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Abstract: Coptis chinensis Franch has been used in Traditional Chinese Medicine (TCM) for treating
infectious and inflammatory diseases for over two thousand years. Berberine (BN), an isoquinoline
alkaloid, is the main component of Coptis chinensis. The pharmacological basis for its therapeutic
effects, which include hepatoprotective effects on liver injuries, has been studied intensively, yet the
therapy of liver injuries and underlying mechanism remain unclear. We investigated the detoxification
mechanism of Coptis chinensis and berberine using metabolomics of urine and serum in the present
study. After the treatment with Coptis chinensis and berberine, compared with the cinnabar group,
Coptis chinensis and berberine can regulate the concentration of the endogenous metabolites. PLS-DA
score plots demonstrated that the urine and serum metabolic profiles in rats of the Coptis chinensis
and berberine groups were similar those of the control group, yet remarkably apart from the cinnabar
group. The mechanism may be related to the endogenous metabolites including energy metabolism,
amino acid metabolism and metabolism of intestinal flora in rats. Meanwhile, liver and kidney
histopathology examinations and serum clinical chemistry analysis verified the experimental results
of metabonomics.
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1. Introduction

Metals (minerals) have been used in Traditional Chinese Medicine for a long time. According
to the Pharmacopoeia of China (2015), ten kinds of minerals are listed, including cinnabar (HgS) and
realgar (As4S4). Cinnabar (96% as HgS) has long been used for its sedative and hypnotic effects in
TCM prescriptions [1,2], such as Zhusha Anshen Wan (ZSASW) [3], An-Gong-Niu-Huang Wan [4], etc.
Although cinnabar has many special medical effects, the safety of cinnabar is becoming of more and
more concern to the public due to the toxic effects caused by the high mercury content [5]. The actual
Hg content in ZSASW is about 11–13%, i.e., 110 mg Hg/g, which is 110,000 times higher than the
European Drug and Food Standards (1 µg Hg/g) [6]. Consumption of food and drugs can cause
cinnabar and other minerals to enter the body, and in some cases can cause liver and kidney injuries [3].
Therefore, it is of great significance to find a drug or effective component which has a protective effect
on liver and kidney toxicity induced by cinnabar.
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Coptidis chinensis (CR, Huanglian in Chinese) is a Chinese herbal medicine used in Traditional
Chinese Medicine (TCM) for thousands years to treat syndromes for its detoxifying and
heat-clearing effects [7,8]. For instance, Huanglian Jiedu decoction has been used for hepatitis and liver
dysfunction therapy [9]. It was reported that Coptis chinensis had hepatoprotective effects on carbon
tetrachloride-induced liver injury through regulating the abnormal metabolism of transaminase [10],
yet the mechanism of its liver protective effects remains unexplored. Many studies have shown that
many biological activities of Coptis chinensis are due to its main chemical component berberine [11–13].
Berberine (molecular formula C20H19NO5), an isoquinoline alkaloid, is isolated from Coptidis
rhizome [14]. Berberine has many pharmacological and biological activities and previous studies
have shown that it has beneficial effects such as hypoglycemic, antioxidant and anti-inflammatory
activity [15]. Recent studies have found that berberine has a good protective effect on liver and
kidney injury caused by mercury by increasing the expression of Bcl-2 protein in liver and kidney [16].
However, no study of the protective effect of Coptis chinensis and berberine on the metabolic pathways
of liver and kidney has been reported.

Metabonomics is the science of comprehensively profiling small molecule metabolites in cells, tissues,
or whole organisms, the application of which has led to an understanding of the pathophysiologic
mechanisms of cardiometabolic diseases, defining predictive biomarkers for those diseases, and also
assessing the efficacious effects of administered drugs. As an important part of systems biology,
metabonomics refers to a qualitative and quantitative analysis of all low molecular-weight metabolites
produced by cells, tissues or organisms within a specific period [17]. It has been well known that a
disease can cause pathological and physiological changes in the body, which may cause subsequent
changes in these low-molecular-weight metabolites [18]. Metabonomics these are not interchangeable-
do not mix has become more and more useful for the characterization of the metabolic changes and the
biomarkers involved in toxicological mechanisms [19,20]. NMR spectroscopy, which requires minimal
sample preparation [21], provides a rapid, non-destructive and high-throughput method, and is been
one of the most powerful techniques used in metabonomics studies.

To elucidate the underlying mechanisms of the protective effects of Coptis chinensis and berberine
on liver and kidney injury caused by cinnabar, in the present study a 1H-NMR-based metabolomic
method was applied to evaluate the systemic metabolic consequences.

2. Results

2.1. Biochemical Characteristics and Histopathology

The clinical biochemical results showed the parameters in the serum samples from the rats treated
with Coptis chinensis + cinnabar and berberine + cinnabar were different from those of the cinnabar
group on day 10 of continuous administration (Table 1).

Table 1. Selected clinical biochemical parameters of serum.

Biochemical Parameters Control Group Cinnabar Group of Coptis chinensis Group of Berberine

AST (U/L) 97.40 ± 34.01 138.17 ± 25.69 * 88.80 ± 32.87 # 90.00 ± 14.21 #

ALT (U/L) 22.33 ± 3.39 26.00 ± 2.74 22.60 ± 5.13 20.17 ± 2.64
TP (g/L) 62.13 ± 5.33 63.12 ± 15.42 63.84 ± 7.12 56.60 ± 5.26

UREA (µmol/L) 8.60 ± 0.75 8.76 ± 2.07 9.62 ± 1.84 8.02 ± 1.58
CREA (µmol/L) 23.67 ± 11.55 38.25 ± 4.64 * 19.00 ± 2.55 # 19.33 ± 3.44 #

TG (mmol/L) 0.78 ± 0.17 0.86 ± 0.33 0.75 ± 0.27 0.57 ± 0.26
CHO (mmol/L) 1.32 ± 0.22 1.56 ± 0.32 1.63 ± 0.26 1.44 ± 0.18
GLU (mmol/L) 7.49 ± 1.77 10.38 ± 2.48 * 8.47 ± 1.80 10.49 ± 1.40 *

Data are presented as mean ± SD of six animals per group. * p < 0.05 when compared to control; # p < 0.05 when
compared to cinnabar.

The elevated level of alanine aminotransferase (ALT) and aminotransferase (AST) in the
cinnabar-treated groups indicated that the liver was damaged, releasing ALT and AST into the
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blood [22]. Furthermore, the creatinine (CREA) concentration was significantly increased, which
reflected a renal function impairment. Compared to the cinnabar group, the Coptis chinensis + cinnabar
and berberine + cinnabar groups showed milder and diminished toxic symptoms. The distributions of
ALT values in the Coptis chinensis and berberine groups were less diffuse and closer to the mean value
of the control group. The biochemical characteristics demonstrated that Coptis chinensis and berberine
could thus effectively reduce the cinnabar-caused injury in rats.

Histopathological examination revealed that the main lesions showed diffuse hepatocyte
degeneration, necrosis, apoptosis and significant swelling (ballooning degeneration) in the cinnabar
group (Figure 1). By contrast, no liver and renal damage was observed in the Coptis chinensis and
berberine groups.
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2.2. Analysis of Urine Sample 1H-NMR Spectroscopic

Figure 2 shows 1H-NMR spectra of urine from rats in each group. Eighteen endogenous
metabolites, i.e., lactate, valine, alanine, acetate, pyruvate, succinate, α-ketoglutarate, citrate, creatinine,
choline, trimethylamine oxide (TMAO), betaine, taurine, glycine, fumarate, phenylalanine, hippurate
and formate were identified in the samples.

PLS-DA analysis of the urine spectrometry results show that compared with the control and the
cinnabar groups, both the Coptis chinensis and berberine ones appeared close to the control group,
but significantly separated from the cinnabar group (Figure 3A,D). The PLS-DA scores plot also
revealed that the Coptis chinensis and berberine groups could easily be distinguished from the cinnabar
group along t1 (Figure 3B,E). The corresponding loadings plot (Figure 3C,F) combined with the VIP
values from the pattern recognition model, screened out potential biomarkers for the differentiation
of Coptis chinensis, berberine and cinnabar groups, The 1H-NMR-detected relative integral levels of
metabolites indicating differences between the cinnabar group and Coptis chinensis and berberine
groups are listed in Table 2.

Compared with cinnabar group, the level of α-oxoglutarate, citrate, TMAO and hippurate were
significantly increased, and lactate, alanine, acetate, pyruvate, creatine, choline and taurine were
significantly reduced in the Coptis chinensis and berberine groups.

2.3. 1H-NMR Spectroscopic Analysis of Serum Samples

Representative 600 MHz 1H-NMR spectra of serum obtained from controls and treated groups
are shown in Figure 4. Endogenous metabolite assignments were based on chemical shifts reported in
the literature [23].
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Table 2. 1H-NMR-relative integral levels of metabolites in urine samples of the control, cinnabar, 
Coptis chinensis, and berberine groups. 

Metabolites Chemical Shift (ppm) 
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Group 

Cinnabar 
Group 

Coptis chinensis 
Group 

Berberine Group 

Citrate 2.54 (d), 2.66 (d) 5.85 ± 0.42 4.28 ± 0.56 * 5.64 ± 0.62 5.93 ± 0.49 # 
Trimethylamine-N-oxide 3.27 (s) 2.84 ± 0.38 1.76 ± 0.45 * 2.88 ± 0.40 2.84 ± 0.44 # 

Figure 2. 600 MHz 1H-NMR spectra of urine obtained from rats from the control (A); cinnabar (B); Coptis
chinensis (C) and berberine groupc (D). Key: 1, leucine + isoleucine; 2, 3-hydroxybutyrate (3-HB); 3,
acetate; 4, 2-ketoglutarate (2-OG); 5, citrate; 6, lactate; 7, creatine; 8, alanine; 9, trimethylamine-N-oxide
(TMAO); 10, glycine; 11, hippurate; 12, formate; 13, phenylalanine; 14, creatinine; 15, succinate;
16, taurine.
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Table 2. 1H-NMR-relative integral levels of metabolites in urine samples of the control, cinnabar,
Coptis chinensis, and berberine groups.

Metabolites Chemical Shift (ppm) Control
Group

Cinnabar
Group

Coptis chinensis
Group

Berberine
Group

Citrate 2.54 (d), 2.66 (d) 5.85 ± 0.42 4.28 ± 0.56 * 5.64 ± 0.62 5.93 ± 0.49 #

Trimethylamine-N-oxide 3.27 (s) 2.84 ± 0.38 1.76 ± 0.45 * 2.88 ± 0.40 2.84 ± 0.44 #

Succinate 2.41 (s) 2.57 ± 0.28 1.88 ± 0.22 * 2.36 ± 0.24 2.42 ± 0.19 #

α-Oxoglutarate 2.47 (t), 3.01 (t) 2.24 ± 0.31 1.62 ± 0.25 * 2.22 ± 0.30 # 2.16 ± 0.31
Hippurate 7.55 (t), 7.64 (t), 7.84 (d) 1.24 ± 0.13 0.68 ± 0.28 * 1.22 ± 0.12 # 1.18 ± 0.15 #

Lactate 1.32 (d), 4.14 (q) 1.05 ± 0.34 1.85 ± 0.27 * 1.07 ± 0.39 1.10 ± 0.32
Alanine 1.48 (d) 1.08 ± 0.22 1.13 ± 0.33 1.15 ± 0.12 1.03 ± 0.09
Acetate 1.93 (s) 1.64 ± 0.28 1.85 ± 0.31 1.59 ± 0.25 1.68 ± 0.16
Taurine 3.25 (t), 3.42 (t) 0.34 ± 0.08 0.66 ± 0.09 * 0.40 ± 0.05 # 0.42 ± 0.08 #

Creatineine 4.06 (s) 0.98 ± 0.18 1.01 ± 0.19 1.06 ± 0.15 1.08 ± 0.17
Creatine 3.04 (s) 0.75 ± 0.09 1.63 ± 0.22 * 0.88 ± 0.13 # 0.92 ± 0.16#

Leucine + isoleucine 0.95–0.97 (m) 0.37 ± 0.05 0.75 ± 0.03 0.41 ± 0.02 0.45 ± 0.03
Choline 3.20 (s) 0.25 ± 0.02 0.58 ± 0.07 * 0.32 ± 0.08 # 0.37 ± 0.06 #

Betaine 3.89 (s) 1.52 ± 0.13 0.80 ± 0.22 * 1.49 ± 0.16 # 1.42 ± 0.14 #

Multiplicity: s, single; d, double; t, triplet; q, quartet; m, multiplet. * p < 0.05, when compared to control; # p < 0.05,
when compared to cinnabar.
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Figure 4. 600 MHz spectra of serum obtained from rats from the control (A); cinnabar (B);
Coptis chinensis group (C) and berberine groups (D). Key: 1, creatinine; 2, creatine; 3, valine; 4, alanine;
5, TMAO; 6, pyruvate; 7, choline; 8, lactate; 9, α-glucose; 10, leucine + isoleucine; 11, acetate.

The PLS-DA scores plots (Figure 5A,B,D,E) reveal an obvious separation of the control,
Coptis chinensis and berberine groups from the cinnabar group. At the same time, we observed that
there is no difference between the Coptis chinensis, berberine and control groups. The corresponding
loadings plots, which show which metabolites contributed most to the separation of samples in the
score plots, are presented in Figure 5C,F. The major biochemical changes identified in serum from the
corresponding loadings plot and relative integral levels of metabolites (Table 3) showed the level of
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α-ketoglutaric acid, alanine, and TMAO were increased, and the levels of pyruvate, lactate, creatine,
leucine, isoleucine and choline were decreased in the Coptis chinensis and berberine groups compared
with the cinnabar group. These endogenous metabolites showed no significant differences in the
Coptis chinensis and berberine groups compared with the control group.
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Table 3. 1H-NMR-relative integral levels of metabolites in serum samples of groups control, cinnabar,
Coptis chinensis and berberine.

Metabolites Chemical Shift
(ppm)

Control
Group

Cinnabar
Group

Coptis chinensis
Group

Berberine
Group

α-Oxoglutarate 2.47 (m) 1.05 ± 0.14 0.52 ± 0.18 * 1.12 ± 0.13 # 1.09 ± 0.11 #

lactate 1.32 (d), 4.14 (q) 4.59 ± 0.83 8.85 ± 1.22 * 5.45 ± 0.95 # 5.96 ± 0.72 #

Trimethylamine-N-oxide 3.27 (s) 1.64 ± 0.22 0.98 ± 0.17 * 1.76 ± 0.15 # 1.72 ± 0.23 #

Creatine 3.07 (s) 0.28 ± 0.03 0.65 ± 0.04 * 0.31 ± 0.02 # 0.37 ± 0.04 #

Leucine 0.94 (d) 0.48 ± 0.04 0.82 ± 0.05 * 0.46 ± 0.03 # 0.53 ± 0.04 #

Isoleucine 0.99 (t), 1.02 (d) 0.56 ± 0.06 1.03 ± 0.08 * 0.64 ± 0.05 # 0.67 ± 0.08 #

Alanine 1.50 (d) 1.24 ± 0.09 0.81 ± 0.06 * 1.19 ± 0.08 # 1.13 ± 0.07 #

Pyruvate 2.41 (s) 0.13 ± 0.02 0.28 ± 0.02 * 0.15 ± 0.03 # 0.16 ± 0.04 #

Choline 3.20 (s) 0.24 ± 0.06 0.48 ± 0.03 * 0.18 ± 0.02 # 0.21 ± 0.04 #

Multiplicity: s, single; d, double; t, triplet; q, quartet; m, multiplet. * p < 0.05, when compared to control; # p < 0.05,
when compared to cinnabar.

2.4. Pathway Analysis

In addition, to understand which pathways were the most relevant to the Coptis chinensis and
berberine protective effect on acute hepatic and kidney injury, metabolic network was mapped by
Metaboanalyst 3.0 (http://www.metaboanalyst.ca). A total of sixteen biomarkers were subjected to
pathway analysis [23], and the associated metabolic pathways of each substance with their FDR values
are summarized in Figure 6 and Table S1 (Supplementary Materials).
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The pathways with the impact value > 0.1 were considered as the most relevant pathways for
the liver injury. In this study, taurine and hypotaurine metabolism; glyoxylate and dicarboxylate
metabolism; valine, leucine and isoleucine biosynthesis; glycine, serine and threonine metabolism;
pyruvate metabolism; citrate cycle (TCA cycle) and glycolysis or gluconeogenesis pathways were
important metabolic pathways with impact factors of 0.42, 0.40 0.33, 0.29, 0.24, 0.17, 0.012, respectively.
The pathway analysis indicated that the alleviation effect of Coptis chinensis and berberine was
connected to alterations in energy metabolism (TCA cycle), amino acid metabolism (valine, leucine
and isoleucine biosynthesis).

3. Discussion

A large number of studies have reported that substances containing heavy metals such as HgS,
cadmium (Cd), etc., can cause liver and kidney toxicity [24]. Heavy metals may enter the body through
food, drugs, and decoration materials, etc. [1], and human intake of heavy metals for a long time
will cause liver and kidney damage, and further lead to various types of liver diseases. In this work
NMR metabonomics technologies were applied to elucidate the detoxification and mechanism of
Coptis chinensis and its main component berberine on liver and kidney toxicity caused by cinnabar.
The metabolites pathway analysis based on the potential biomarkers indicates that TCA cycle, lipid
metabolism and amino acid metabolism were involved in the metabolic changes of urine and serum.

Lactate is a substance produced by the metabolism and movement of the human body, but its
concentration generally does not rise. Only when the lactic acid production process increases,
but cannot be excreted in time, will the concentration increase [25]. It is formed by the combination of
pyruvate and hydrogen. If the energy metabolism of the rat body is normal, it does not produce any
accumulation, breaks lactate down into water and carbon dioxide, and generates heat. The increase
in the corresponding integral area shows that the metabolism of lactate in the cinnabar group has
abnormally accelerated. In addition, the levels of acetate and creatine anhydride in serum of the
cinnabar group were significantly increased. Increases in the amount of acetate in the serum indicate a
fat metabolism disorder in the liver mitochondria [26]. Compared with the cinnabar group, the content
of lactate, acetate and creatine in the urine of rats decreased to a level close to the control when the
Coptis chinensis and berberine were administered. All the above results suggest that Coptis chinensis
and berberine can improve the metabolism of hepatic mitochondria.
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Trimethylamine oxide is the oxidation product of trimethylamine. It has the function of maintaining
the concentration balance between the cell body fluid and the external body fluid environment. Studies
have shown that the metabolism of trimethylamine oxide is related to the disorder of intestinal
flora [27]. When the content of TMAO in the urine of rats was increased, it showed that the intestinal
flora of rats was destroyed and the metabolism was disordered [28]. TMAO has been suggested as a
link between gut microbiota and disease [29]. Gut microbiota play a critical role in several metabolic
processes in the human body [30]. Coptis chinensis and berberine can significantly regulate the abnormal
metabolism of trimethylamine oxide caused by cinnabar. The results suggest that Coptis chinensis and
berberine ensure a good regulatory balance in the intestinal flora of the organism.

The main role of taurine is to participate in the regulation of environmental homeostasis in
animals [31]. One of the standards for judging liver injury is the content of taurine in animal
urine. Bile acid synthesis mainly contains taurine, and cholestasis in the liver can cause the bile
acid concentration to increase, which can lead to an increase in the renal excretion of taurocholate acid.
Taurine is likely to be a possible urinary marker of liver damage [32]. The level of taurine was restrained
in the Coptis chinensis and berberine groups compared with the cinnabar group. The levels of taurine
in the Coptis chinensis and berberine groups were close to those of the control group. This suggested
that Coptis chinensis and berberine have protective effect on liver by regulating the taurine metabolism.

Creatine is synthesized in the liver and stored in the muscles. When the body’s energy is
insufficient, creatine is phosphorylated and releases energy in skeletal muscle, and a series of changes
are produced to produce creatinine. Creatinine is excreted through the glomerulus through the urine
and is almost reabsorbed by the renal tubules. When the animal’s liver is damaged, it can lead to
impaired energy metabolism and promote the production of creatinine. In addition, the increase of
creatinine content is related to renal dysfunction [33]. A significant increase of creatine in serum was
also observed after cinnabar adminstration. By contrast, after the administration of Coptis chinensis
and berberine, the metabolism of creatine returned to normal, which implied that Coptis chinensis and
berberine could prevent the liver and kidney damage induced by cinnabar.

Succinate, citrate and 2-OG are vital intermediates in the TCA cycle, which is the core metabolic
pathway for energy, which promotes the oxidative decarboxylation of acetyl-CoA and produces
reduced equivalents, FADH2 and NADH [34]. The level of the three endogenous metabolites were
decreased in the cinnabar groups. However, succinate, citrate and 2-OG showed a reversion tendency
in the Coptis chinensis and berberine groups, which indicated that the Coptis chinensis and berberine
could restore the energy metabolism in rats.

4. Materials and Methods

4.1. Reagents and Drugs

Berberine chloride (purity of 99.0%), 2,2,3,3-deuterotrimethylsilyl propionic acid (TSP) and D2O
were purchased from Norell Inc. (Vineland, NJ, USA). Phosphate buffer (pH 7.4) was prepared
by mixing 0.2 M Na2HPO4 and 0.2 M NaH2PO4 (Sigma, St. Louis, MO, USA). Cinnabar and
Coptis chinensis, were purchased from Liaoning Tongren Pharmaceutical Co, Ltd. (Shenyang, China)
and authenticated by Professor Jincai Lu (School of Traditional Chinese Materia Medica, Shenyang
Pharmaceutical University, China). Coptis chinensis was extracted by boiling distilled water for 2 h
3 times. After filtration, the aqueous solution of the extract was concentrated in a rotary evaporator
and stored at 4 ◦C until use. To perform the experiments, Coptis chinensis was dissolved and vortexed
for 2 min at room temperature.

4.2. Animals and Drug Administration

Adult male Wistar rats (SPF, 180 ± 20 g, animal license No. SCXK-(Military) 2013-004) were
purchased from the Experimental Animal Center of Shenyang Pharmaceutical University. All the
animal experiments were approved by the national legislations of China and local guidelines. After
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acclimatization to the environment for ten days, the rats were maintained under standard laboratory
conditions (23 ± 1 ◦C, 45 ± 15% relative humidity, and 12 h/12 h light/dark cycle) in individual
metabolic cages with freely available food and water. All the rats were randomly divided into four
groups (n = 6): control group (injected water), cinnabar group (treated with cinnabar), Coptis chinensis
group (treated with cinnabar and Coptis chinensis French), and berberine group (treated with cinnabar
and berberine). All animals were treated by intragastric administration for consecutive eight days.
The dosage of cinnabar was 1.8 g/kg according to the literature [3]. The dosage of Coptis chinensis was
2.7 g/kg [3], and the dosage of berberine waas 100 mg/kg according to the literature [16].

4.3. Sample Collection and Pretreatment

Urine samples were collected over dry ice in tubes overnight (from PM 7:00 to AM 7:00). And all
the urine samples were immediately stored at −20 ◦C until NMR spectroscopic analysis was conducted.
Blood samples from sacrificed rats were centrifuged at 14,000 rpm for 10 min at 4 ◦C. All the serums
samples were stored at −80 ◦C for the NMR spectroscopic analysis and serum biochemistry assays.

4.4. Serum Biochemical Analysis and Histopathology Examination

The liver and kidney tissues were embedded in paraffin, and cut at 5 µm thickness. The sliced
tissues were stained with hematoxylin and eosin (H&E), and examined by light microscopy (400×,
Hitachi Medical Cor- poration, Tokyo, Japan). The serum biochemical examinations, including alanine
aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatinine
(CREA), triglyceride (TG), glucose (GLU) and total protein (TP), were performed using an automated
clinical chemistry analyzer (AU5400; Beckman Coulter, USA).

4.5. Preparation of Urine Samples and Serum Samples for 1H-NMR Spectroscopic Measurements

Urine samples (500 µL) were mixed with phosphate buffer (200 µL, 0.2 M, pH 7.4), and centrifuged
at 15,000 rpm for 5 min to remove precipitated impurities. The supernatants (500 µL) were transferred
into a 5 mm NMR tube containing TSP (100 µL, 0.1%, w/v,), and D2O (100 µL).

Serum samples (500 µL) were mixed with D2O (60 µL) and TSP (40 µL), and transferred to 5 mm
NMR tubes. TSP acts as internal standard reference (δ 0.00 ppm) and D2O was used for locking
the signal.

4.6. Data Reduction Analysis of 1H-NMR Spectra

Urine measurement conditions: 1H-NMR spectral measurements were acquired on an AV600
spectrometer (Bruker Biospin, Ettlingen, Germany) at 298 K. Typically, 32 free induction decays (FIDs)
were collected into 64 k data points over a spectral width of 12,019.23 Hz with a relaxation delay of 3 s
and an acquisition time of 2.73 s. Number of scans is 64.

Serum measurement conditions: 1H-NMR spectra of these samples were also recorded on the
Bruker-AV600 spectrometer at 298 K. Pulse program is a 1D experiment with-T2 filter using the
Carr-Purcell-Meiboom-Gill sequence. Thirty-two FIDs were collected into 64 k data points over a
spectral width of 12,019.23 Hz with a relaxation delay of 3 s and an acquisition time of 2.73 s. Power
level for presaturation is 50 dB, and number of scans is also 64.

All the serum and urine spectra were baseline corrected and manual phase adjustments of the
spectrua were performed. Data sets were zero-filled to 64 k data points. Each urine or serum 1H-NMR
spectrum was segmented into integrated regions at 0.04 ppm, corresponding to the chemical shifts δ

0.2–10.0 using MestReNova 11.0.2 (Mestrelab Research SL, Norwich, CT, USA). The δ 4.2–6.0 region
was excluded to eliminate the effect of the water resonance and urea signals. The integral data were
normalized to a constant unit area to reduce the effects of variation in concentration differences. Finally,
the exported data was input into the SIMCA-P 13.0 software package (Umetrics AB, Umea, Sweden)
for PLS-DA analysis. The goodness of fit for a model was evaluated according to the three quantitative
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parameters: R2X was the explained variation in X, R2Y was the explained variation in Y, and Q2Y
was the predicted variation in Y. The range of the parameters was between 0 and 1, and the values
approaching 1 indicate good fit for the model [35].

4.7. Statistical Analysis

All the data are expressed as mean ± standard deviation (SD). The significance testing was
determined using one-way ANOVA followed by Dunnett’s test by SPSS 19.0 (IBM SPSS Inc, Chicago,
IL, USA). p < 0.05 was considered as statistically significant.

5. Conclusions

The results clearly showed that the metabolic profiles of the Coptis chinensis and berberine groups
were remarkably similar to those of the control group. In this work, the metabolite responses indicating
the main liver and kidney protective effects of Coptis chinensis and berberine against liver and kidney
damage induced by cinnabar were investigated by 1H-NMR-based metabonomics for the first time.
1H-NMR spectroscopy in conjunction with histopathology and clinical biochemical assays provided
a special insight into the relationship between the metabolite changes and the toxicity to tissues.
The corresponding biochemical pathways of energy metabolism, amino acid metabolism and gut
microbiota disorder provided new suggestions for a systematic and holistic evaluation of the protective
mechanism of Chinese herbal medicines on hepatic and renal injury caused by minerals.

Supplementary Materials: The following are available online. Table S1: The pathway analysis potential target
metabolites.
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