 would have easily been overlooked in 
a traditional single trait GWAS. The 22 SNPs were physi-
cally mapped to 27 different genes (Online Resource 2), 
15 of which had previously been reported to be related to 
BMD or OP in various other studies[19–25]. In functional 
term enrichment analysis, some the identified variants were 
enriched in several terms associated with bone metabo-
lism, such as “regulation of bone remodeling,” “regulation 

of bone resorption,” and “skeletal system development” 
(Table 1).

Fig. 2  Manhattan plots. a Conditional Manhattan plot of conditional −  
 log10 FDR values for LS BMD given BW (LS BMD|BW). b Conditional 
Manhattan plot of conditional −  log10 FDR values for BW given LS BMD  

(BW|LS BMD). c Conjunction Manhattan plot of conjunction −  log10 FDR 
values for LS BMD and BW. The red line corresponds to conditional −   
log10 FDR value of 1.3 (cFDR < 0.05)

Table 1  Functional term enrichment analysis

GO term gene ontology term

GO term Count p value FDR

LS BMD genes
Regulation of bone remodeling 2 1.2E − 2 8.1E − 1
Regulation of bone resorption 2 1.2E − 2 8.1E − 1
Skeletal system development 3 2.6E − 2 8.4E − 1
BW genes
Insulin-like growth factor receptor 

signaling pathway
5 5.1E − 7 4.9E − 4

Insulin receptor binding 5 1.4E − 5 1.9E − 3
Phosphatidylinositol 3-kinase signaling 4 3.0E − 4 9.2E − 2
Positive regulation of MAPK cascade 5 6.6E − 4 1.0E − 1
Protein binding 55 5.3E − 3 1.9E − 1
Regulation of growth 6 3.9E − 2 4.2E − 1
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BW variants identified by cFDR

Conditioned on the association with LS BMD, 99 BW-
associated SNPs mapping to 20 different chromosomes 
(Fig. 2b), were identified as being associated with BW 
using the cFDR method. Among the 99 SNPs, 16 had a 
p value less than 5 ×  10−8 in the original GWAS [11]. The 
remaining 83 SNPs with p values > 5 ×  10−8, easily over-
looked in traditional studies, were considered to be novel 
SNPs. The 99 SNPs were mapped to 130 different genes 
(Online Resource 3). Among these 130 different genes, 
31 had been identified as having an association with BW 
in previous studies [9, 11, 26–32]. The functional term 
enrichment analysis results demonstrate that a consider-
able number of variants were enriched in terms such as 
“insulin-like growth factor receptor signaling pathway,” 
“insulin receptor binding,” “phosphatidylinositol 3-kinase 
signaling,” “positive regulation of MAPK cascade,” “pro-
tein binding,” and “regulation of growth” (Table 1). Nota-
bly, the abnormal expression and/or activation of IGF-1 
receptor, phosphatidylinositol 3-kinase signal pathway, and 
MAPK family were confirmed to be associated with intrau-
terine growth restriction of placentas [33]. Furthermore, 

vitamin D-binding protein, adipocyte fatty acid-binding 
protein, and insulin-like growth factors binding proteins 
have been reported to have a key role in modulating BW 
[34–36].

Pleiotropic variants for both LS BMD and BW 
identified by ccFDR

We identified 5 pleiotropic susceptibility SNPs (ccFDR < 0.05)  
associated with both LS BMD and BW (rs34955778, 
rs198542, rs2423512, rs12197879, rs1293935), which 
mapped to 4 different chromosomes and 7 different genes 
(Fig. 2c, Table 2). Among these genes, CACNA1G, JAG1,  
and ESR1 were previously reported to be related to both BMD  
[20, 23] and BW [9, 11], while CCDC170 and NTAN1 were 
previously reported to have an association with BMD [20, 
24]. The remaining 2 genes (PDXDC1 and FAT1P1) have not 
previously been identified to be associated with either trait.

PDXDC1 was connected with CCDC170 and NTAN1 
in the protein–protein interaction network constructed 
for the cFDR-significant pleiotropic susceptibility genes 
(Fig. 3), hinting at a potential role for PDXDC1 in bone 
health [20].

Table 2  Pleiotropic SNPs for 
both LS BMD and BW

SNP single nucleotide polymorphisms, CHR chromosome, cFDR.LS conditional false discovery rate of LS 
BMD when conditioned on BW, cFDR.BW conditional false discovery rate of BW when conditioned on LS 
BMD, ccFDR conjunction conditional false discovery rate

SNP Nearby gene CHR cFDR.LS cFDR.BW ccFDR

1 rs12197879 CCDC170 6 1.01E − 06 2.55E − 02 2.55E − 02
2 rs1293935 CCDC170 6 3.95E − 06 2.80E − 09 3.95E − 06

ESR1
3 rs34955778 NTAN1 16 3.59E − 02 1.60E − 02 3.59E − 02

PDXDC1
4 rs198542 CACNA1G 17 1.49E − 02 1.74E − 02 1.74E − 02
5 rs2423512 JAG1 20 8.36E − 03 9.41E − 06 8.36E − 03

FAT1P1

Fig. 3  Protein–protein interac-
tion network. Protein–protein 
interaction network for cFDR-
significant pleiotropic suscep-
tibility genes. Connections 
were based on evidence with an 
interaction score ≥ 0.40. Net-
work nodes represent proteins 
produced by the corresponding 
genes, edges between nodes 
indicate protein–protein associa-
tions, edge color indicates the 
type of interaction and is speci-
fied on the bottom of the figure

728 Journal of Molecular Medicine (2022) 100:723–734



1 3

Fine‑mapping

Based on the multi-trait fine mapping analysis, the SNP 
rs1121, which is located in the intron region of PDXDC1, 
was identified to have the highest posterior probability of 
causality (0.99) for both traits (Fig. 4). Additionally, this 
putative pleiotropic causal SNP is an expression quanti-
tative trait loci (eQTL) associated with PDXDC1 expres-
sion in muscle skeletal tissue (p value = 9.58 ×  107) in the 
GTEx database (https:// www. gtexp ortal. org/ home/ index. 
html). Furthermore, PDXDC1 has been linked with both 
omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids 
(PUFAs) in previous GWAS [37, 38]. We note that n-3 and 
n-6 PUFAs were demonstrated to be critical for both fetal 
growth and the regulation of bone metabolism [39, 40]. It 
was reported that elevated n-6/n-3 PUFA ratio is related to 
lower BMD of hip [41]. Based on these findings, we hypoth-
esized that PDXDC1 might causally influence BW and BMD 
through the modulation of PUFAs levels.

Partial validation based on animal models

PDXDC1 was selected as the target gene to test for its associ-
ation with LS BMD by immunohistochemical analysis for its 
protein levels in a postmenopausal OP mouse model to par-
tially verify the validity of the cFDR method. Sixteen weeks 
after ovariectomy, morphometry analysis of trabecular bone 
demonstrated significantly lower BV/TV (p value < 0.05), 
less Tb. N (p value < 0.01), and wider Tb. Sp (p value < 0.01) 
in the OVX group compared to the SHAM group. Tb. Th 
between the two groups was not significantly different 
(Fig. 5a, b). The immunohistochemical assay showed that 
quantities of PDXDC1-positive cells were present within 
the growth plate and on the surface of trabecula bone. The 
expression of PDXDC1 in the growth plate and trabecula 
bone of the OVX group decreased dramatically compared to 
the SHAM group (p value < 0.0001) (Fig. 5c). The immuno-
histochemistry assay with serial sections showed that both 
osteoclasts and osteoblasts expressed PDXDC1 (Fig. 5d, e).

To preliminarily verify the mechanism of PDXDC1 
affecting BW and BMD, we performed the immunohisto-
chemical assay on fat-1 TG mice and WT mice. The fat-
1 TG mice can convert n-6 to n-3 PUFAs endogenously 
and have been shown to display elevated n-3 PUFAs and 
lower n-6 PUFAs in both cartilage and serum [42]. We per-
formed PCR genotyping identification with fat-1 fragment-
specific primers to identify the fat-1 TG mice (Fig. 6). The 

Fig. 4  Visualization of posterior probability plots. We present a pos-
terior probability of each SNP, b Z-score for BW, c Z-score for LS 
BMD, and d LD matrix

▸
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immunohistochemical assay results showed that the expres-
sion of PDXDC1 in the growth plate of fat-1 TG mice was 
increased dramatically compared to WT mice (Fig. 5f). This 
suggests that PDXDC1 may have a protective role for BMD 
by interacting with n-3 and n-6 PUFAs.

Two‑sample MR analysis

We obtained 46 independent SNPs that associated with BW 
which were included in the MR analysis. However, we were 
not able to detect a significant causal effect of BW on BMD 
(Online Resource 4).

Discussion

In this study, we investigated pleiotropy-informed enrich-
ment between LS BMD and BW and identified genetic 
variants related to both traits by utilizing a cFDR approach. 
With a cFDR-significance threshold of 0.05, we identified 
22 SNPs associated with LS BMD, including 11 novel loci 
overlooked in previous GWAS [16, 19], 99 SNPs associ-
ated with BW, including 83 novel loci ignored in the origi-
nal GWAS [11], and 5 novel pleiotropic loci which may be 
related to both LS BMD and BW.

Interestingly, since the variants identified as being associ-
ated with either LS BMD or BW by cFDR were conditioned 
on one another, several may demonstrate pleiotropic effects. 
For example, HMGA2, identified to be associated with BW 
in this study in addition to other research [43], has also been 
reported to influence trabecular BMD in elderly men [44]. 
Additionally, the expression of HMGA2 has been detected 
in the human fetal osteoblast cell line hFOB [44]. WNT4, 
identified as being associated with LS BMD by cFDR, was 
previously reported to be associated with BW in a large-
scale GWAS [11]. IGF-1, identified to be associated with 
BW by cFDR, was established to regulate BMD in women 
in a population-based study [45]. It has been proposed that 
that IGF-1 may be modulated by changes in estrogen levels, 
which in turn affects BMD [45]. Lastly, RB1, identified to 
be associated with BW in this study, has been confirmed to 
be related to mineralization defects in bones in a previous 
animal study [46].

The 5 identified pleiotropic susceptibility loci for both 
LS BMD and BW were mapped to 7 different genes, among 
which PDXDC1 and FAT1P1 not previously been linked 
to these phenotypes are particularly interesting. PDXDC1, 
preferentially expressed in the intestine, encodes the pro-
tein vitamin B6-dependent decarboxylase [47]. This gene 
has been reported to have an association with both n-3 and 
n-6 PUFAs [37, 38]. We demonstrated that the expression 
of PDXDC1 in OVX mice was significantly reduced com-
pared to SHAM group mice. Additionally, the expression of 
PDXDC1 in fat-1 TG mice increased dramatically compared 
to WT mice. The findings hint that elevated expression of 
PDXDC1 is related to higher BMD and lower ratio n-6/n-3 
PUFA. We also successfully verified that both osteoclasts 
and osteoblasts express PDXDC1. These results are in 
accordance with previous studies in both humans and mice 
which reported that lower n-6/n-3 PUFA ratio is beneficial 
for bone health [41, 48]. Both n-3 and n-6 PUFAs have been 
shown to modulate the function of osteoclasts and osteo-
blasts through cell adhesion [40]. Furthermore, n-3 PUFAs 

Fig. 5  Partially validation of PDXDC1. a Micro-computed tomogra-
phy scanner assessment of trabecular bone microstructural parame-
ters. Three-dimensional microstructural of trabecular bone of SHAM 
group and OVX group by micro-CT scanner at 16 weeks after opera-
tion. Scale bar, 100  μm. b Morphological analysis between SHAM 
group and OVX group of BV/TV, Tb. Th, Tb. N, and Tb. Sp. n = 4 
per group. Data represent mean ± SD. *p < 0.05, **p < 0.01. c Immu-
nostaining and quantification analysis of PDXDC1 between SHAM 
group and OVX group at growth plate and trabecula bone. Higher 
expression of PDXDC1 is related to higher BMD. Scale bar, 20 μm. 
n = 4 per group. Data represent mean ± SD. ****p < 0.0001. d, e 
Immunohistochemistry assay with serial sections of SHAM group. 
Both osteoclasts and osteoblasts express PDXDC1. Scale bar of 
d, 50 μm. Scale bar of e, 20 μm. f Immunostaining of PDXDC1 of 
transgenic (TG) mice and wild-type (WT) mice. Higher expression of 
PDXDC1 is related to lower ratio n-6/n-3 PUFA. Scale bar, 50 μm

◂

Fig. 6  fat-1 TG mice identification. PCR genotyping identification 
with fat-1 fragment-specific primers. Lines 2, 3, and 4 indicated fat-1 
gene expression; lines 1 and 5 indicated wild-type (WT) gene expres-
sion
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of maternal blood were found to be positively correlated 
with BW by reducing blood viscosity and increasing pla-
cental blood flow [49]. In future follow-up studies, we may 
develop PDXDC1 knockout mice to explore the molecular 
mechanisms of how PDXDC1 interacting with n-3 and n-6 
PUFAs regulate BW and BMD concurrently. FAT1P1 is a 
pseudogene of FAT1, and we know limitedly.

Although we successfully applied the cFDR methodology 
to identify novel variants associated with BW and/or BMD, 
there are several limitations to the current research. Firstly, 
we cannot assess the proportion of variability in the pheno-
typic traits explained by the identified loci since we could 
not obtain the individual level genotype data. Secondly, we 
were not able to distinguish between the pleiotropic sce-
narios where either the variant separately influences both 
traits or the variant influences BW which in turn influences 
BMD. Thirdly, our research did not verify the molecular 
mechanisms of PDXDC1 concurrently regulating BW and 
BMD. However, theoretical and biological investigation may 
be pursued in future studies to reveal the common patho-
physiological mechanisms of both traits.

In conclusion, our study indicates that PDXDC1 may ben-
efit to bone health and provides insights into some shared 
genetic mechanisms for BMD and BW as well as a novel 
potential therapeutic target for the prevention of OP in the 
early stages of the disease development.
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