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Introduction. +e severity of coronavirus disease 2019 (COVID-19) was known to be affected by hyperinflammation. Identi-
fication of important proteins associated with hyperinflammation is critical. +ese proteins can be a potential target either as
biomarkers or targets in drug discovery. +erefore, we combined enrichment analysis of these proteins to identify biological
knowledge related to hyperinflammation. Moreover, we conducted transcriptomic data analysis to reveal genes contributing to
disease severity.Methods. We performed large-scale gene function analyses using gene ontology to identify significantly enriched
biological processes, molecular functions, and cellular components associated with our proteins. One of the appropriate methods
to functionally group large-scale protein-protein interaction (PPI) data into small-scale clusters is fuzzy K-partite clustering. We
collected the transcriptomics data from GEO Database (GSE 164805 and GPL26963 platform). Moreover, we created a data set
and analyzed gene expression using Orange Data-mining version 3.30. PPI analysis was performed using the STRING database
with a confidence score >0.9. Results. +is study indicated that four proteins were associated with 25 molecular functions, three
were associated with 22 cellular components, and one was associated with ten biological processes. All GOs of molecular function,
cellular components, and 9 of 14 biological processes were associated with important cytokines related to the COVID-19 cytokine
storm present in the resulting cluster.+e expression analysis showed the interferon-related genes IFNAR1, IFI6, IFIT1, and IFIT3
were significant genes, whereas PPIs showed their interactions were closely related. Conclusion. A combination of enrichment
using GOs and transcriptomic analysis showed that hyperinflammation and severity of COVID-19 may be caused by
interferon signaling.

1. Introduction

A coronavirus is a group of viruses from the subfamily
Orthocoronavirinae in the Coronaviridae family and the
order Nidovirales. +is group of viruses can cause disease in
birds and mammals, including humans [1]. In humans,
coronaviruses cause respiratory infections that are generally
light, such as colds, to some severe infections of the

respiratory, digestive, and systemic systems [2]. Several
forms of disease caused by this virus are Severe Acute Re-
spiratory Syndrome (SARS) in 2002 and Middle East Re-
spiratory Syndrome (MERS) in 2012. At the end of 2019, the
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-
CoV-2) caused a new disease named Coronavirus Disease
2019 (COVID-19) by the World Health Organization
(WHO) on February 11, 2020. COVID-19 can cause
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significant health problems such as fever, dry cough, diffi-
culty breathing, pneumonia, multi-organ failure, and even
death [3]. In addition, the SARS-CoV-2 virus becomes a
parasite on host cells and will cause an excessive inflam-
matory reaction or hyperinflammation [4].

+e meaning of hyperinflammation is an excessive
immune response that can cause high levels of inflamma-
tion. +e excessive inflammation caused by this virus occurs
due to a storm of cytokines that can damage the human
lungs [5], even forcing immune cells to destroy healthy cells.
+erefore, COVID-19 patients must receive intensive care
[6]. In inflammation, protein can be a biomarker of organ
damage [4].

In recent decades, the development of high-throughput
experimental research and the availability of a wide variety
of databases have led to the development of methods to
explain systems biology [7]. Systems biology is an integrated
field that links molecular components within the same bi-
ological and across different scales (e.g. cells, tissues, and
organ systems) to physiological function and phenotype of
organisms through quantitative reasoning, computational
modelling, and high-performance experimental technology
[7]. Systems biology methodology can be applied either as a
bottom-up approach that gathers smaller functional units to
create a system or as a top-down approach that starts from
the overall view of the system and then tries to study smaller
subsystems [7]. Systems biology uses both experimental and
computational frameworks to answer biological questions.
+e computational task includes knowledge extraction using
bioinformatics, statistical methods, and network analysis [7].
Network nodes are cellular components in systems biology,
and edges are the reactions or interactions between these
nodes. Considering cellular systems as networks is a valuable
and practical way to understand the functional organization
of cells by analyzing network topology [8, 9].

In a previous study, we implemented a bottom-up
strategy using network analysis to investigate the important
proteins from protein-protein interaction (PPI). We
employed a clustering technique and topological measures,
such as degree centrality, betweenness centrality, and
closeness centrality [8], to identify several proteins that
exacerbate COVID-19 from the effects of hyper-
inflammation [10].

As in the bottom-up approach, in this study, we tried to
know the role of those proteins in hyperinflammation by
conducting enrichment analysis using gene ontology (GO).
Enrichment analysis is a method for identifying the class of
genes or proteins that are overexpressed in a large set of
genes or proteins and may be associated with the phenotype
of the disease. +e screening of important proteins requires
analysis using gene ontology (GO) due to the impact of
hyperinflammation caused by SARS-CoV-2. GO is one of
the data sources for functional genomic research [8], which
consists of three distinct aspects describing the function of
proteins. Ontology is a tool for seeking biological knowledge
by associating data (genes or gene products) with biological
processes, molecular functions, and cellular components
[11]. We also could get the advantage of reducing the false
positives value by using GO data [12]. +e use of biological

information could get better results in identifying important
proteins [13] because it can improve the interpretation of
results [8]. However, research on this topic is still limited.
Most studies ignore the biological meaning of proteins in the
context of PPI [14].

Finding the association of proteins and GO can be
conducted using clustering. One of the clustering technique,
the fuzzy k-partite clustering method, can cluster large-scale
PPI data into functionally small-scale clusters. In a previous
study, fuzzy k-partite clustering was developed and used to
perform tripartite clustering on disease-gene-protein [15].
+us, in this case, we could use fuzzy k-partite clustering to
group protein/gene and three GO components. As known,
each biological network was multifunctional so that proteins
could fit into more than one cluster [15]. In this study, we
employed the fuzzy k-partite clustering approach to perform
enrichment analysis of protein and GO. We also continued
this enrichment results by conducting transcriptomic
analysis from the GEO database. We expected to reveal
particular genes contributing to the disease severity.

2. Methods

2.1. Data. +is study used protein data that affect hyper-
inflammation in COVID-19. All proteins in this study are
proteins of humans. +ese proteins were obtained by using
computational biology methods from important protein
candidate data and PPI data [10]. +e important protein
candidates’ data were obtained from OMIM (https://www.
omim.org/), UniProt (https://www.uniprot.org/), and pre-
vious research about the COVID-19’s protein [16–18]. From
these various sources, there are 57 proteins obtained.
Moreover, the PPI data were obtained from STRING
(https://stringdb.org/). +ese 57 proteins interact with other
proteins so the PPI data contain 357 proteins and 1686
interactions. +is PPI data must go through the pre-
processing stage, such as cleaning edge duplication and
eliminating PPIs in small subgraphs that are not connected
to themain protein interaction network.+is step shows that
the PPI data contain 222 proteins and 1239 interactions.

+e screening of important proteins was carried out in
two stages by calculating the overall centrality value using
PCA and clustering with ClusterONE. +e overall centrality
value was calculated from the seven centrality measures
(degree centrality, betweenness centrality, closeness cen-
trality, subgraph centrality, eigenvector centrality, infor-
mation centrality, and network centrality); the weights of
each centrality were obtained from the eigenvalue resulting
from PCA. Next, we reduced the graph to obtain the sub-
graph using the induced graph method. +e amount of
protein taken for subgraph formation is 10% of the total
protein in the main graph. +ese proteins are linked to most
of the proteins in the graph compared to the remaining 90%.
Moreover, the top 10% proteins with the highest score of
overall centrality contain 124 interactions formed by 22
proteins. By using ClusterONE, there were two clusters of
this subgraph. +e first cluster is the best because it had a
higher density, quality, and average overall value and a lower
p-value.+ere were 20 important proteins in the first cluster,
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namely STAT3, TYK2, IL6, STAT1, JAK1, STAT2, TBK1,
RSAD2, OAS2, OAS1, MX2, MX1, ISG15, IRF7, IRF3,
IFNAR1, IFIT3, IFIT1, IFI6, and DDX58.

Moreover, we used GO data such as molecular function,
cellular component, and biological process obtained from
the UniProt database site. +ree GOs represent GO terms
describing a gene that encodes a gene product. +ese gene
products carry out molecular-level activities (molecular
functions) at specific locations relative to the cell (cellular
components). +ese molecular-level processes contribute to
a larger biological goal (biological processes) [11]. Figure 1
illustrates DNA replication in yeast modelled using three
aspects of GOs. All GOs in this study are reviewed GOs in
humans.

2.2. K-Partite Graph. In graph theory, a k-partite graph is a
graph in which nodes can be divided into k independent sets.
An independent set means that the nodes in a set are not
connected to other nodes by an edge. In other words, no
node is adjacent to another node in an independent set. In a
k-partite graph, a node is adjacent to another node of a
different set.

+is study used four data, including protein and three
GOs data (molecular function, cellular component, and
biological process). Because the three GOs data are not
related to each other, we could build three bipartite graphs,
namely protein-molecular function, protein-cellular com-
ponent, and protein-biological process. We used Cytoscape
to visualize three bipartite graphs. Figure 2 shows the il-
lustration of bipartite graphs.

2.3. Fuzzy K-Partite Clustering. Fuzzy K-partite clustering
applies the graph-based fuzzy clustering algorithm [15].
Fuzzy clustering is one of the methods to determine the
optimal cluster in a vector space based on the Euclidean
distance. It is a soft clustering method that can group an
object into more than one cluster. In other words, fuzzy
clustering can perform overlap clustering. +e term fuzzy
in the context of clustering is that each object has a degree
of membership value to determine the cluster position of
the object [19]. +e purpose of fuzzy clustering is to
minimize the objective function with the main parameter is
the degree of membership [20]. So, the initial stage in this
method is to determine the number of initial clusters. +e
determination of the maximum number of clusters for each
GO data and protein can be seen in equations (1) and (2),
respectively [15].

Cgo �
Ngo

10
, (1)

where Cgo is the maximum number of clusters for each GO
and Ngo is the number of nodes in each GO data.

Cp � Cgo

����
Np

Ngo

􏽳

, (2)

where Cp is the maximum number of protein clusters and
Np is the number of nodes in the protein data.

+e fuzzy K-partite clustering algorithm inputs are
matrix A, matrix B, and matrix C. Matrix A is the adjacency
matrix between protein and GO. Matrix A was obtained
from transforming three bipartite graphs into three adja-
cency matrices for each protein-molecular function graph,
protein-cellular component graph, and protein-biological
process graph. Element of matrix A has value one if an edge
connects a protein node and a GO node and zero otherwise.

Matrix B is a matrix of interconnection value between
protein clusters and GO clusters, while matrix C is a matrix
of protein membership degree value in the protein cluster
and GO in the GO cluster. In the fuzzy K-partite clustering
algorithm, matrix B and matrix C are non-negative matrices
whose initial value for each element is a random value. +e
dimensions of matrix B andmatrix C depend on the number
of proteins, the number of GO, the maximum number of
protein clusters, and the maximum number of GO clusters.
Figure 3 illustrates matrix A, matrix B, and matrix C.

Figure 3 shows two sets, including the proteins and GO
sets. +e clustering process is carried out in three stages, as
many as GO types. We conducted three clustering processes:
clustering of important proteins with molecular function,
cellular component, and biological process because there is
no information about the relationship between each type of
GO.

+e output of this algorithm is the value of protein and
GO membership degree in each cluster and the intercon-
nection value between protein clusters and GO clusters. +e
interconnection value between clusters was high if the
percentage of cluster members was low and vice versa. +e
fuzzy K-partite clustering algorithm will stop if the cost
function value has converged. +e cost function equation is
calculated by equation (3) [15].

f(H, C) ≔ 􏽘
i<j

A
(ij)

− C
(i)

B
(ij)

C
(j)T

�����

�����
2

F
, (3)

where ‖ · ‖2F is the Frobenius norm of squares, i.e., the sum
squares of the matrix elements. +e cost function value
shows how easily data are grouped into several clusters, the
easier the data are grouped into a cluster, the lower the cost
function value will be.

U sing the fuzzy K-partite algorithm, the value of the cost
function will find the lowest value because the algorithm’s
structure is similar to non-negative matrix factorization
(NMF), with the difference that it can handle the factor-
ization problem of three matrices. In addition, each iteration
will not increase the cost function value. Another advantage
is that fuzzy K-partite clustering produces a lower cost
function value of 10% than usual and can predict the cluster
structure better than the previous method since it is a soft
clustering. +e fuzzy K-partite clustering algorithm can be
seen in Figure 4.

2.4. MicroArray Dataset Analysis. Microarray data were
collected from data that referred to [21]. +e data showed
whole peripheral blood mononuclear cell (PBMC) genomic
transcriptomes from severe (severe) and mild (mild)
COVID-19 patients, as well as healthy controls (HC)
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retrieved from the GEO database (GSE 164805 and
GPL26963 platform) [21]. Data set creation and gene ex-
pression analysis were performed using Orange Data-
mining version 3.30.

2.5. PPIAnalysisUsing STRING. Protein-protein interaction
(PPI) analysis of the altered expression of IRF7, IFNAR1,
IFIT3, IFIT1, IFI6 in severe COVID-19 patients was per-
formed using the STRING database. PPI analysis between
the expression of these genes and the genes resulting from
enrichment was carried out with a confidence score >0.9.
+e type of interaction, the confidence score, and the type of
change in expression (upregulation or downregulation) were
recorded and arranged in tabular form [22].

3. Result

3.1. Gene Ontology. We searched three GO data (cellular
component, biological processes, and molecular function)
from 20 proteins obtained from PPI analysis. +ere were 65
types of molecular function, 55 types of cellular component,
and 274 types of biological processes associated with im-
portant proteins that have been obtained in the previous
study.

Each GO data is associated with one important protein
and has a relationship with more than one important
protein. +e GO data of molecular functions, cellular
components, and biological processes that have the highest
relationship or degree with the important proteins can be
seen in Figures 5–7, respectively.

3.2. Bipartite Graph. Each GO is formed into a bipartite
graph associated with important proteins using Cytoscape.
+ere were 113 interactions between important proteins-

molecular functions, 145 interactions between important
proteins-cellular components, and 459 interactions between
important proteins-biological processes. +e illustrations of
three bipartite graphs can be seen in Figures 8–10. +e blue
nodes are GO nodes, while the green nodes are important
protein nodes.

3.3. Fuzzy K-Partite Clustering. After being formed into a
bipartite graph, convert each graph into an adjacency ma-
trix, or matrix A. +en calculate the maximum clusters
formed for protein clusters in cellular components, mo-
lecular functions, and biological processes and each GO
clusters of cellular components, molecular functions, and
biological processes. With equations (1) and (2), the cal-
culation results of the maximum clusters of each protein in
cellular components, molecular functions, and biological
processes and GO clusters of cellular components, molecular
functions, and biological processes can be seen in Table 1.

After obtaining information on the maximum number
of clusters in each protein and GO, matrix B and matrix C
can be built with dimensions according to the maximum
number of clusters in Table 1. +is study did not search for
the optimum cluster because the maximum number of
clusters was relatively small. A protein or GO is assigned to a
cluster if its membership degree exceeds the threshold of 0.2
[23].

3.4. Clustering Results Analysis. From the three results of
bipartite graph clustering between important proteins with
molecular function, cellular components, and biological
processes, this study shows that four important proteins are
associated with 25 molecular functions, three important
proteins are associated with 22 cellular components, and one

Algorithm 1 fuzzy k-partite clutering

Input: k-partite graph G with possibly non-negatively weighted edge matrices A(ij), i < j,
number of cluster m1, . . . , mk

Output:

1 Initialize C(i), B(ij) to random non-negative matrices.

2

3

4

rs

rs
end

end
end

until convergence;
Note: ⊗ and ⊘ symbolize element-wise multiplication and division, respectively.

rs

rs rt

rt

Normalize c(i) ← c(i)/(Σt c(i) for all i, r, s

Normalize c(i) ← c(i)/(Σt c(i) for all r, s
C(i) ← C(i) ⊗ (Σj≠i A(ij)C(j)B(ij)T) ⊘ (Σj≠i C(i)B(ij)C(j)TC(j)B(ij)T)

B(ij) ← B(ij) ⊗ (C(j)TA(ij)C(j)) ⊘ (C(i)TC(i)B(ij)C(j)TC(j))

repeat
update fuzzy clusters

update k-partite cluster graph H

for i ← 1, . . . , k do

for i ← 1, . . . , k – 1 do
for j ← i + 1, . . . , k do

fuzzy clustering C(i) and k-partite cluster graph H given by matrices B(ij)

Figure 4: Fuzzy K-partite clustering algorithm.
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important protein associated with 101 biological processes.
In addition, the resulting cost function values are 87.081 for
molecular function, 109.985 for cellular components, and
311.371 for biological processes. +ese cost functions are
smaller when compared to previous research, which had a
cost function of 594.175 [24].

3.5. Significant Changes of Interferon-Associated Genes and
Network Analysis. +e interferon was found to be upre-
gulated, including IFNAR1 (https://en.wikipedia.org/wiki/
Interferon-alpha/beta_receptor), IFI6 (Interferon Alpha

Inducible Protein 6), IFIT1 (Interferon Induced Protein
With Tetratricopeptide Repeats 1), IFIT 3 (Interferon In-
duced Protein With Tetratricopeptide Repeats 3, IFNA6
(Interferon Alpha 6), and IFNB1 (Interferon beta precursor).
On the other hand, the IRF7 (Interferon regulatory factor 7)
and IFNG (Interferon Gamma) were found to be down-
regulated in severe COVID-19 patients. In Figure 11, we
show the PPI interactions of these genes, IFI6, IFIT1, IFIT3,
and IRF7, were strongly connected (confidence level� 0.9),
while IFNAR was not connected. +is shows that severity
may be affected by changes of transcripts of interferon-re-
lated signaling.
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Figure 5: +e highest degree of molecular function with important protein.
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From these data, we also observed the IFNG value in
severe and mild-HC groups. +e data are shown in Fig-
ure 11. +e results showed that IFNG expression was
downregulated significantly (p≤ 0.01). +erefore, the se-
verity of COVID-19 may be caused by the down expression
of the IFNG. +e results of gene expression analysis showed
that there was a decrease (downregulation) of the expression
of IFNG and IRF7, which was thought to affect the antiviral
response by interferon in SEVERE patient’s expressions.

In addition, to understand the IFNG downregulation, we
observed the TBK1 (TANK-binding kinase 1-interferon)
value, which is an inducer of the IFNG in Figure 12. +e TBK
expression was not changed in HC, mild, and severe COVID-
19 patients, respectively. We also investigated the PPI from

interferons-related proteins to understand connections. In
Figure 12, we show that all of the genes were connected. From
this, we assumed that down or upregulated genes will affect
the network. PPI analysis can be seen in Figure 13.

4. Discussion

Previous studies reported two molecular functions, two
cellular components, and 14 biological processes associated
with significant cytokines in the COVID-19 cytokine storm
[24]. +ese GOs were retained from GeneAnalytics (https://
geneanalytics.genecards.org/), which can identify gene on-
tology terms associated with such cytokines. +e names of
each type of GO can be seen in Table 2.

Figure 8: Bipartite graph of important protein-molecular function.
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+e clustering results of COVID-19 important protein
and GO showed that all GOs of molecular function, all GOs
of cellular components, and 9 of 14 GOs of biological
processes associated with significant cytokine in the
COVID-19 cytokine storm were present in the clustering
results.+e results of this clustering result had an association
with hyperinflammation of cytokine storms in COVID-19.
+e results of each GO cluster member that are not asso-
ciated with significant cytokines in the COVID-19 cytokine
storm are GOs suspected to be associated with other
hyperinflammation in human organs cause of disease
complications when exposed to SARS-CoV-2.

Clustering important proteins can develop this research
with three types of GOs using a quadripartite graph. In-
formation about the relationship between the three types of
GO is needed so that it is hoped that there will be a more in-
depth analysis of the relationship between important pro-
teins and three types of GO. As comparison besides GO, we
also added enriched data fromWikipathway, which is shown
in Table 3.

+e severity of COVID-19 was triggered by hyper-
inflammation of the host. Several factors may drive this,
including oxidative stress driven by xanthine oxidase, cy-
tokine productions such as interleukin family, and neu-
trophil recruitment, triggering microthrombus formations
[25]. We followed up by combining gene expression analysis
from microarray data collected referred to [21]. +e data
suggest that IFNAR1 (Interferon-alpha/beta receptor alpha
chain), https://www.uniprot.org/uniprot/O14879)IFIT3
(Interferon-induced protein with tetratricopeptide 3, IFIT1
(https://www.uniprot.org/uniprot/O14879)Interferon-in-
duced protein with tetratricopeptide 1, and IFI6 (Interferon
alpha inducible protein 6) were upregulated inpatient with
severity, while the IRF7 was downregulated (interferon
regulatory factor 7).

IFNAR was necessary to activate interferon stimulatory
gene (ISG) to suppress the virus to enter the cells. An in-
crease in IFNARmay be associated with the host response to
viral infections. Bastard et al. showed that one cause that
affected severity was auto antibody IFN type 1 [26].

Figure 9: Bipartite graph of important protein-cellular component.
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Moreover, it was found that increasing IFIT1 and
IFIT3 has been reported previously in CD16+ monocytes
of mild and severe COVID-19 patients, while the IRF7 was
not differentially expressed. Interestingly, our analysis
showed that the IRF7 was downregulated, while the
IFNAR1 was increased. +is may reflect to that autoan-
tibody of IFN type 1 may occur and cause IRF7 down

expression. On the other hand, besides type 1 IFN,
COVID-19 infections were modulated by interferon in-
flammation that triggered the SARS-CoV-2 entering the
cells. It was also reported that interferon response genes
were also found to increase as a response to viral infec-
tions while the epithelial was infected, including IFI6
similar to our finding. [26–28].

Figure 10: Bipartite graph of important protein-biological process.

Table 1: Maximum number of clusters for each type of GO.

Maximum cluster
Number of clusters

Molecular function Cellular component Biological process
Protein 4 3 7
GO 6 6 27

Interdisciplinary Perspectives on Infectious Diseases 9



Contribution of interferon type I and type II was pre-
viously reported by [29] and related to our results. +e
analysis of gene expression increased significantly in IFNA6,
IFNB1 (p< 0.05), and IFNG. An increase of IFNA6 and
IFNB1 may reflect activation of hyperinflammation through
the type 1 interferon pathway [28]. On the other hand, our
data suggested that IFNG was significantly down between
mild and healthy control to severe patients. +erefore,

downregulation of IFNGmay show low antiviral response in
the patients and may relate to the severity of COVID-19
patients as shown in Table 4 and Figure 11, respectively
(p≤ 0.01). +e increase in IFNA6 and IFNB1 is a natural
thing because as due to the decrease in IFNG antiviral re-
sponse, there is no antiviral response that harms the host.
Decreased IFNG expression could be decreased IRF7 via
TBK1 [29].

7 8 9 10
Student’s t: 3.794 (p=0.004, N=15)

11

12.25679.70906

7.28188 8.984658.58058

10.4778

HC-MILD: 10.7298 ± 1.35086335

SEVERE: 8.2731 ± 1.08793560
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Figure 11: +e mean IFNG expression in the SEVERE and MILD-HC groups was significantly different (p≤ 0.01). It can be seen in the
image that IFNG is downregulated that inhibits IFNG synthesis.
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Figure 12: +e mean TBK1 expression in the SEVERE and MILD-HC groups not significantly different (p≤ 0.01).
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Figure 13: PPI involved in the interferon response obtained from the STRING database with an interaction confidence score of 0.900.
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Table 2: GO terms associated with cytokines significant to COVID-19 cytokine storm.

GO type GO term Exist in the resulting cluster

Molecular function 1 Cytokine activity Yes
2 Growth factor activity Yes

Cellular component 1 Extracellular space Yes
2 Extracellular region Yes

Biological process

1 Immune response No
2 Cytokine-mediated signaling pathway Yes
3 Signal transduction No
4 Cellular response to lipopolysaccharide Yes
5 Inflammatory response Yes
6 Positive regulation of cell proliferation No
7 Positive regulation of transcription by RNA polymerase II No
8 Humoral immune response Yes
9 Positive regulation of gene expression Yes
10 Positive regulation of tyrosine phosphorylation of STAT protein Yes
11 Positive regulation of DNA-binding transcription factor activity Yes
12 Cell-cell signaling No
13 MAPK cascade Yes
14 Negative regulation of the apoptotic process Yes

Table 3: Enriched data from WikiPathway 2021.

Term P-value Adjusted
P-value Genes

Type I interferon induction and signaling during SARS-
CoV-2 infection WP4868 2,88E− 08 4,00E− 06 TBK1; OAS1; IRF3; STAT1; OAS2; STAT2;

IRF7; TYK2; JAK1; IFNAR1

Immune response to tuberculosis WP4197 9,67E− 08 6,72E− 05 OAS1; STAT1; STAT2; MX1; TYK2; IFIT1;
IFIT3; JAK1; IFNAR1

Host-pathogen interaction of human coronaviruses-
interferon induction WP4880 4,54E− 06 2,10E− 05 TBK1; OAS1; IRF3; STAT1; OAS2; STAT2;

TYK2; JAK1; IFNAR1
SARS-CoV-2 innate immunity evasion and cell-specific
immune response WP5039 4,29E− 02 1,49E+ 00 IL6; TBK1; IRF3; STAT1; STAT2; MX1; IRF7;

JAK1; IFNAR1

Hepatitis B infection WP4666 8,24E− 02 2,29E+ 01 IL6; TBK1; IRF3; STAT1; STAT2; STAT3; IRF7;
TYK2; JAK1; IFNAR1

SARS coronavirus and innate immunity WP4912 7,92E− 03 1,84E+ 01 TBK1; IRF3; STAT1; STAT2; TYK2; JAK1;
IFNAR1

Non-genomic actions of 1,25 dihydroxyvitamin D3
WP4341 2,04E+ 01 4,06E+ 02 IL6; RSAD2; STAT1; OAS2; STAT2; ISG15;

TYK2; JAK1
IL-10 anti-inflammatory signaling pathway WP4495 4,59E+ 02 7,97E+ 03 IL6; STAT1; STAT2; STAT3; JAK1
Type II interferon signaling (IFNG) WP619 9,95E+ 02 1,54E+ 05 OAS1; STAT1; STAT2; IFI6; ISG15; JAK1
Interferon type I signaling pathways WP585 1,09E+ 05 1,52E+ 06 STAT1; STAT2; STAT3; TYK2; JAK1; IFNAR1
Type III interferon signaling WP2113 1,52E+ 06 1,92E+ 06 STAT1; STAT2; TYK2; JAK1
Overview of interferon-mediated signaling pathway
WP4558 2,48E+ 05 2,88E+ 06 STAT1; STAT2; TYK2; JAK1; IFNAR1

IL-6 signaling pathway WP364 5,47E+ 05 5,84E+ 07 IL6; STAT1; STAT3; TYK2; JAK1
Toll-like receptor signaling pathway WP75 5,88E+ 05 5,84E+ 07 IL6; TBK1; IRF3; STAT1; IRF7; IFNAR1
Regulation of toll-like receptor signaling pathway WP1449 3,62E+ 07 3,35E+ 07 IL6; TBK1; IRF3; STAT1; IRF7; IFNAR1
Cytosolic DNA-sensing pathway WP4655 9,61E+ 05 8,35E+ 07 IL6; TBK1; IRF3; IRF7; ISG15
TLR4 signaling and tolerance WP3851 1,47E+ 08 1,20E+ 09 IL6; TBK1; IRF3; IRF7
Interleukin-11 signaling pathway WP2332 9,62E+ 07 7,43E+ 08 STAT1; STAT3; TYK2; JAK1
+ymic stromal lymphoPoietin (TSLP) signaling pathway
WP2203 1,26E+ 09 9,23E+ 08 IL6; STAT1; STAT3; JAK1

IL-4 signaling pathway WP395 2,23E+ 09 1,55E+ 10 STAT1; STAT3; TYK2; JAK1

Interdisciplinary Perspectives on Infectious Diseases 11



5. Conclusion

+e network analysis, as one of the system biology approach,
can help us to reveal the contributing genes to the diseases
severity. A combination of enrichment using GOs and
transcriptomic analysis showed that hyperinflammation and
severity of COVID-19 may be caused by interferon
signaling.
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